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Abstract
We present a time-scalable approach for visualizing dynamic graphs. By adopting bipartite graph layouts known from par-
allel edge splatting, individual graphs are horizontally stacked by drawing partial edges, leading to stacked edge splatting.
This allows us to uncover the temporal patterns together with achieving the time-scalability. To preserve the graph structural
information, we introduce the representative graph where edges are aggregated and drawn at full length. The representative
graph is then placed on the top of the last graph in the (sub)sequence. This allows us to obtain detailed information about the
partial edges by tracing them back to the representative graph. We apply sequential temporal clustering to obtain an overview
of different temporal phases of the graph sequence together with the corresponding structure for each phase. We demonstrate
the effectiveness of our approach by using real-world datasets.

CCS Concepts
• Human-centered computing → Information visualization; Visual analytics;
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t1 t2 t3 t4 t5 t6

(a) Parallel Edge Splatting [BVB∗11]

interleave actual representation

(b) Interleaving method [BHW17]

stacking metaphor representative graph actual representation

(c) Our approach: stacked edge splatting

Figure 2: Stacking bipartite graphs to obtain a time-scalable visualization. (a) Parallel edge splatting: bipartite graphs are drawn next to
each other. (b) Interleaving method: bipartite graphs are interleaved. (c) Our approach: bipartite graphs are horizontally stacked by drawing
partial edges.
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Figure 3: First 159 timepoints of the flight dataset visualized using stacked edge splatting (top) and the interleaving method (bottom).
Temporal patterns are more recognizable in the stacked edge splatting representation as a result of avoiding over-drawing problems caused
by the interleaving method.
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(a) 1 pixel (b) 3 pixels (c) 5 pixels (d) 7 pixels

Figure 4: Stacked edge splatting with different lengths of partial edges. Shorter partial edges result in a more compressed representation,
whereas longer ones provide more edge information.

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.



M. Abdelaal, M. Hlawatsch, M. Burch, and D. Weiskopf / Supplementary Material for Clustering for Stacked Edge Splatting

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
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Figure 5: Sequentially clustering the flight dataset at a threshold of 1.1, resulting in 11 clusters: (bottom) the clusters’ representative graphs,
(middle) links deleted by each cluster, (top) links added by each cluster. Each of the representative graphs at the bottom is a result of adding
the links at the top to the previous representative graph, followed by subtracting links at the middle.
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Figure 6: The expanded view of the first three clusters of the flight dataset. The stacking representation allows us to identify several temporal
patterns.
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Figure 7: The edge-highlighting interaction technique is used to view the source and destination vertices of the previously identified temporal
patterns.
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Timepoint 1 Timepoint 2 Timepoint 3

move mouse

Figure 9: Closeup segment of pattern P3 shows a dynamic behavior that keeps altering between three distinct timepoints. The mouse-hover
interaction technique is used to expand the timepoints to the full width.
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