
Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2017)
P. Sander and M. Zwicker (Editors)

k-d Tree Construction Designed for Motion Blur

X. Yang1, Q. Liu2, B.C. Yin1, Q. Zhang1, D.S. Zhou3, X.P. Wei1

1 Dalian University of Technology, 2 Shanghai Jiao Tong University, 3 Dalian University

Abstract

We present a k-d tree construction algorithm designed to accelerate rendering of scenes with motion blur, in application scenar-
ios where a k-d tree is either required or desired. Our associated data structure focuses on capturing incoherent motion within
the nodes of a k-d tree and improves both data structure quality and efficiency over previous methods. At build-time stage, we
tracks primitives with motion that is significantly distinct from other primitives within the node, guarantee valid node references
and the correctness of the data structure via primitive duplication heuristic and propagation rules. Our experiments with this
hierarchy show artifact-free motion-blur rendering using a k-d tree, and demonstrate improvements against a traditional BVH
with interpolation and a MSBVH structure designed to handle moving primitives, particularly in render time.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Graphics data structures and data types; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing.

1. Introduction

Motion blur [ETH∗09] effects occur naturally in photography due
to camera or object motion with non-zero shutter times. However,
rendering accurate motion blur effects significantly increases com-
plexity due to either extra geometry, extra sampling, or both. This
additional complexity makes motion-blur computation difficult in
real-time applications, so realistic motion-blur effects has tradition-
ally been limited to offline renderers such as ray tracers.

Most ray tracers use acceleration structures that dramatical-
ly decrease ray-object intersection computations when compared
to a non-hierarchical geometric representation. In general a k-d
tree [PGSS06, CKL∗10] provides better report times for viewing
and shadow rays intersection tests than other common accelera-
tion structures, such as BVH, meanwhile supports efficient packet
tracing and frustum traversal [WMG∗09]. Besides, k-d tree is very
promising in a variety of graphics applications, including nearest
photon queries in photon mapping, and nearest neighbor search in
point cloud modeling and particle-based fluid simulation.

While we expect nearby primitives in animated objects to behave
coherently and have similar motion vectors, unfortunately, this is
often not the case. Primitives can travel in different directions and
move across the split planes, causing a need to frequently rebuild
the tree hierarchy. As an object moves, the primitives may move
outside the node or across the split plane between two child nodes,
both of which will invalidate the references in the node. Traversing
a conventionally-constructed k-d tree in the presence of motion blur

may result in either artifacts or significantly more traversals and
intersections, substantially reducing the efficiency of the k-d tree.

In this paper, we propose a new k-d tree construction algorithm,
the “Motion Blur k-d” tree (MBKD). The MBKD is based on the k-
d tree and effectively targets general motion blur. We introduce one
new kind of virtual node, which we call a BP_node, that collects
all the primitives whose incoherent motion would cause inefficien-
cies when generating the tree; then, we design a recursive propaga-
tion algorithm that propagates duplicate primitives in the BP_nodes
down the tree. Our experiments with this hierarchy show artifact-
free motion-blur rendering using a k-d tree, and demonstrate im-
provements against a traditional BVH with interpolation and a MS-
BVH structure designed to handle moving primitives, particularly
in render time.

2. Related Work

2.1. Acceleration Structures

High-performance ray tracing requires acceleration structures to re-
duce the number of unnecessary ray intersections. Havran [Hav07]
and more recently Karras [Kar12], in the context of parallel data
structures, provide excellent summaries of the strengths and weak-
nesses of various acceleration structures.

