
Eurographics Symposium on Parallel Graphics and Visualization (2023)
R. Bujack, D. Pugmire, G. Reina (Editors)

Efficient Sphere Rendering Revisited

P. Gralka1 , G. Reina1 , and T. Ertl2

1University of Stuttgart, Visualization Research Center, Germany
2University of Stuttgart, Institute for Visualization and Interactive Systems, Germany

(a) Riemann (b) Drop (c) Fluid (d) Laser

Figure 1: Renderings of the datasets in static scenes used to evaluate the different rendering pipelines and methods. The datasets (a), (b), (c)
are results from simulations in the area of process engineering. They typically contain dense filaments or droplets of liquid surrounded by gas
with a low particle density. In contrast, the dataset (d) contains a large crystalline bulk of matter with a high density and a comparably low
amount of particle clusters released from the bulk by a laser.

Abstract
Glyphs are an intuitive way of displaying the results of atomistic simulations, usually as spheres. Raycasting of camera-aligned
billboards is considered the state-of-the-art technique to render large sets of spheres in a rasterization-based pipeline since the
approach was first proposed by Gumhold. Over time various acceleration techniques have been proposed, such as the rendering
of point primitives as billboards, which are trivial to rasterize and avoid a high workload in the vertex pipeline. Other techniques
attempt to optimize data upload and access patterns in shader programs, both relevant aspects for dynamic data. Recent
advances in graphics hardware raise the question of whether these optimizations are still valid. We evaluate several rendering
and data access scheme combinations on real-world datasets and derive recommendations for efficient rasterization-based
sphere rendering.

CCS Concepts
• Computing methodologies → Rasterization; • Human-centered computing → Scientific visualization;

1. Introduction

Simulating phenomena in process engineering, biology, or cosmol-
ogy often produces large systems of particles representing atoms,
molecules, or celestial bodies. Typical data sizes range from a few
particles up to millions and billions. A suitable metaphor to vi-
sualize particles in such data is a sphere. Gumhold [Gum03] pre-
sented a method to utilize a rasterization-based rendering pipeline
for sphere rendering by ray casting using imposter geometry/bill-
boards. The basic concept behind this method is still considered
state-of-the-art. Other rendering methods, such as ray tracing of
large systems [WKJ∗16], have been proposed since then, as well
as revisiting the classical approach employed in fixed-function ras-
terization, i.e., using explicitly tessellated geometry [ZAMW20].
The inclusion of dedicated ray tracing processors in the architecture
of GPUs made the interactive ray tracing of large particle systems
feasible on GPUs as well. However, Gralka et al. [GWG∗20] show
that there are use cases and scenarios for which glyph-based ren-

dering in a rasterization pipeline outperforms ray tracing. The main
advantage is the possibility of getting an immediate overview of the
data without the requirement of sorting, structuring, and other pre-
processing steps. Hardware and rendering APIs, such as OpenGL,
evolve over time, including the introduction of new features such
as the mesh shader. Drivers change with each version and prioritize
different aspects of an API for optimization. In this paper, we revisit
OpenGL-based rendering pipelines for sphere rendering as previ-
ously presented in the overview by Falk et al. [FGKR16], investigate
their performance on current hardware and whether the assumptions
made in this overview still hold. Additionally, we investigate how
well the mesh shader competes against these “classical” pipelines.
In the evaluation, we investigate different input primitive types, com-
position and parametrization of shader stages. The main focus is on
the rendering performance itself. The evaluation does not consider
other aspects, such as efficient data upload in OpenGL [Wie21].

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/pgv.20231083 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-4586-8279
https://orcid.org/0000-0003-4127-1897
https://orcid.org/0000-0003-4019-2505
https://doi.org/10.2312/pgv.20231083

P. Gralka, G. Reina & T. Ertl / Efficient Sphere Rendering Revisited

2. Related Work

Over time various approaches have been proposed to render spheres,
such as splats [RL00], explicit geometry [ZAMW20], or implicit
parametrization [Gum03, WKJ∗16]. Methods have been proposed
for both, rasterization-based pipelines, as well as ray-tracing-based
pipelines. Typically, spheres represent datasets containing unstruc-
tured data. For ray-tracing-based pipelines, a spatial acceleration
data structure [PGSS07, PL10, WKJ∗16, GWG∗20] is generated for
the data during pre-processing to accelerate rendering. In contrast,
in rasterization-based pipelines, millions of points can be rendered
interactively without pre-processing [GKM∗15]. However, since
the input data is typically unstructured and unsorted, the number
of primitives as well as the overdraw limit rendering performance.
Computing a per-fragment correct depth ensures correct occlusion
and intersection of the spheres. Hardware features such as the con-
servative depth extension allow combining the modification of the
depth of a fragment together with early z-culling to help allevi-
ate the overdraw issue [MBE19]. Unfortunately, the effectiveness
of conservative depth depends on the sorting of the data in direc-
tion of the camera. Culling based on occlusion can help reduce
the data size required for transfer to the GPU [GRDE10], a com-
mon rendering bottleneck [GRE09]. Hierarchical data structures
are also used to reduce dataset sizes and to improve the scala-
bility of rendering pipelines [HE03, FSW09]. Other acceleration
techniques include level-of-detail rendering [RHI∗15] or hierarchi-
cal ray casting [FKE13], aiming at reducing rendering quality or
data bandwidth for areas in the scene that are expected to have a
low contribution to the final image. In certain domains, such as
biomolecules, instancing [LBH12, FKE13] of repeating structures
further reduces the rendering scene’s size. An accurate occlusion
model can improve the rendering quality at a moderate performance
cost [IRR∗22]. While additional effects that improve the perception
of data, such as shadows and transparency, are intuitive to implement
in a ray-tracing-based pipeline, these effects can be approximated in
a rasterization-based pipeline [GKSE12, SGG15], as well.

Some point-based rendering (PBR) aspects are technically sim-
ilar to glyph-based rendering. Gross and Pfister [GP07] provide a
comprehensive overview of PBR techniques, some of which are
the basis of sphere rendering approaches still in use, while Berger
et al. [BTS∗16] provide a more recent survey. PBR techniques are
typically employed to visualize datasets representing surfaces, for in-
stance, a laser scan of a building or object. This property is typically
utilized, sometimes in conjunction with sophisticated data struc-
tures, to accelerate rendering. While many glyph-based datasets,
for instance, molecular dynamics simulation runs, would lose too
many details if transformed into a surface representation, some of
the acceleration data structures are applicable. However, we focus
this investigation on the performance of the final rendering step,
explicitly excluding any pre-processing. Therefore, we refrain from
an in-depth analysis of PBR techniques. Lessons learned can still be
relevant to PBR techniques as some rely on a similar final rendering
step, with the main difference being what is sampled in the fragment
stage, for instance, an implicit sphere or a Gaussian kernel splat.

