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Figure 1: A few Localized Manifold Harmonics (LMH) on two different regions. By changing the region location on the surface, our model
provides an ordered set of localized harmonic functions (i.e., defined on the entire surface, but strongly concentrated on the selected region).
In this figure the localized harmonics are clearly visible across different frequencies. The LMH constitute a valid alternative to the classical
manifold harmonics and can be used in conjunction with those, or as a drop-in replacement in typical spectral shape analysis tasks.

Abstract
The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications.
In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such
bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topological structure of the entire
manifold. In this paper, we introduce a new framework for local spectral shape analysis. We show how to efficiently construct
localized orthogonal bases by solving an optimization problem that in turn can be posed as the eigendecomposition of a
new operator obtained by a modification of the standard Laplacian. We study the theoretical and computational aspects of the
proposed framework and showcase our new construction on the classical problems of shape approximation and correspondence.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Shape Analysis, 3D Shape Matching, Geometric Modeling

CCS Concepts
•Computing methodologies → Shape analysis;

1. Contribution

One of the key disadvantages of the standard Laplacian eigenbases
used in spectral geometry processing applications [VL08] is their
global support: representing local structures may require using (po-
tentially, infinitely) many basis functions. In many applications,
one wishes to have a local basis that allows to limit the analysis
to specific parts of the shape. The recently proposed compressed
manifold harmonics [OLCO13] attempt to construct local orthogo-
nal bases that approximately diagonalize the Laplacian, but do not
allow to explicitly control the localization of the basis functions.

We propose a new type of intrinsic operators whose spectral de-
composition provides a local basis. The overall aim is to integrate
the global information obtained by the Laplacian eigenfunctions

with local details given by our new basis. The Localized Manifold
Harmonic (LMH) basis constructed this way is

• smooth, local, and orthogonal. In particular, it is possible to con-
struct the localized basis in an incremental way, such that the
new functions are orthogonal to some given set of functions (e.g.,
standard Laplacian eigenfunctions);

• localized at specified regions of the shape;
• efficiently computed by solving a standard eigendecomposition.

2. Approach
Let us be given a manifold X , a region R ⊆ X thereof, a set of
orthonormal functions φ1, . . . ,φk′ (e.g. the first k′ Laplacian eigen-
functions), and an integer k. We seek a new set ψ1, . . . ,ψk of func-
tions that are smooth, orthonormal, and localized on R, as the solu-
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Figure 2: Top-left: Qualitative behavior of different types of harmonics in a spectral processing task. First row: Surface reconstruction using
the first k′ to k′+50 standard manifold harmonics (MH). Second row: We use 10 localized manifold harmonics on each region Ri. Note the
significantly higher accuracy of LMH despite using the same number of harmonics. The heatmap encodes reconstruction error, growing from
white to dark red. Bottom-left: Functional map matrices w.r.t. the MH (left) and w.r.t. a “mixed” basis composed of k′ MH and k+ k LMH
(middle). The maps encode the ground-truth correspondence between the two human shapes; the regions used for the computation of LMH
are highlighted in red and blue. Note the block-diagonal structure of the second matrix, a manifestation of the capability of LMH to encode
local information compactly. Right: Qualitative comparison between our LMH-based approach for deformable shape correspondence in
clutter and the state of the art [CRM∗16] (corresponding points have same color, geodesic error is shown as heatmap).

tion to the following optimization problem:

min
ψ1,...,ψk

k

∑
j=1
E(ψ j) s.t. 〈ψi,ψ j〉L2(X ) = δi j (1)

where E(ψ j) = ES(ψ j)+µRER(ψ j)+µ⊥E⊥(ψ j). The first term ES
is the Dirichlet functional promoting the smoothness of the new
basis. The term

ER( f ) :=
∫
X
( f (x)(1−u(x)))2 dx , (2)

is a quadratic penalty promoting the localization of the basis func-
tions on the given region R⊆ X . Here u : X → [0,1] is a member-
ship function such that u(x) = 1 for x ∈ R and u(x) = 0 otherwise.
Finally, the term

E⊥( f ) :=
k′

∑
i=1
|〈φi, f 〉L2(X )|

2 (3)

demands the basis functions to be orthogonal to the subspace
span{φ1, . . . ,φk′}. It allows to construct an incremental set of func-
tions that are orthogonal to a given set of Laplacian eigenfunctions.

Let ΨΨΨ ∈Rn×k be a matrix containing our discretized basis func-
tions ψ1, . . . ,ψk as its columns, and let ΦΦΦ ∈ Rn×k′ be a matrix of
the first k′ Laplacian eigenfunctions φ1, . . . ,φk′ . Then, the total en-
ergy is discretized as ∑

k
j=1 E(ψ j) = E(ΨΨΨ), with

ES(ΨΨΨ) = tr(ΨΨΨ>WΨΨΨ) (4)

ER(ΨΨΨ) = tr(ΨΨΨ>Adiag(v)ΨΨΨ) (5)

E⊥(ΨΨΨ) = tr(ΨΨΨ>AΦΦΦΦΦΦ
>A︸ ︷︷ ︸

Pk′

ΨΨΨ) (6)

where v = ((1−u(x1))
2, . . . ,(1−u(xn))

2)>.

The discrete version of problem (1) can now be expressed as

min
ΨΨΨ∈Rn×k

tr(ΨΨΨ>Qv,k′ΨΨΨ) s.t. ΨΨΨ
>AΨΨΨ = I , (7)

where the matrix Qv,k′ = W+ µRAdiag(v)+ µ⊥Pk′ is symmetric
and positive semi-definite. Problem (7) is equivalent to the gen-
eralized eigenvalue problem Qv,k′ΨΨΨ = AΨΨΨΛΛΛ and can be solved
globally by classical Arnoldi-like methods.

3. Applications

Localized manifold harmonics are a general tool that can be em-
ployed as a drop-in replacement for, or in conjunction with the clas-
sical manifold harmonics ubiquitous in spectral shape analysis. We
showcase their application in two broad tasks in graphics: spectral
shape processing and shape correspondence. We refer to Figure 2
for a discussion of the results.
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