A Bounding Volume Hierarchy (BVH) is an object hierarchy
where each tree node stores a bounding volume for its subtree’s ge-
ometry and leaves reference the primitives. Because the primitives
in BVHs can usually only be stored in one leaf, some scenes may

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/sre.20171200

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sre.20171200


X. Yang et al. / k-d Tree Construction Designed for Motion Blur / k-d Tree Construction Designed for Motion Blur

(a) Sponza (b) Ben (c) Hairball (d) Hand

Figure 1: Rendering motion-blur involves tracking primitives as they move during a camera’s shutter interval at sample = 16 with 512*512
resolution using Intel Core i7 4700MQ processor. Conventional acceleration structures like a k-d tree struggle to handle such primitives,
resulting in artifacts or loss of performance. We introduce MBKD, an acceleration structure which addresses these issues by modifying a
conventional k-d tree.

have overlapping bounding boxes. Overlaps increase the number of
traversals and ray-primitive operations, affecting rendering perfor-
mance. While recent research addresses this problem [WK06, D-
K08, SFD09], very little work actually addresses the complication
of motion blur.

Compared with other acceleration structures, k-d trees general-
ly obtain faster ray traversal calculation and adapt better to highly
varying geometric densities by introducing spatial splits, but take
substantially longer time to construct. Objects in a k-d tree are
grouped into nodes by a decision procedure such as the surface area
heuristic (SAH) [CKL∗10], which enables optimization of compu-
tation costs between tree traversal steps and triangle intersections.
The extensive literature on fast computation of k-d trees that are
optimized for different applications mostly targets optimized con-
struction algorithms, traversal algorithms, and intersection algo-
rithms on both the CPU [CKL∗10,SSK07] and GPU [WZL11,ZH-
WG08]. However, techniques that efficiently handle moving prim-
itives for a k-d tree organization are less well established.

2.2. Motion Blur

Fast rendering of motion blur has been an active area of research
in computer graphics. Most mature rendering systems approximate
motion and defocus blur with image-space post-processing. Recent
research utilizes rasterization-based methods [MCH∗11, VTS∗12],
or a newer and programmable motion effect [HHRZ12, SSBG10],
but we focus here on the intersection of ray tracing and motion blur.

Stochastic ray tracing [CPC84] is an important method for pho-
torealistic motion-blur-effect simulation. The traditional method
for motion blur extends the bounding box of the enclosed primi-
tive in the time dimension. The actual bounding boxes and geom-
etry used during ray traversal are then determined by linear inter-
polation [CFLB06, ZHR∗09]. Glassner [Gla88] developed hybrid
trees, which use both concepts of spatial and object hierarchies.
Olsson [Ols00] proposed 4D k-d trees for time-continuous anima-
tions. McGuire et al. [MESL10] presented a hybrid algorithm on
the GPU for rendering approximate motion and defocus blur with

precise stochastic visibility evaluation. Gribel et al.’s visibility al-
gorithm [GBAM11] allows rendering motion blur with per-pixel
anti-aliasing.

Hou et al. [HQL∗10] presented a BVH based on 4D OBB hy-
pertrapezoids that project into 3D object bounding boxes in s-
patial dimensions to get tighter bounding boxes. Grünschloß et
al. [GSNK11] proposed the MSBVH data structure, which is based
on the SBVH [SFD09] to support efficient ray tracing of motion
blur by interpolating node bounding boxes, while at the same time
reducing node overlap using spatial splits as introduced with the
SBVH. They used a clipping method to generate the leaf clipping
box, propagated the bounds up the hierarchy, then interpolated the
node bounding box as in traditional BVH interpolation.

Interpolation methods work well on some acceleration data
structures, but cannot obtain correct results on k-d trees. Even Bkd-
Tree [PAAV03] is the hybrids of k-d trees and BVH to interpolate
for motion blur, its essential structure is based on BVH.

3. Motion-Blur k-d Tree

3.1. MBKD Construction

This work focuses specifically on a k-d tree construction algorithm
designed for efficient handling of motion blur, including the dif-
ficult case of incoherent motion. We define an incoherent primi-
tive as a primitive that, due to its motion, move across the split
plane to intersect another node and thus invalids the tree hierarchy.
Our method is based on the idea that we should relocate primitives,
when appropriate with a minimized number of redundant primitive
references, to enable fast and correct rendering. Our data structure
preserves the advantages of the k-d tree while adding the benefit of
efficient traversal for moving primitives.