Many of the above-mentioned rasterization-based techniques
have the ray casting method introduced by Gumhold [Gum03] or a
method derived from that as a central building block. This method

Vertex
Shader

Fragment
ShaderRasterizer

Point

Quad

Triangles

Triangle
Strip

Figure 2: Standard OpenGL rendering pipeline. All standard
pipelines that we investigate use at least the vertex stage and the
fragment stage. Only the tessellation shader stages are left out. We
do not see a benefit for the use case of billboard ray casting. The
tested standard pipelines differ in the input geometry type.

Vertex
Shader

Fragment
Shader

Geometry
Shader Rasterizer

Figure 3: Standard OpenGL pipeline with geometry shader. This
pipeline is launched with the point primitive. It is transformed into
a triangle strip in the geometry shader.

is subject to optimization and evaluation [GRE09, FGKR16] in line
with available hardware features and rendering APIs. Hardware
and APIs evolve over time. A new feature that could potentially
improve the performance of this basic building block, and therefore
all derived methods, is the mesh shader stage, which has already
been used by Ibrahim et al. [IRR∗22] on pre-processed clusters of
particles. Therefore, the subsequent investigation compares different
rendering pipelines and billboard primitives for facilitating the ray
casting method of Gumhold [Gum03].

3. Overview

There are many ways to render spheres in the context of scien-
tific datasets. We look into “classic” rasterization-based methods,
the novel mesh shader, and ray tracing. We understand “classic”
methods as approaches utilizing the rasterization pipeline provided
by APIs such as OpenGL either with explicit sphere geometry or
with billboards enabling ray casting in the fragment shader. Render-
ing pipelines using explicit geometry have recently been evaluated
and compared with ray tracing by Zellmann et al. [ZAMW20] in
terms of performance and rendering quality. Therefore, we focus
on billboard rendering that allows to implement ray casting on a
rasterization-based rendering pipeline, a rendering technique in line
with Gumhold [Gum03]. The basic idea is to produce a planar bill-
board, for instance, a point primitive or a quad, for each sphere. Each
primitive covers the entire (projected) extent of each sphere. The ras-
terizer separates each billboard into a set of fragments. For each of
these fragments, a ray can be generated. Since the billboard covers
the entire extent of a sphere, we can guarantee that the entire sphere
is sampled with these rays. Occlusion is solved using the depth
buffer of the rasterization-based pipeline. Over time others have pro-
posed extensions of this basic idea to introduce approximations of
global effects, such as shadows [GKSE12] or transparency [SGG15],
or acceleration methods, such as occlusion culling [GRDE10], to
reduce the workload in the pipeline. These pipelines require at least

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

28

P. Gralka, G. Reina & T. Ertl / Efficient Sphere Rendering Revisited

the vertex and fragment shader stage and sometimes incorporate the
geometry and tessellation shader as well (see Figure 2 and Figure 3).

Newer generations of GPUs provide with the mesh shader a novel
functionality that combines all programmable vertex processing
stages into one program (see Figure 6). Although intended to reduce
the recomputation of redundant data in complex meshes, a mesh
shader stage could potentially reduce overhead for processing bill-
boards, as well, especially if polygonal billboards have to be used,
in the absence of (large enough) point primitives.

Finally, ray tracing gained traction in scientific contexts with
frameworks such as OSPRay [WJA∗17] and OptiX [PBD∗10]. Es-
pecially on hardware with specific accelerators like modern GPUs,
sphere ray tracing achieves high performance and a high rendering
quality through global lighting effects. However, unlike the “classic”
rasterization-based methods that can typically render data as they
are, a ray tracer requires the data to be reordered into an acceleration
data structure that, in most cases, adds significant overhead to the
data, typically a factor of 3 for a bounding volume hierarchy. This
can be prohibitive for use cases with especially large data.

4. Implementation

In the following, we present details on the implementation of the
different rendering pipelines. These pipelines are embedded in the vi-
sualization software MegaMol [GBB∗19]. The pipelines rely on the
provided facilities for data ingestion, pre-processing, compositing,
and display of framebuffer contents, which could impact absolute
performance. However, we measure performance at the draw call
level using OpenGL timer queries that exclude all the software-
specific overhead. This minimizes the impact of the used software
environment on the results and allows for the generalization of our
findings. The code can be found on GitHub [Meg23] (SRTest.cpp).

The “classic” billboard rendering pipelines and their variations
are extensively described in [FGKR16]. We refer the reader to this
book for details and only describe the basics necessary to under-
stand the evaluation and discussion, as well as changes and obser-
vations concerning methods described in the book. We describe
the mesh shader pipeline in more detail. We use the code provided
alongside [GWG∗20] to provide baselines for comparison with ray
tracing.

4.1. Data Access

The first step in every rendering pipeline for sphere ray casting is
fetching input data. Since we are considering rendering on ded-
icated GPUs, moving the data into VRAM plays an important
role. However, for simplicity, we assume the data is already avail-
able statically in VRAM and focus on evaluating data layouts
and access patterns in the shader stages. Several recent publica-
tions have evaluated efficient upload methods in modern rendering
APIs [FGKR16, WK19, Wie21].

As mentioned in Section 3, the advantage of rasterization-based
methods compared to ray tracing is that no costly re-ordering of data
is required. Contents of a dataset can directly be streamed onto the
GPU for rendering. However, this requires flexible and adaptable
data transfer to and data access in shader stages.

One way to provide the shader stages with input is a Vertex
Array Object (VAO). A VAO can transport a set of attributes that
define the type and size of data streams, such as a set of vec3 for
particle positions. In modern OpenGL, a buffer object, such as a
vertex buffer, is bound as backing storage to an attribute. However,
available attribute layouts are restricted.

Shader Storage Buffer Objects (SSBO) provide more flexibility
and are capable of transporting arbitrary data structs. They have
mainly two essential constraints: The maximum contiguous memory
size is vendor-dependent (usually 2 GB), and the alignment of the
data within the SSBO stored as array-of-structs (AoS) is constrained
to pre-defined standards in OpenGL, such as std430. Alternatively,
data can be transported as struct-of-arrays (SoA) by multiple SSBOs.
We explore three different layouts:

AoS. compact and fully interleaved layout consisting of vec4
partial SoA. separation of position and color like in the VAO
SoA. separate buffer for each coordinate (stream of float values).

The first data layout represents the concept of an array-of-structs
that could have a better performance due to a potentially smaller
footprint in the cache. The second and third data layouts are struct-
of-arrays representatives. However, the latter layout is more in line
with the internal data representation of the visualization software
MegaMol [GBB∗19], as well as the internal data representation of
some simulation code (for performance reasons [FSS13]), allowing
transfer of data from the simulation directly to the visualization with-
out the need of transformation. Such a layout also resembles that of
columns of tabular data allowing a cheap and straightforward slicing
of a larger simulation dataset into smaller visualization datasets, re-
ducing upload bandwidth requirements, which is a typical bottleneck
of GPU rendering.

To avoid copying data in host code to assemble it into a pre-
defined data layout for upload to GPU and access in the shader
stages, the shader code requires adaptable accessors for arbitrary
input data. In the host code domain, typically C++, such flexibility
is provided through generics or virtual function calls. Both fea-
tures are not available in standard OpenGL shader language. Falk
et al. [FGKR16] suggest the injection of custom code snippets into
the code of the respective shader stages before the compilation by
OpenGL.

