High-Performance Graphics 2019

Strasbourg, France
July 8 — 10, 2019

General Chairs
David McAllister, Samsung
Richard Membarth, DFKI

Papers Chairs
Markus Steinberger, TU Graz
Tim Foley, NVIDIA
Sponsors

unity

UNREAL ENGINE

facebook Reality Labs
Sponsors

- AMD
- NVIDIA
- SAMSUNG
- intel®
- ACTIVISION
- KHRONOS GROUP
- ACM SIGGRAPH
- EG
Preface

We are very pleased to present the proceedings of High-Performance Graphics (HPG) 2019. This year marks a special year for the conference, as High-Performance Graphics full-papers are included in Computer Graphics Forum for the first time. High-Performance Graphics will continue to present its full papers in journal form. While during European year full-papers will again be published in Computer Graphics Forum, during US years, full papers are published in the Proceedings of the ACM on Computer Graphics and Interactive Techniques.

2019 marks the eleventh year of the conference. High-Performance Graphics has established itself as the leading international conference on graphics hardware, systems, and algorithms. The conference brings together researchers, engineers, and architects to discuss the complex interactions of massively parallel hardware, novel programming models, efficient graphics algorithms, and novel applications.

High-Performance Graphics was founded in 2009 as the combination of two important and well-respected conferences in computer graphics: Graphics Hardware, an annual conference focusing on graphics hardware, architecture, and systems since 1986; and Interactive Ray Tracing, concentrating on interactive ray tracing and global illumination since 2006. HPG combines the best research from these two fields and covers a broad range of exciting algorithms for interactive and high-performance graphics solutions.

This year continues to reflect the traditional synthesis of ray-tracing and graphics hardware, with about half of the accepted papers being related to ray tracing. In total, 20 full-papers were submitted to HPG 2019, of which 6 were accepted, resulting in an acceptance rate of 30%. In addition to the full-paper track, HPG recently introduced a short paper track. This year, we could accept 9 short papers, which are being published in the Eurographics Digital Library. We want to express our deepest gratitude to all the 57 reviewers, 35 IPC members, and all the submitters for their your hard work in creating a successful conference.

Tim Foley and Markus Steinberger
Papers chairs
Table of Contents

Rendering

HMLFC: Hierarchical Motion-Compensated Light Field Compression for Interactive Rendering 1
Srihari Pratapa and Dinesh Manocha

An Analysis of Region Clustered BVH Volume Rendering on GPU .. 13
David Ganter and Michael Manzke

Real-Time Analytic Antialiased Text for 3-D Environments ... 23
Apollo Ellis, Warren Hunt, and John Hart

Simulation and Optimization

An Efficient Solution to Structured Optimization Problems using Recursive Matrices 33
Darius Rückert and Marc Stamminger

Position-Based Simulation of Elastic Models on the GPU with Energy Aware Gauss-Seidel Algorithm 41
Ozan Cetinaslan

Distortion-Free Displacement Mapping ... 53
Tobias Zirr and Tobias Ritschel
International Program Committee

Attila Áfra (Intel)
Ulf Assarsson (Chalmers University of Technology)
Carsten Benthin (Intel)
Jiří Bittner (Czech Technical University in Prague)
Petrik Clarberg (NVIDIA)
Cyril Crassin (NVIDIA)
Carsten Dachsbacher (Karlsruhe Institute of Technology)
Michael Doggett (Facebook Reality Labs)
Jonathan Dupuy (Unity Technologies)
Elmar Eisemann (Delft University of Technology)
Takahiro Harada (AMD)
Yong He (Google)
Anton Kaplanyan (Facebook Reality Labs)
Won-Jong Lee (Intel)
Aaron Lefohn (NVIDIA)
Gabor Liktor (Intel)
Jacob Munkberg (NVIDIA)
Mathias Niessner (Technical University Munich)
John Owens (UC Davis)
Anjul Patney (NVIDIA)
Matt Pharr (Google)
Alexander Reshetov (NVIDIA)
Tobias Ritschel (University College London)
Marco Salvi (NVIDIA)
Peter-Pike Sloan (Activision)
Philipp Slusallek (DFKI & Saarland University)
Karthik Vaidyanathan (Intel)
Ingo Wald (NVIDIA)
Rui Wang (Zhejiang University)
Rüdiger Westermann (TUM)
Michael Wimmer (TU Wien)
Chris Wyman (NVIDIA)
Sungeui Yoon (KAIST)
Kun Zhou (Zhejiang University)
Michael Zollhöfer (Stanford University)
Additional Reviewers

Barringer, Rasmus
Behley, Jens
Bender, Jan
Bikker, Jacco
Binder, Nikolaus
Bitterli, Benedikt
Breeden, Katherine
Brunvand, Erik
Conty, Alejandro
Costa, Vasco
Davis, Tim
Denes, Gyorgy
Ernst, Manfred
Fuetterling, Valentin
Gong, Minmin
Goswami, Nilanjan
Gu, Yan
Hadwiger, Markus
Hanika, Johannes
Herholz, Sebastian
Hinkenjann, André
Hornus, Samuel
Hou, Qiming
Huang, Jian
Hunt, Warren
Iehl, Jean-Claude
Karis, Brian
Kondapaneni, Ivo
Lier, Alexander

Loubet, Guillaume
Maierhofer, Stefan
Mara, Michael
Mark, Bill
McGuire, Morgan
Meyer, Quirin
Moon, Bochang
Mora, Frédéric
Nah, Jae-Ho
Nonaka, Jorji
Nowrouzezahrai, Derek
Olano, Marc
Patow, Gustavo
Peters, Christoph
Reuter, Patrick
Schied, Christoph
Sharpe, Brian
Ström, Jacob
Sun, Xin
Tarini, Marco
Thuerey, Nils
Toth, Robert
Vasiou, Elena
Viitanen, Timo
Walter, Bruce
Wu, Jun
Xiao, Lei
Zhao, Shuang
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetinaslan, Ozan</td>
<td>41</td>
</tr>
<tr>
<td>Ellis, Apollo</td>
<td>23</td>
</tr>
<tr>
<td>Ganter, David</td>
<td>13</td>
</tr>
<tr>
<td>Hart, John</td>
<td>23</td>
</tr>
<tr>
<td>Hunt, Warren</td>
<td>23</td>
</tr>
<tr>
<td>Manocha, Dinesh</td>
<td>1</td>
</tr>
<tr>
<td>Manzke, Michael</td>
<td>13</td>
</tr>
<tr>
<td>Pratapa, Srihari</td>
<td>1</td>
</tr>
<tr>
<td>Ritschel, Tobias</td>
<td>53</td>
</tr>
<tr>
<td>Rücker, Darius</td>
<td>33</td>
</tr>
<tr>
<td>Stamminger, Marc</td>
<td>33</td>
</tr>
<tr>
<td>Zirr, Tobias</td>
<td>53</td>
</tr>
</tbody>
</table>
Keynotes

The Story of NVIDIA RTX
Steve Parker

Managing Ultra-high Complexity in Real-time Graphics: Some Hints and Ingredients
Fabrice Neyret

Modern Movie Rendering: How Raytracing Changed my Industry
Luca Fascione (Weta digital)

The movie industry is in the last steps of completing a shift in rendering technology from rasterization-based workflows to path tracing-based ones. We will discuss how and why this change has happened, and propose ideas for where this new path may lead.

Jaakko Lehtinen (NVIDIA, Aalto University)