3.1.1. Duplication

Nodes in MBKD can be viewed as a traditional k-d tree node, say
Normal_node with a virtual BP_node attached, except the root n-
ode, which is only considered as a Normal_node. Primitives that do

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

114



X. Yang et al. / k-d Tree Construction Designed for Motion Blur / k-d Tree Construction Designed for Motion Blur

A A

B B

CC

DD

SAH Split Plane

B
A C

D

A A

E

F

B B

CC

DD

BP_nodeE

F

B
A

C
D

E

F

C
D

A B
E

F

(b) MBKD Tree(a) Classical k-d Tree

Normal_node

Normal_node Normal_node

Normal_node

SAH Split Plane

Normal_node Normal_node

BP_node BP_node

Figure 2: Comparison of the structures of the classical k-d tree and MBKD tree. In a classical k-d tree, moving primitives (A, B, C and D in
figure (a)) would be assigned to only one child and do not contribute to motion blur. Instead, our MBKD tree uses a BP_node to store these
primitives, as shown in figure (b). For primitives A and B, they are duplicated into the right child’s BP_node, and C and D are duplicated into
the left child’s BP_node. The E and F in the BP_node of the parent will continue to be propagated into the next child nodes. The primitive
E is placed in the left child Normal_node, and stored in the right child BP_node for the duplication based on its initial position and moving
route. The primitive F is processed in a similar way. The static primitives of the parent are placed in the Normal_nodes into two child nodes,
as the traditional k-d tree construction.

not move across the split plane are only stored in a Normal_node
and not duplicated. The BP_node only stores duplicated primi-
tives crossing the split plane; it is not a spatial node like the Nor-
mal_node but instead more of a virtual node.

The first step is to detect all the primitives with incoherent mo-
tion within the Normal_nodes of a k-d tree, that move across a split
plane intersect another node and worsen the tree hierarchy. Thus,
we duplicate these destructive primitives across the split plane
during the time shutter into appropriate BP_nodes, to maintain a
valid tree hierarchy, and build a BP_node for storing them. If no
primitives in a Normal_node cross the split plane, we generate no
BP_node for that Normal_node.

Specifically, we compute the split plane for a parent node us-
ing SAH at t = 0.5. If a triangle in a Normal_node with its time-
extended bounding box crosses this split plane, we know this tri-
angle must be duplicated in some child BP_node. Figure 3 shows
the 4 moving-primitive cases we consider that require special han-
dling to properly compute motion blur. Primitives in motion in a
Normal_node may cross the split plane at different times, some
primitives may be only contained in one child at t = 0.5, assum-
ing which is left child, and it may move into right child at some
time point during the time shutter. We first assign that primitive
into a child Normal_node like a traditional k-d tree node construc-
tion. Then, we duplicate it into new built BP_node attached of the
other child Normal_node, where the affiliated Normal_node of the
BP_node initially does not contain this duplicated primitive. We
collect all of these primitives featured with the description above
into the the corresponding BP_nodes during this movement, and
the other rest of the primitives of the parent node are assigned us-
ing the SAH into two child Normal_nodes. If a primitive is keeping

staying across the split plane during the whole time shutter, it will
only be assigned into both child Normal_nodes just as in the classi-
cal k-d tree construction. There are also another 4 moving-primitive
cases, which are analogous but move begin with the right child.

It should be pointed that, when we continue to select the split
plane for subdivision, BP_node does not participate in the split
plane selection, SAH cost is computed among the primitives from
the Normal_node, not including the primitives in the BP_node, in
order to decrease the sorting time and prevent difficult primitives
from confusing the split plane selection. While detecting the prim-
itives that cross the split plane, some extended bounding boxes of
the primitives also may cross the boundary of the current node. In
order to make each ray travel down to the leaf node through M-
BKD, and intersect correctly with the primitives probably cross-
ing the boundary of the node, we construct an extended bounding
box for the root node, which contains all the possible positions for
the primitives during the time shutter. Then, when further splitting
the node, we can only consider the primitives related to the select-
ed split plane, instead do not consider other primitives around the
boundary, and make sure the primitives always can be contained in
a node during the time shutter.