However, such a feature can also be mimicked through a non-
standard pre-processor able to parse #include directives and ex-
ploit fast recompilation of shader code. If the shader is required to
access buffers with differing data layouts, we can provide a common
method declaration, such as access_data(idx), called within the
main function of a shader stage, while the dataset-dependent imple-
mentation is hidden in different include files that can be exposed
on-demand by the pre-processor, thus emulating virtual function
calls within shader code. We use a custom shader pre-processor
based on glslang [Khr21] to switch between features regarding data
layout, proxy geometry types, etc.

4.2. Billboard Ray Casting

This investigation is focused on implicit sphere representations, but
the following methods can be generalized for any simplex with an
implicit definition. While in image-order rendering methods, such as

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

29

P. Gralka, G. Reina & T. Ertl / Efficient Sphere Rendering Revisited

Figure 4: Difference between screen and camera orientation of the
billboards. Top: Screen-aligned point primitive billboards. Bottom:
Camera-aligned triangulated billboards. Camera-aligned billboards
produce less excess fragments caused by the perspective distortion.

ray tracing, implicit geometry can be directly sampled, object-order
rendering methods, such as rasterization-based pipelines, require
some explicit geometry to facilitate rendering. In our case, these
are individual planar billboards covering the projected extent of
an implicit sphere. The billboards’ geometry can either be a point
primitive or a triangulated polygon. The orientation of the point
primitive billboards is by design aligned with the screen. In the case
of a perspective camera setup, the polygon billboard can be aligned
toward the camera. Looking at the different orientations while re-
fraining from discarding excess fragments, as shown in Figure 4,
camera-aligned billboards produce fewer fragments, especially for
spheres at the viewport’s edges and in the case of a large field-of-
view. Since a ray is evaluated for each fragment, potentially fewer
intersection tests are computed as a consequence. The performance
impact is discussed later.

4.2.1. Classic Rendering Pipeline

We understand as a “classic” rendering pipeline for billboard ray
casting what can be seen in Figure 2—a basic pipeline consisting
of a vertex shader stage and a fragment shader stage. The underly-
ing algorithm is presented in detail in [FGKR16]. The important
step is determining the billboard’s extent in screen space. It pro-
duces four sample vertices—touch points of tangents on the sphere
surface with the origin in the camera position—to determine the
billboard’s size and the center. The calculations can be conducted in
2D by projecting the camera-object rays onto the xz- and yz-plane,
simplifying the computations. These computations are conducted
in the vertex shader. The algorithm uses point primitives as input
geometry. Even if the spheres have a fixed radius, due to projection,
the rendered points have varying sizes that require the pipeline to
support per-vertex point sizes. There are vendor-specific limits to
the maximal admissible point size, and typically the limit is not
sufficient for close-up scenes such that spheres become larger than
their billboard and are cut at their outline. However, other geometry
types are possible that are not impeded by this issue, such as quads,
triangles, and triangle strips. In these cases, the billboard is not a
point but a polygon, and the vertex shader computes the positions
of the corner vertices. We modified the algorithm in [FGKR16]
accordingly for screen-aligned polygonal billboards.

Alternatively, one can use the algorithm for computing the corner
vertices shown in Listing 1 and Figure 5. It results in a camera-
aligned billboard, which works only with polygonal billboards, i.e., a
plane in the sphere center perpendicular to the direction between the
camera and the sphere center. The corner vertices of the billboard are
the intersections of the sphere tangents with the plane. This method
is based on the observation that the opening angle α at the camera
is the same angle at the sphere center M. Since vi = r/cosα we can
utilize this equality through cos2 = 1− sin2 and sinα = r/CM.

Another option to avoid the restrictions of point primitives is a
geometry-shader-based pipeline, as shown in Figure 3. The purpose
of a geometry shader stage is to produce additional geometry within
the rendering pipeline. The proposed pipeline is initiated with point
primitives and converts the points in the geometry shader stage to a
triangle strip. The advantage is that all four vertices of the triangle
strip are created in a single geometry shader instance. Therefore, the
computation of their positions is also conducted in one invocation.
In the vertex shader stage, every invocation would repeat these
computations. More importantly, since no cooperative computation
model is available in this shader stage, each invocation would fetch
the same sphere position to initiate the computation. We refrained
from using the tessellation shader since it would computationally
mimic the geometry shader at the cost of an additional shader stage.

A common aspect of all these pipelines is that there is no backing
input geometry computed in host code or loaded from a file for
the pipeline launches. Every vertex is generated on-the-fly in the
pipeline. We only have to ensure that enough vertex shader instances
are spawned. Therefore, we refrained, in the general case, from us-
ing instancing as it does not reduce the number of required vertex
shader instances nor reduces the number of draw calls. However, we
observed a significant performance gain from instancing in the tri-
angle strip case on NVIDIA GPUs. All other pipelines are launched
with a simple glDrawArrays call.

Acceleration of the rendering, especially for vertex-heavy geom-
etry types such as triangles, could be achieved by early culling of
spheres against the frustum in the vertex processing stage of the ren-
dering pipeline. In the case of billboards, the culling is determined by
the vertices of the billboard—if all vertices are outside the frustum,
it is safe to assume that the complete sphere is outside, as well. There
are two ways to enforce this culling. In a standard OpenGL render-
ing pipeline, the per-vertex output parameters gl_ClipDistance
and, in later API versions, gl_CullDistance are available to sup-
port user-culling. A negative clip or cull distance determines the
respective vertex to be outside the frustum. In contrast to the clip
distance, a single negative cull distance ensures the removal of the
entire primitive. This makes the cull distance useful for the use case
of sphere rendering because the invocations of the vertex shader
are independent of each other. Therefore, it would be necessary to
redundantly compute the clip distance for all vertices in every shader
invocation to ensure a coherent culling of a billboard outside the
frustum. However, activating user-culling adds an overhead to the
execution of a rendering pipeline such that we have not found a use
case with an overall performance gain. Therefore, we discarded this
concept in the implementation of the rendering pipelines.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

30

P. Gralka, G. Reina & T. Ertl / Efficient Sphere Rendering Revisited

M

vi
r

C

α

α

Figure 5: Geometrical representation of the algorithm computing
a camera-aligned billboard in 2D. The opening angle α derived
from the field-of-view is the same angle at the sphere center M. This
allows to find the minimal width of the billboard required to cover
the entire projected extent of the sphere.