Selecting the split plane has a significant effect on the quality of
the resulting tree. We build the hierarchy from top to bottom, ex-
ploit temporal coherence in motion, first consider the scene pose
at t = 0.5 during the initial construction. Wald et al. [Wal07] men-
tioned that the topology of this pose can work reasonably well for
temporally-close scene poses. Although the case to which Wald
et al. refers is not aimed at incoherent motion, it still works well
for most tree nodes. While it makes intuitive sense to construc-
t the initial k-d tree at the center of the time interval rather than

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

115



X. Yang et al. / k-d Tree Construction Designed for Motion Blur / k-d Tree Construction Designed for Motion Blur

SAH Split Plane

t = 0.5 t = 1

t = 0.5 t = 1

t = 0.5 t = 0

t = 0.5 t = 0

Original Primitive

Duplicated Primitive
BP_node 

1

2

3

4

BP_node 

Normal_node Normal_node 

Figure 3: Duplication Heuristics. Here, we focus on the primitives
in the Normal_node of a parent, and identify 8 cases contributing
to motion blur. In cases 1, 2, 3, and 4, the primitive is in the left
child’s Normal_node at t = 0.5. It can either move across the s-
plit plane(cases 1 and 3) or pass completely into the right child
area(cases 2 and 4). These primitives are initially assigned to left
child’s Normal_node in traditional k-d tree. Here, they are also du-
plicated into the right child’s BP_node.

at either end, we also quantified our intuition: we compared the
performance of the MBKD when the initial k-d tree was built at
times = (0,0.5,1.0) by counting the number of traversals and in-
tersections. Implementation also shows that using t = 0.5 is always
better than either endpoint, with an average of 12% fewer intersec-
tions and 10% fewer traversals when compared against t = 0 and
t = 1.

We also modify the traditional method of counting primitives
to better account for motion. In the conventional SAH model, if a
primitive crosses the split plane, the number of primitives of both
the left and right child nodes increases by 1. However, that prim-
itive may be only contained in one child node during a particular
time period. Thus, time attributes can be added to the primitives in
our method. If a primitive crosses the split plane between t = 0 and
t = 1, we can compute the split time at the crossover point (two
different entry and exit instances, t = tc1 and t = tc2 ). The left prim-
itive has range t = 0 to t = tc2 , and the right primitive has range
t = tc1 to t = 1. Then, rather than counting that primitive as 1 in

both the left and right nodes, we instead use (tc2 −0) and (1− tc1 ):

CP = KT +
KI

SA(N)
× [L+R]

L = ∑Nl
(tc2 − t0)×SA(Nl)

R = ∑Nr
(t1 − tc1)×SA(Nr)

Here ∑Nl
(tc2 − t0)× SA(Nl) and ∑Nr

(t1 − tc1)× SA(Nr) are re-
spectively the intersection cost of the left and right nodes, SA(Nl)
and SA(Nr) are respectively the surface area of the AABB in the
left and right nodes, SA(N) is the surface area of the AABB in the
parent node, and KT and KI are respectively the cost constants for a
traversal and an intersection operation. This change makes a better
estimate of the primitives on each side of the split plane across the
entire time interval, and obtains better split planes, better than the
conventional SAH model with an average of 7% fewer duplication
primitives in our experiment.