4.3. Mesh Shader

The billboard construction methods mentioned above can be mapped
to the new mesh shader stage. The concept of mesh shaders [NVI22]
aims at introducing the cooperative execution model of compute
shaders into the vertex processing of a rendering pipeline. This con-
cept tries to optimize on-chip memory usage to run as many tasks in
parallel as possible. A task is defined in terms of a so-called meshlet.
The term refers to a subset of a large mesh. However, since the input
and output of a mesh shader are almost entirely user-defined, as well
as the inner representation of a meshlet, it could also refer to a set
of particles or any other type of geometry. The mesh shader stage
replaces all vertex processing stages of a “classic” OpenGL pipeline,
including vertex, geometry, and tessellation shader stages, reducing
the fixed-function impact on the pipeline. In an invocation of a mesh
shader, a set of vertex positions and attributes are determined, and
a set of indices emitted that defines the topology of the vertices,
thus combining the functionality of the vertex and geometry stage
with the flexibility of arbitrary input and output. This allows for
re-using vertices in complex mesh topologies. Since the computa-
tional model follows that of compute shaders, shared memory and
other collaborative functionality, such as balloting, can be utilized
by mesh shaders. The main performance aspect is controlled by
the size of the output data of the shader stage and the amount of
accessed data. Output allocation is done in batches of 128 bytes. To
optimize performance, output in terms of the number of vertices,
number of primitives, and size of per-vertex attributes should be
minimal and aligned with that size (which includes the final 4 byte
primitive count).

The mesh shader pipeline we use is shown in Figure 6. In our
case, the mesh stage either emits a set of point primitives or pairs
of triangles. Since we can emit vertices and indices, we can reduce
the output per billboard to four vertices and six indices, forming
two triangles compared to the six vertices we require in the “classic”
rendering pipeline. Additionally, similar to the geometry shader
case, the computation of the corner vertices is conducted once per
billboard and is not repeated for every vertex. The input is the same
for both the point and triangle case, i.e., 31 spheres per input meshlet,

Mesh
Shader

Fragment
ShaderRasterizer

Figure 6: A general mesh shader pipeline. It reduces almost all
programmable and fixed-function stages into a single shader stage.
Input and output are similar to a geometry shader stage. The avail-
able functionality is similar to a compute shader stage. We test the
mesh shader pipeline with either points or triangles as output.

which is also the local workgroup size that has to be defined similarly
to compute shaders. The maximal output size and layout, in terms of
vertices, primitives, as well as primitive type, is pre-defined, similar
to geometry shaders. Listing 2 shows the code for the point-emitting
mesh shader.

Additionally, one can prepend a task shader before a mesh shader,
which can further improve performance. This shader stage is used to
emit mesh shader tasks. Therefore, the task shader is useful for early
culling of geometry or selection of subdivision levels. However,
utilizing the task shader adds overhead to the pipeline that could
thwart performance gains, which is the case for our purposes.

5. Results

We evaluate the different rendering pipelines with four test datasets.
Most of the real-world examples are from process engineering.
These datasets typically feature a distinct variation in particle density
as they contain filaments and droplets of dense fluid embedded in
sparse gas, such as Fluid (see Figure 1(c)) and Drop [EV15] (see Fig-
ure 1(b)). Riemann [HHVM20] contains a large dense fluid block in
the middle of the dataset surrounded by gas similar to Drop but with
an overall higher density (see Figure 1(a)). Laser [ETR19] dataset
(see Figure 1(d)) contains a large and dense metal crystal shot with a
high-energy laser that released several larger and smaller clusters of
particles from the crystal. Most of the bounding box is filled with a
dense crystal. General statistics of the datasets are shown in Table 1.
Additional results can be found in the supplemental material.

Table 1: Properties of the test datasets.

Riemann Drop Fluid Laser

#parts 306,112,864 3,999,672 29,999,997 199,885,091
size 4.898 GB 0.064 GB 0.480 GB 3.198 GB

radius 0.5 0.0008 0.5 2.023

5.1. Tested Methods

The test setup focuses on the primitive type and used shader stages to
reveal performance differences on modern hardware and scalability
considering dataset size. For conciseness, the evaluation is limited to
rendering performance, excluding data pre-processing (for instance,
acceleration data structure construction) and data upload (assuming
static availability of all data, including time-dependent datasets).
We look at the “classic” rendering pipeline consisting of a vertex

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

31

P. Gralka, G. Reina & T. Ertl / Efficient Sphere Rendering Revisited

0

10

20

30

40

50

60

70

80

falseCR true false true

shortdis long

�m
e
in
m
s

NVIDIA GeForce RTX 4090

Point Classic
Geometry Shader
Quad
Triangle Strip
Triangles Classic
Point Mesh Shader
Triangles Mesh Shader

Figure 7: Rendering time results in milliseconds on the NVIDIA
RTX 4090. The results are averaged over all four datasets. The label
dis refers to the distance of the camera orbit to the dataset. The
label CR indicates whether the conservative rasterization extension
is enabled or not.

and fragment shader stage with the point, quad, triangle, and triangle
strip primitives. Another test case adds a geometry shader stage. In
this pipeline points as base input is converted into triangle strips in
the geometry shader stage. Finally, we test a mesh shader pipeline
that emits either points or triangles.

For the tests, the datasets are rendered from ten different cam-
era configurations sampled around an orbit. To evaluate the impact
of point sizes on the different rendering pipelines and primitives,
we test two orbits at different distances (short—within the dataset
bounding box; long—outside the dataset bounding box). The me-
dian rendering time in milliseconds of every recorded frame is
reported. The results are aggregated over all camera scenes and all
datasets to evaluate and discuss trends and relative performance
between the methods rather than dataset-specific issues.

If nothing else is stated, the pipelines use screen-aligned bill-
boards, a vec4 stream as input, and have conservative depth enabled.
The machines used to measure the performance of the pipelines (c
indicates hardware cores, SMT/HT is active on all machines):

1. AMD Ryzen 7 3800X (8 c @ 3.9 GHz); 96 GB DDR4 RAM (@
1,600 MHz); NVIDIA Geforce RTX 3090 (512.77) 24 GB

2. AMD Ryzen 9 5900X (12 c @ 4.7 GHz); 64 GB DDR4 RAM (@
1,333 MHz); AMD Radeon PRO W6800 (22.Q4) 32 GB

3. AMD Ryzen 9 5900X (12 c @ 4.7 GHz); 64 GB DDR4 RAM (@
1,333 MHz); AMD Radeon RX 6900 XT (22.Q4) 16 GB

4. AMD Ryzen 9 5900X (12 c @ 4.7 GHz); 64 GB DDR4 RAM (@
1,333 MHz); NVIDIA Geforce RTX 3090 Ti (531.18) 24 GB

5. AMD Ryzen 9 5900X (12 c @ 4.7 GHz); 64 GB DDR4 RAM (@
1,333 MHz); NVIDIA Geforce RTX 4090 (531.18) 24 GB

6. AMD Ryzen 9 5900X (12 c @ 4.7 GHz); 64 GB DDR4 RAM (@
1,333 MHz); Intel Arc A770 (31.0.101.4146) 16 GB

We use query objects in the OpenGL implementations. A query
is declared by glQueryCounter to record a timestamp. A query
object ensures that all OpenGL commands issued before the query
declaration are realized. The results of the queries are collected later
once the OpenGL server signals their availability. Synchronizing
the state machine explicitly is not necessary if using query objects.