3.1.2. Propagation

Duplicating the crossing primitives in Normal_nodes guarantees
that any ray cannot miss the correct intersection primitives in the
leaf nodes along the tree hierarchy during the time shutter. The du-
plicated primitives in a BP_node are only responsible to its affili-
ated Normal_node of parent node, and they should be propagated
into their two child nodes to ensure their contribution to motion
blur. Here, we use a propagation heuristic for all the primitives in
BP_nodes to assign them into the following child Normal_nodes
or BP_nodes along the tree hierarchy until they reach the appropri-
ated leaf nodes, as shown in Figure ??. In this example, we show
primitives moving from left to right. Since there are only 3 position
relationships between a primitive and its nodes—fully in the left
node, fully in the right node, and on the splitting plane—we only
consider six propagation cases based on their ownership relation-
ships during the entire interval.

Specifically, We use the same split plane in the parent node as
judgment criterion to propagate the primitives in the BP_node of
the parent, and the primitives in a BP_node can also be propagat-
ed into its child Normal_node or BP_node. If a primitive is only
assigned into one or two child Normal_nodes, that means it will
not happen to cross the current split plane during the time shut-
ter. An efficient propagation strategy improves duplication primi-
tive organization in the tree structure, and avoid the generation of
large BP_nodes. While our duplication and propagation strategies
eliminate invalid node references, they may cause more primitives
to be contained in child nodes. Although we do not consider these
new duplication primitives for SAH sorting, the propagation pro-
cess from the BP_nodes may still bring some extra assignment cost.
These costs are unavoidable but acceptable given the performance
improvements in rendering that we discuss later.

3.2. The Traversal Phase

Our MBKD ray traversal algorithm follows a depth-first traversal
order, and applies the traditional k-d tree traversal method for all
Normal_nodes along the tree hierarchy. Rays determine traversal

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

116



X. Yang et al. / k-d Tree Construction Designed for Motion Blur / k-d Tree Construction Designed for Motion Blur

routes down along the tree by comparing with split planes of the
Normal_nodes. The BP_nodes do not participate in the traversal
process. Thus, they do not need to be maintained after the initial
construction finish. When rays intersect with primitives in leaf n-
odes, because all the primitives that pass the node area are recorded,
we can make intersection tests directly with each primitive. In addi-
tion, we also record the time intervals, in which contained in a node
for these primitives, thus if the time interval of a primitive does not
belong to the scope of current assigned ray time, it will abandon
intersection computations.

4. Results

We implemented our MBKD using C++ on an Intel Core i7
4700MQ Processor. Our main comparison is against three popu-
lar choices for scenes with motion blur: a regular BVH method,
the MSBVH [GSNK11]. Our test scenes consisted of the 4 models
shown in our teaser image (Figure 1): Sponza, Ben, Hairball and
Hand at sample = 16 with 512×512 resolution.

The test scenes demonstrate the need for motion blur effects and
a wide spectrum of varied and difficult motion, to fully validate the
efficiency of our method. For the Sponza scene, we rotate the cam-
era at a fixed position for more irregular motion to render camera
motion blur. The Ben scene shows a person in the Sponza geome-
try running in one direction with incoherent motion in Ben’s arms
and legs. This implies a hierarchy where the overall motion is fixed
(the ground does not move), but the person has locally bad motion
(object motion). In the Hairball scene, we tested the same geome-
try as used in MSBVH, and used the Bullet physics engine [Bul11]
for some rather crude animation, every strand of hair moves in a
different direction, this is an ideal example of incoherent motion.

For these scenes, we present two main results: building time and
render time. The measurements were performed using a custom
rendering system, based on the PBRT implementation [PH10]. Ta-
ble 1 shows the results of our MBKD for motion blur with their
building and render times, and compares the relevant and abso-
lute figures of merit against an interpolated BVH baseline ("B-
VH_i") and MSBVH method. As shown in the results, the con-
struction of MBKD and MSBVH usually takes a longer time than
BVH_i, but requires less render time, which is similar to the com-
parison between a conventional k-d tree, BVH and SBVH. It means
these corresponding motion blur structures—BVH_i, MSBVH, and
MBKD–keep their original hierarchy merits (BVH, SBVH, and k-d
tree) features and benefits. More importantly, compared to a MS-
BVH, our MBKD obtains faster traversal performance in all the
test scenes, with similar or slightly-increased construction times in
most of the test scenes, though the duplication process also brings
some extra BP_nodes construction cost. Figures 4 and 5 show a
heat map visualization of the traversals and intersections per pix-
el, respectively. Our implementation of the MBKD achieves faster
render time than previous methods, despite the increased cost of
construction.