0

20

40

60

80

100

120

140

160

shortdis long

�m
e
in

m
s

AMD Radeon RX 6900 XT

Point Classic
Geometry Shader
Quad
Triangle Strip
Triangles Classic

Figure 8: Rendering time results in milliseconds on the AMD
Radeon RX 6900XT. The results are averaged over all four datasets.
The label dis refers to the distance of the camera orbit to the dataset.

We limit the measured region to the draw commands to exclude
any potential influence on the results from the visualization software
in which the pipelines are implemented. This especially consists
of compositing and framebuffer presentation, as well as general
overhead for visualization pipeline updates between frames. The po-
tential impact of input data layout that is dictated by the software is
discussed in Section 5.3 to derive generalizable results independent
of the underlying visualization software.

5.2. Rendering Times

We compare the raw rendering times in Figure 7, Figure 8, and
Figure 9 (underlying data [GRE23]). The results show that the point
primitive performs best on all tested systems except on the Intel
A770 GPU. Intel officially states that the drivers at the time of
writing focus on modern APIs, such as Vulkan, so this is expected.

For the other vendors, there is a significant performance gap
between the point primitive and the pipelines rendering polygonal
billboards, including the geometry shader pipeline. Ignoring the
outliers—triangle strip on NVIDIA GPUs and geometry shader on
AMD GPUs—the gap between the point primitive and the worst
polygonal candidate is in the range of roughly 110 % to 332 % and
27 % to 65 % respectively, depending on the rendering distance. As
the lower gap on AMD hardware indicates, the variation between the
methods is smoother, and almost linear. Note that the measurements
were taken without the stable power state setting and locked clocks
to be closer to real-life usage.

Changing the rendering distance from short to long has a higher
impact on the point primitive pipelines. We assume this is because
many small triangles are culled in the pipeline while points smaller
than one pixel are rasterized to one pixel. Activating conservative
rasterization—an NVIDIA-specific extension—the long rendering
distance using the polygonal billboards is affected, indicating that
this extension might be required for a density-preserving rendering
with polygonal billboards.

In the case that the point primitive cannot be used due to the size
limits, the quad geometry provides the lowest rendering time on both
NVIDIA and AMD GPUs. However, GL_QUADS is deprecated and
requires a forward-compatible rendering context. The performance
for the remaining polygonal billboard pipelines is not consistent

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

32

P. Gralka, G. Reina & T. Ertl / Efficient Sphere Rendering Revisited

0

100

200

300

400

500

600

700

shortdis long

�m
e
in
m
s

Intel A770

Point Classic
Geometry Shader
Quad
Triangle Strip
Triangles Classic

Figure 9: Rendering time results in milliseconds on the Intel A770.
The results are averaged over all four datasets. The label dis refers
to the distance of the camera orbit to the dataset.

between the vendors. On the one hand, the geometry shader performs
well on NVIDIA GPUs but renders significantly slower compared
to the polygonal counterparts on AMD GPUs. On the other hand,
the triangle strip geometry is reasonably fast on AMD GPUs, while
it results in the worst performance on NVIDIA GPUs, almost as if
the rendering time has a lower bound for this geometry.

If the mesh shader feature is available, it is the best choice for
polygonal billboards. There is no significant performance gain
using this shader feature for point primitives. The simple scal-
ing benchmark shown in Figure 11 confirms this observation. We
use randomly distributed particles and increase their number. The
point primitive pipeline performs best, with the mesh-shader-based
pipelines having roughly similar performance, slightly below the
classic point-based pipeline but still better than any other variant.
The AMD platform shows a similar scaling behavior excluding
the respective outliers geometry shader pipeline and triangle strip
primitive.

The results in Figure 7, Figure 8, and Figure 9 are averaged over
all datasets. To preclude dataset-specific effects on the results, we
plot the rendering time variance in Figure 10. The overall ranking of
the methods persists, as shown in Figure 7. Additionally, the evalua-
tion of the variance reveals that the point-primitive-based pipelines
have a more stable performance across the different datasets. Again,
the AMD platform shows similar behavior.

Table 2 shows baselines for static scenes rendered with techniques
that require pre-processing. The ray tracer is the implementation
from [GWG∗20] based on OptiX [PBD∗10]. The datasets are ren-
dered with the built-in bounding volume hierarchy as an acceleration
structure that benefits from both the hardware-accelerated traversal
on the GPU, and the Pkd-tree [WKJ∗16]. The BVH provides the
best overall results but runs into memory issues on system 1 due
to the high memory overhead of the data structure. A Pkd-tree is
specifically designed to encode the hierarchy of the acceleration
data structure in place, showing that pre-processing of data, in use
cases that allow that, can improve rendering performance over the
“brute-force” pipelines evaluated in Figure 7, Figure 8, and Figure 9.
However, it struggles with the Drop dataset due to how the hier-
archical structure handles the dense droplet in the middle of the
dataset. The occlusion culling renderer [GRDE10] constructs a grid
over the dataset and first issues coarse occlusion queries per cell and

Po
in
t M

es
h
Sh
ad
er

Ge
om

et
ry
Sh
ad
er

Qu
ad

Tr
ian

gle
St
rip

Tr
ian

gle
s C
las
sic

Tr
ian

gle
s M

es
h
Sh
ad
er

Po
in
t C
las
sic

long

Figure 10: Rendering time results in milliseconds on the NVIDIA
RTX 4090. The results show the variance between the different test
datasets. The point primitive pipelines have a lower variance and
therefore perform more stable across datasets.

Table 2: Frame times in milliseconds reported for ray tracing (BVH,
Pkd), occlusion culling (OC), and the point primitive in a “classic”
rendering pipeline. The datasets are rendered on system 1 in static
scenes as shown in Figure 1 as baselines for comparison. (OOM:
out of memory)

Riemann Drop Fluid Laser
Point 75.1 1.3 10.4 70.1
BVH OOM 1.36 1.07 OOM

Pkd 15.21 18.26 8.45 5.68
OC 14 18 >1000 11

later per glyph. As expected, this culling technique performs well
compared to the “brute-force” pipelines with dense datasets, such
as Riemann and Laser, with many occluders. It struggles with the
sparse datasets Drop and Fluid to improve performance over the
“brute-force” approaches.

5.3. Data Access

We evaluated different data layouts of the SSBOs used to store the
dataset. The scaling results shown in Figure 12 reveal no relevant
impact on rendering performance based on layout but instead based
on overall size. There are two distinct groups (within a 1 ms range).
One group comprises layouts representing eight fully separated
float streams and two vec4 streams for position (+ radius) and
color. The other group comprises the interleaved layout (AoS with
vec3 position and uint color) and a single vec3 position stream.
There is also no noticeable difference between the input layouts on
the AMD platform. Since the layout has no significant impact on
runtime, the results in Section 5.2 should apply to other visualization
software utilizing the OpenGL API.

Different layouts can be encapsulated as described in Section 4.1.
This argues in favor of adopting the data layout for rendering in

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

33

P. Gralka, G. Reina & T. Ertl / Efficient Sphere Rendering Revisited

0

10

20

30

40

50

60

100000 1000000 10000000 100000000

�m
e
in
m
s

of par�cles

NVIDIA GeForce RTX 4090

Point Classic

Geometry Shader

Quad

Triangle Strip

Triangles Classic

Point Mesh Shader

Triangles Mesh Shader

Figure 11: Rendering time results on the NVIDIA RTX 4090. Syn-
thetic datasets are used with the respective number of randomly
sampled particles.

0
2
4
6
8

10
12
14
16
18

100000 1000000 10000000 100000000

�m
e
in

m
s

of par�cles

NVIDIA GeForce RTX 4090

8xfloat
interleaved
vec4 + vec4
vec3

Figure 12: Rendering time results in milliseconds on the NVIDIA
RTX 4090. We compare different input data layouts. Synthetic
datasets are used with the respective number of randomly sampled
particles. Input size seems to have more influence than layout.

line with the internal data representation of the source, such as
simulation software like ls1 [NBB∗14]. This particular software
separates each attribute and each coordinate into a separate float
stream. Besides being able to directly map the data into the ren-
dering pipeline, keeping this layout has the potential to improve
the rendering performance, as it allows the pipeline to better take
advantage of the vendor-specific size limitations of SSBOs, such
that more particles can be rendered in a single draw call.

5.4. Screen-aligned vs. Camera-aligned Billboards

The results reported in Section 5.2, especially with enabled conser-
vative rasterization, indicate that the overall fragment processing
has a high impact on performance and could be a potential focus of
optimization. As shown in Figure 4, camera-aligned billboards can
reduce the excess fragments compared to screen-aligned billboards
as they better fit the sphere outline in perspective camera scenes. We
evaluated both alignments in Table 3 with enabled conservative ras-
terization since we expect the highest fragment workload with this
extension. However, we observe only a marginal improvement over
screen-aligned billboards. Looking at the number of pixel shader
launches, the camera-aligned billboards fail their purpose as the
number increases. Only at extreme aperture angles, such as 140°,

Table 3: Comparison between screen-aligned and camera-aligned
triangulated billboards with enabled conservative rasterization. The
datasets are rendered on system 1 with multiple camera configura-
tion sampled on an orbit around the data at distance (dis) relative
to the longest bounding box edge.

Type align dis Riemann Drop Fluid Laser

Quad
screen

l
293.08 2.86 31.49 267.76

cam 292.93 1.72 32.02 268.37

Mesh
screen

l
295.08 3.3 32.78 272.47

cam 302.48 1.76 32.68 272.99

Quad
screen

s
179.48 2.63 17.27 165.45

cam 177.08 1.36 17.13 163.9

Mesh
screen

s
181.14 2.75 17.9 168.88

cam 180.15 1.42 17.98 168.27

Table 4: Comparison of two different input meshlet sizes for the
mesh shader stage. We compare point-based (point) and triangulated
(Tri) billboards without conservative rasterization. The datasets are
rendered on system 1 with multiple camera configuration sampled
on an orbit around the data at distance (dis) relative to the longest
bounding box edge. Rendering times are reported in milliseconds.

Type dis Size Riemann Drop Fluid Laser

Tri l
31 36.67 3.44 4.0 33.17
15 36.42 1.23 3.9 33.81

Tri s
31 48.12 3.61 8.34 90.7
15 47.22 1.21 8.15 90.56

Point l
31 101.22 0.89 11.35 89.34
15 104.83 0.68 11.5 92.4

Point s
31 59.28 1.45 5.77 48.47
15 60.64 0.87 6.02 51.01

the camera-aligned billboards result in fewer pixel shader launches.
However, the difference is still marginal, between 1 and 2 % in the
observed cases.

5.5. Meshlet Size

One user-adjustable parameter of mesh shaders is the size of an input
meshlet in terms of the entities it contains. This choice influences
the size of the output per mesh shader invocation. The larger the
output allocation the fewer invocations can be processed in parallel.
Therefore, we evaluated two different input particle counts for our
mesh shader pipelines in Table 4. We observe no difference outside
a typical error margin for our measurements.

5.6. Performance Counters

To find possible explanations for the relative performance differ-
ences the overview of the rendering times revealed, we drill down
to the details of the resource utilization on the hardware level.
Vendor-specific performance counters provide these details. We
chose NVIDIA GPUs as the test platform, which are currently the
only rendering hardware to expose mesh shaders in OpenGL. The
NVPerf library [NVI23] allows us to instrument the rendering code,

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

34

P. Gralka, G. Reina & T. Ertl / Efficient Sphere Rendering Revisited

0.00E+00
2.00E+07
4.00E+07
6.00E+07
8.00E+07
1.00E+08
1.20E+08
1.40E+08
1.60E+08
1.80E+08
2.00E+08

Point
Classic

Geometry
Shader

Triangles
Classic

Triangle
Strip

Quad Point
Mesh
Shader

Triangles
Mesh
Shader

Input Vertex Sum Launched Vertex Shader Threads

Figure 13: The overall sum of vertices as input for each tested
pipeline and number of launched vertex shader threads. Triangles
result, with six vertices per billboard, in the highest vertex input,
while both the point and geometry shader pipelines are initiated
with point primitives requiring only one vertex per billboard. For
each of these vertices, a vertex shader thread is launched. Results
recorded on system 1.

automatically producing a comprehensive record of all available
performance counters and their values within specified test regions.
The region we use is limited to the draw calls for the tested method.
The library automatically renders a specific number of frames and
aggregates the collected metrics per test run.

Some of the results fit expectations and can serve for verifica-
tion: The results on the primitive distributor (see Figure 13) that
executes before the shaders has the highest vertex count for the
GL_TRIANGLES primitive with six input vertices per billboard, fol-
lowed by GL_TRIANGLE_STRIPS and GL_QUADS with four, and
finally the GL_POINTS primitive with one. No input vertex count
is recorded for the mesh shader types, probably because a different
hardware unit is responsible for input distribution. The input vertex
count directly translates to the number of launched vertex shader
threads (see Figure 13). We cannot observe a similar direct relation
between the launch of the fragment shader and rasterized fragments.
Interestingly, for the mesh shader variants, vertex shader launches
are also recorded, probably referring to the mesh shader stage. The
number of launches for the mesh shader variant that outputs trian-
gles is the same as for the point primitive variant because we launch
based on input particles. The difference between the variants is that
a larger output allocation is required in the triangle case. Note that
each vertex shader invocation fetches a sphere position (and possible
color) from storage, in our case, based on SSBOs. Therefore, reduc-
ing the number of vertex shader invocations decreases the amount
of possibly redundant data fetches. The consequences can be seen in
the number of issued load/store instructions (see Figure 14). Among
the polygonal pipelines, following intuition, the triangles variant
has the highest count and the quad variant the lowest. The geometry
shader and mesh shader pipelines behave counterintuitively. We
assume this is because they emit vertices and their attributes, and
we cannot distinguish between reading and writing data with this
metric. The point primitive pipelines issue the lowest number of
load/store instructions. This can explain the overall performance gap
between point geometry and polygonal billboards. It emphasizes
the value of cooperative computational models in stages, such as
the mesh shader. However, it underscores that the attribute output

0.00E+00
2.00E+08
4.00E+08
6.00E+08
8.00E+08
1.00E+09
1.20E+09
1.40E+09
1.60E+09
1.80E+09
2.00E+09

Point
Classic

Geometry
Shader

Triangles
Classic

Triangle
Strip

Quad Point
Mesh
Shader

Triangles
Mesh
Shader

Load/Store Thread Instruc�ons

Figure 14: The number of load/store instructions issued in the
running threads. As expected, the point primitive has the lowest
count, and the polygonal billboards have a ranking following their
vertex count. The geometry and mesh shader are exceptions since
they emit vertices together with vertex attributes and this metric
does not distinguish between read and write instructions. Results
recorded on system 1.