We also analyzed the quantity of duplicate primitives, additional
duplicate cost, and propagation cost of the MBKD. Table 2 com-
pares the relative number of incoherent primitives contained in
BP_nodes for the test scenes, and shows the comparison of the rel-
ative time respectively taken to finish the duplicate and propagation

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: The number of ray traversals with the bounding box per
pixel visualized as a heat map for the test scenes Sponza, Ben, Hair-
ball, and Hand. (a)−(d) is for the interpolated BVH, and (e)−(h)
is for the MBKD.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: The number of ray intersections with the bounding box
per pixel visualized as a heat map for the test scenes Sponza, Ben,
Hairball, and Hand. (a)− (d) is for the interpolated BVH, and
(e)− (h) is for the MBKD.

process during construction. The cost of the additional propagation
work caused by the MBKD is modest: the quantity of duplicate
primitives, the time cost brought by the additional primitives du-
plicate in BP_nodes, and the time cost for the duplicate primitives’
propagation together account for a small proportion of the corre-
sponding overall cost. The results in Tables 1 verify that the propa-
gation cost does not cause a degradation of rendering performance;
instead, our MBKD has faster traversal compared with the other ap-
proaches, because of its more efficient spatial hierarchy structure.

An important difference of MBKD from a traditional k-d tree
is the memory usage, though primitives duplicated in BP_nodes
definitely cause extra memory consumption. Table 3 compares the
memory footprint. The results here show a small increase in mem-
ory consumption of up to 15% for the Hairball scene. This extra
memory cost is acceptable given the performance improvement in
rendering from method.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

117



X. Yang et al. / k-d Tree Construction Designed for Motion Blur / k-d Tree Construction Designed for Motion Blur

Scene Acceleration Structure Building Time (%) Render Time (%) Building Time (s) Render Time (s)

Sponza
BVH_i 100 100 0.69 23.87

MSBVH 152 73 1.05 17.39
MBKD 158 62 1.09 14.90

Ben
BVH_i 100 100 1.99 24.44

MSBVH 120 75 2.39 18.30
MBKD 128 65 2.55 15.95

Hairball
BVH_i 100 100 5.66 17.59

MSBVH 119 86 6.74 15.13
MBKD 124 65 7.04 11.39

Hand
BVH_i 100 100 0.14 5.33

MSBVH 150 74 0.21 3.96
MBKD 164 55 0.23 2.91

Table 1: This table shows a comparison of build-time and render-time between MBKD, MSBVH, and BVH_i to handle moving primitives.
Building Time (%) and Render Time (%) show the same numbers normalized to a BVH_i.

Duplication Duplication Propagation
Quantity(%) Time (%) Time (%)

Sponza 5.3% 21.7% 1.5%
Ben 5.9% 19.9% 2.9%

Hairball 10.5% 17.9% 5.9%
Hand 13.9% 23.4% 15.5%

Table 2: Comparison of relative occurrence of duplicate-primitive
quantity, duplication time, and propagation time in MBKD-trees.

Structure Sponza Ben Hairball Flake Hand

BVH_i 93MB 170MB 470MB 65MB 42MB
MSBVH 101MB 179MB 503MB 72MB 47MB
MBKD 122MB 219MB 578MB 87MB 55MB

Table 3: Comparison of memory footprint of BVH_i, MSBVH and
MBKD representation of the same scenes.

5. Conclusions

Our MBKD is based on a k-d tree hierarchy and allows fast motion
blur computation. In this work, we propose a method to process
primitives moving across split planes, which otherwise causes n-
ode references to change and makes a classic k-d tree unsuitable
for motion blur. The core idea is “duplication when moving across,
redistribute when propagating”. Our algorithm focuses specifical-
ly on handling incoherent motion, which can degrade the accel-
eration structure and cause a dramatic deterioration in rendering
performance with incorrect rendering results. Beyond straightfor-
ward performance and parallelization enhancements to this work,
we hope to explore what we believe is the most significant contri-
bution of this work: our algorithmic approach of balancing and op-
timizing computation through duplication, propagation. We expect
to extend this idea to other acceleration structures and use these
lessons to design more appropriate data structures for dynamic ren-
dering.

Acknowledgement

The authors wish to acknowledge the support of NSFC grant
61632006, 61300084, 61370141, National High-tech R&D Pro-
gram of China (Grant No. 2015AA7046207), Open Project Pro-
gram of the State Key Lab of Structural Analysis for Industrial E-
quipment (Grant No. GZ15107), Program for Changjiang Schol-
ars and Innovative Research Team in University (No.IRT_15R07),
and the Fundamental Research Funds for the Central Universities
(Grant No.DUT2017TB04). And thanks Yunfei Wang for video
editing help.

References
[Bul11] BULLET PHYSICS LIBRARY: Bullet 3D game multiphysics li-

brary. http://code.google.com/p/bullet/, 2011. 5

[CFLB06] CHRISTENSEN P. H., FONG J., LAUR D. M., BATALI D.:
Ray tracing for the movie Cars. In Proceedings of the 2006 IEEE Sym-
posium on Interactive Ray Tracing (2006), IEEE, pp. 1–6. 2

[CKL∗10] CHOI B., KOMURAVELLI R., LU V., SUNG H., BOCCHINO
R. L., ADVE S. V., HART J. C.: Parallel SAH k-d tree construction. In
High Performance Graphics (2010), pp. 77–86. 1, 2

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed ray
tracing. In Computer Graphics (Proceedings of SIGGRAPH 84) (July
1984), pp. 137–145. 2

[DK08] DAMMERTZ H., KELLER A.: The edge volume heuristic - robust
triangle subdivision for improved BVH performance. In IEEE Sympo-
sium on Interactive Ray Tracing (2008), pp. 155–158. 2

[ETH∗09] EGAN K., TSENG Y.-T., HOLZSCHUCH N., DURAND F.,
RAMAMOORTHI R.: Frequency analysis and sheared reconstruction for
rendering motion blur. ACM Transactions on Graphics 28, 3 (July 2009),
93:1–93:13. 1

[GBAM11] GRIBEL C. J., BARRINGER R., AKENINE-MÖLLER T.:
High-quality spatio-temporal rendering using semi-analytical visibility.
ACM Trans. Graph. 30, 4 (July 2011), 54:1–54:12. 2

[Gla88] GLASSNER A. S.: Spacetime ray tracing for animation. IEEE
Computer Graphics & Applications 8, 2 (Mar. 1988), 60–70. 2

[GSNK11] GRÜNSCHLOSS L., STICH M., NAWAZ S., KELLER A.: MS-
BVH: An efficient acceleration data structure for ray traced motion blur.
In High Performance Graphics (Aug. 2011), pp. 65–70. 2, 5

[Hav07] HAVRAN V.: Heuristic Ray Shooting Algorithms. Dissertation
thesis, Lund University, Feb. 2007. 1

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

118

http://code.google.com/p/bullet/


X. Yang et al. / k-d Tree Construction Designed for Motion Blur / k-d Tree Construction Designed for Motion Blur

[HHRZ12] HUANG X., HOU Q., REN Z., ZHOU K.: Scalable pro-
grammable motion effects on GPUs. Computer Graphics Forum 31, 7pt2
(Sept. 2012), 2259–2266. 2

[HQL∗10] HOU Q., QIN H., LI W., GUO B., ZHOU K.: Micropolygon
ray tracing with defocus and motion blur. ACM Transactions on Graph-
ics 29, 4 (July 2010), 64:1–64:10. 2