0.00E+00
1.00E+08
2.00E+08
3.00E+08
4.00E+08
5.00E+08
6.00E+08
7.00E+08
8.00E+08

Point
Classic

Geometry
Shader

Triangles
Classic

Triangle
Strip

Quad Point
Mesh
Shader

Triangles
Mesh
Shader

Launched Pixel Shader Threads

Without CR With CR

Figure 15: The number of launched fragment shader threads. On
the left without active conservative rasterization extension and on
the right with active extension. As expected, with the extension, the
number of threads is higher and the difference between the pipelines
is smaller. Results recorded on system 1.

of the geometry shader and the mesh shader should be as small as
possible.

The results discussed in Section 5.2 show that activating the con-
servative rasterization extension increases rendering time, especially
for polygonal billboards and at larger rendering distances to the
dataset, hinting at potentially many small triangles that are culled
without conservative rasterization. The argument in favor of this ex-
tension is that even these small triangles, billboards for the rendered
spheres, are important to retain to show the density of a dataset (at
least in a binary sense of there is matter in the area). The number
of fragments that are finally written in the render target supports
this assumption, while the number of fragments remains the same
for point primitives with or without the extension, the number of
fragments written for polygonal billboards increases, being equal
or close to the point primitive counterpart. However, the increase is
several magnitudes smaller than the overall fragment count, such
that the benefit is doubtful compared to the performance overhead in-
curred by this extension, for instance, due to the increase in launched
fragment shader threads shown in Figure 15.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

35

P. Gralka, G. Reina & T. Ertl / Efficient Sphere Rendering Revisited

6. Conclusion

In this evaluation, we compare different rasterization-based render-
ing pipelines for raycasting spheres. The basic idea of utilizing bill-
boards for this type of rendering is presented by Gumhold [Gum03].
So far, point primitives are considered to provide the best render-
ing performance results. However, they have the disadvantage that
their maximal size is limited in typical rendering APIs, and the
limits differ between vendors. This can lead to visual artifacts while
closely exploring particle datasets. Our evaluation is focused on the
rendering performance at the draw call level. It shows that the per-
formance of triangulated billboards that do not have size limitations
can, for specific vendors, be within a sensible margin to the point-
based pipelines. However, the point primitive is still the preferable
choice. In legacy OpenGL, the quad primitive is the best alternative
to the point primitive. However, this primitive type is deprecated,
and if available, the mesh shader provides the best performance
in the group of polygonal pipelines. The mesh shader is no valid
alternative for point primitives.

We have shown that different data layouts have no significant
impact on rendering performance. Together with a custom shader
preprocessor, this allows the adaptation of the shader programs to
many potential input data layouts defined by third-party software.
This reinforces the rasterization-based pipelines as “brute-force”
renderers for a quick glance at arbitrary data or as a good choice for
scenarios where a constant stream of input data or a direct mapping
of data into the renderer is expected, such as in situ visualization.

However, in scenarios where pre-processing of input data is allow-
able, hardware-accelerated ray tracing provides the best rendering
performance and quality.

Acknowledgments

This work was partially funded by the German Bundesmin-
isterium für Bildung und Forschung (BMBF) as part of
project “WindHPC” (In Windkraftanlagen integrierte Second-Life-
Rechencluster, 16ME0608K) and by Intel Corporation as part of the
Intel oneAPI Center of Excellence program (ID 1510).

Appendix: Implementation Details

Listing 1: Camera-aligned billboard creation.

vec3 oc_pos = objPos - camPos;
float sqrRad = rad * rad;

float dd = dot(oc_pos, oc_pos);
float s = sqrRad / dd;
float vi = rad / sqrt(1.0f - s);

vec3 vr = normalize(cross(oc_pos, camUp)) * vi;
vec3 vu = normalize(cross(oc_pos, vr)) * vi;

vec4 v[4];
v[0] = MVP * vec4(objPos - vr - vu, 1.0f);
v[1] = MVP * vec4(objPos + vr - vu, 1.0f);
v[2] = MVP * vec4(objPos + vr + vu, 1.0f);
v[3] = MVP * vec4(objPos - vr + vu, 1.0f);

Listing 2: Mesh Shader Main.

layout(local_size_x = 31) in;
layout(max_vertices = 31, max_primitives = 31,

points) out;

out Point {
flat vec4 pointColor;
flat vec3 oc_pos;
flat float rad;

} pp[];

void main() {
uint g_idx = gl_GlobalInvocationID.x;
if (g_idx < num_points) {
uint l_idx = gl_LocalInvocationID.x;

access_data(g_idx, objPos,
pp[l_idx].pointColor, pp[l_idx].rad);

pp[l_idx].oc_pos = objPos - camPos;
billboard(objPos, pp[l_idx].rad,
pp[l_idx].oc_pos, projPos, l);

gl_MeshVerticesNV[l_idx].gl_Position =
projPos;

gl_MeshVerticesNV[l_idx].gl_PointSize = l;

gl_PrimitiveIndicesNV[l_idx] = l_idx;
}
gl_PrimitiveCountNV = min(num_points -

gl_WorkGroupID.x * gl_WorkGroupSize.x,
gl_WorkGroupSize.x);

}

References
[BTS∗16] BERGER M., TAGLIASACCHI A., SEVERSKY L. M., ALLIEZ

P., GUENNEBAUD G., LEVINE J. A., SHARF A., SILVA C. T.: A Survey
of Surface Reconstruction from Point Clouds. Computer Graphics Forum
36, 1 (2016), 301–329. doi:10.1111/cgf.12802. 2

[ETR19] EISFELD E., TREBIN H.-R., ROTH J.: A wide-range modeling
approach for the thermal conductivity and dielectric function of solid and
liquid aluminum. The European Physical Journal Special Topics 227, 14
(2019), 1575–1590. doi:10.1140/epjst/e2019-800165-5. 5

[EV15] ECKELSBACH S., VRABEC J.: Fluid phase interface properties
of acetone, oxygen, nitrogen and their binary mixtures by molecular
simulation. Physical Chemistry Chemical Physics 17, 40 (2015), 27195–
27203. doi:10.1039/c5cp03415a. 5

[FGKR16] FALK M., GROTTEL S., KRONE M., REINA G.: In-
teractive GPU-based Visualization of Large Dynamic Particle Data,
vol. 4. Morgan & Claypool Publishers LLC, 2016. doi:10.2200/
s00731ed1v01y201608vis008. 1, 2, 3, 4