[Kar12] KARRAS T.: Maximizing parallelism in the construction of B-
VHs, octrees, and k-d trees. In High Performance Graphics (2012), p-
p. 33–37. 1

[MCH∗11] MUNKBERG J., CLARBERG P., HASSELGREN J., TOTH R.,
SUGIHARA M., AKENINE-MÖLLER T.: Hierarchical stochastic motion
blur rasterization. In High Performance Graphics (2011), pp. 107–118.
2

[MESL10] MCGUIRE M., ENDERTON E., SHIRLEY P., LUEBKE D.:
Real-time stochastic rasterization on conventional GPU architectures. In
High Performance Graphics (2010), pp. 173–182. 2

[Ols00] OLSSON J.: Ray-Tracing Time-Continuous Animations using 4D
KD-Trees. Dissertation thesis, Department of Computer Science and En-
gineering, Faculty of Electrical Engineering, Czech Technical University
in Prague, Nov. 2000. 2

[PAAV03] PROCOPIUC O., AGARWAL P. K., ARGE L., VITTER J. S.:
Bkd-Tree: A Dynamic Scalable kd-Tree. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003, pp. 46–65. 2

[PGSS06] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK P.: Ex-
periences with streaming construction of SAH KD-trees. In Proceedings
of the 2006 IEEE Symposium on Interactive Ray Tracing (Sept. 2006),
pp. 89–94. 1

[PH10] PHARR M., HUMPHREYS G.: Physically Based Rendering, Sec-
ond Edition: From Theory To Implementation, 2nd ed. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2010. 5

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial splits in
bounding volume hierarchies. In High Performance Graphics (2009),
pp. 7–13. 2

[SSBG10] SCHMID J., SUMNER R. W., BOWLES H., GROSS M.: Pro-
grammable motion effects. ACM Transactions on Graphics 29, 4 (July
2010), 57:1–57:9. 2

[SSK07] SHEVTSOV M., SOUPIKOV A., KAPUSTIN A.: Highly parallel
fast kd-tree construction for interactive ray tracing of dynamic scenes.
Computer Graphics Forum 26, 3 (2007), 395–404. 2

[VTS∗12] VAIDYANATHAN K., TOTH R., SALVI M., BOULOS S.,
LEFOHN A.: Adaptive image space shading for motion and defocus
blur. In High Performance Graphics (2012), pp. 13–21. 2

[Wal07] WALD I.: On fast construction of SAH-based bounding volume
hierarchies. In Proceedings of the 2007 IEEE/Eurographics Symposium
on Interactive Ray Tracing (Sept. 2007), pp. 33–40. 3

[WK06] WÄCHTER C., KELLER A.: Instant ray tracing: The bound-
ing interval hierarchy. In Proceedings of the 17th Eurographics Confer-
ence on Rendering Techniques (Aire-la-Ville, Switzerland, Switzerland,
2006), EGSR ’06, Eurographics Association, pp. 139–149. 2

[WMG∗09] WALD I., MARK W. R., GÜNTHER J., BOULOS S., IZE T.,
HUNT W., PARKER S. G., SHIRLEY P.: State of the art in ray tracing
animated scenes. Computer Graphics Forum 28, 6 (2009), 1691–1722.
1

[WZL11] WU Z., ZHAO F., LIU X.: SAH KD-tree construction on GPU.
In High Performance Graphics (2011), pp. 71–78. 2

[ZHR∗09] ZHOU K., HOU Q., REN Z., GONG M., SUN X., GUO B.:
RenderAnts: Interactive Reyes rendering on GPUs. ACM Transactions
on Graphics 28, 5 (Dec. 2009), 155:1–155:11. 2

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time KD-tree
construction on graphics hardware. ACM Transactions on Graphics 27,
5 (Dec. 2008), 126:1–126:11. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

119