[FKE13] FALK M., KRONE M., ERTL T.: Atomistic Visualization of
Mesoscopic Whole-Cell Simulations Using Ray-Casted Instancing. Com-
puter Graphics Forum 32, 8 (2013), 195–206. doi:10.1111/cgf.
12197. 2

[FSS13] FARIA N., SILVA R., SOBRAL J. L.: Impact of Data Structure
Layout on Performance. In Proceedings of the 2013 21st Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing (2013), IEEE, p. 116–120. doi:10.1109/PDP.2013.24.
3

[FSW09] FRAEDRICH R., SCHNEIDER J., WESTERMANN R.: Exploring
the Millennium Run - Scalable Rendering of Large-Scale Cosmological

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

36

https://doi.org/10.1111/cgf.12802
https://doi.org/10.1140/epjst/e2019-800165-5
https://doi.org/10.1039/c5cp03415a
https://doi.org/10.2200/s00731ed1v01y201608vis008
https://doi.org/10.2200/s00731ed1v01y201608vis008
https://doi.org/10.1111/cgf.12197
https://doi.org/10.1111/cgf.12197
https://doi.org/10.1109/PDP.2013.24

P. Gralka, G. Reina & T. Ertl / Efficient Sphere Rendering Revisited

Datasets. IEEE Transactions on Visualization and Computer Graphics
15, 6 (2009), 1251–1258. doi:10.1109/tvcg.2009.142. 2

[GBB∗19] GRALKA P., BECHER M., BRAUN M., FRIESS F., MÜLLER
C., RAU T., SCHATZ K., SCHULZ C., KRONE M., REINA G., ERTL T.:
MegaMol – a comprehensive prototyping framework for visualizations.
The European Physical Journal Special Topics 227, 14 (2019), 1817–1829.
doi:10.1140/epjst/e2019-800167-5. 3

[GKM∗15] GROTTEL S., KRONE M., MÜLLER C., REINA G., ERTL T.:
MegaMol—A Prototyping Framework for Particle-Based Visualization.
IEEE Transactions on Visualization and Computer Graphics 21, 2 (2015),
201–214. doi:10.1109/tvcg.2014.2350479. 2

[GKSE12] GROTTEL S., KRONE M., SCHARNOWSKI K., ERTL T.:
Object-Space Ambient Occlusion for Molecular Dynamics. In 2012
IEEE Pacific Visualization Symposium (2012), IEEE. doi:10.1109/
pacificvis.2012.6183593. 2

[GP07] GROSS M., PFISTER H. (Eds.): Point-Based Graphics. Elsevier,
2007. doi:10.1016/b978-0-12-370604-1.x5000-7. 2

[GRDE10] GROTTEL S., REINA G., DACHSBACHER C., ERTL T.: Co-
herent Culling and Shading for Large Molecular Dynamics Visual-
ization. Computer Graphics Forum 29, 3 (2010), 953–962. doi:
10.1111/j.1467-8659.2009.01698.x. 2, 7

[GRE09] GROTTEL S., REINA G., ERTL T.: Optimized Data Transfer
for Time-dependent, GPU-based Glyphs. In 2009 IEEE Pacific Visualiza-
tion Symposium (2009), IEEE. doi:10.1109/pacificvis.2009.
4906839. 2

[GRE23] GRALKA P., REINA G., ERTL T.: Supplemental Data on Mea-
sured Rendering Times, 2023. doi:10.18419/darus-3458. 6

[Gum03] GUMHOLD S.: Splatting Illuminated Ellipsoids with Depth
Correction. In Proceedings of Workshop on Vision, Modelling, and Visu-
alization 2003 (2003), pp. 245–252. 1, 2, 10

[GWG∗20] GRALKA P., WALD I., GERINGER S., REINA G., ERTL T.:
Spatial Partitioning Strategies for Memory-Efficient Ray Tracing of Parti-
cles. In 2020 IEEE 10th Symposium on Large Data Analysis and Visu-
alization (2020), IEEE. doi:10.1109/ldav51489.2020.00012.
1, 2, 3, 7

[HE03] HOPF M., ERTL T.: Hierarchical Splatting of Scattered Data.
In IEEE Visualization, 2003 (2003), IEEE. doi:10.1109/visual.
2003.1250404. 2

[HHVM20] HITZ T., HEINEN M., VRABEC J., MUNZ C.-D.: Compari-
son of macro- and microscopic solutions of the riemann problem i. super-
critical shock tube and expansion into vacuum. Journal of Computational
Physics 402 (2020), 109077. doi:10.1016/j.jcp.2019.109077.
5

[IRR∗22] IBRAHIM M., RAUTEK P., REINA G., AGUS M., HAD-
WIGER M.: Probabilistic Occlusion Culling using Confidence Maps
for High-Quality Rendering of Large Particle Data. IEEE Transac-
tions on Visualization and Computer Graphics 28, 1 (2022), 573–582.
doi:10.1109/TVCG.2021.3114788. 2

[Khr21] KHRONOS GROUP: glslang, 2021. https://github.com/
KhronosGroup/glslang (accessed: 2021-12-10). 3

[LBH12] LINDOW N., BAUM D., HEGE H.-C.: Interactive Render-
ing of Materials and Biological Structures on Atomic and Nanoscopic
Scale. Computer Graphics Forum 31, 3pt4 (2012), 1325–1334. doi:
10.1111/j.1467-8659.2012.03128.x. 2

[MBE19] MÜLLER C., BRAUN M., ERTL T.: Optimised Molecular
Graphics on the HoloLens. In 2019 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR) (2019), IEEE. doi:10.1109/vr.2019.
8798111. 2

[Meg23] MEGAMOL DEV TEAM: MegaMol Repository, 2023.
https://github.com/UniStuttgart-VISUS/megamol (ac-
cessed 2023-05-05). 3

[NBB∗14] NIETHAMMER C., BECKER S., BERNREUTHER M., BUCH-
HOLZ M., ECKHARDT W., HEINECKE A., WERTH S., BUNGARTZ

H.-J., GLASS C. W., HASSE H., VRABEC J., HORSCH M.: ls1 mardyn:
The Massively Parallel Molecular Dynamics Code for Large Systems.
Journal of Chemical Theory and Computation 10, 10 (2014), 4455–4464.
doi:10.1021/ct500169q. 8

[NVI22] NVIDIA: Introduction to Turing Mesh Shaders,
2022. https://developer.nvidia.com/blog/
introduction-turing-mesh-shaders/ (accessed: 2022-
03-07). 5

[NVI23] NVIDIA: NVIDIA Nsight Perf SDK, 2023. https://
developer.nvidia.com/nsight-perf-sdk (accessed 2023-
03-13). 8

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MORLEY
K., ROBISON A., STICH M.: OptiX: A General Purpose Ray Tracing
Engine. ACM Transactions on Graphics 29, 4 (2010), 1–13. doi:
10.1145/1778765.1778803. 3, 7

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK P.:
Stackless KD-Tree Traversal for High Performance GPU Ray Tracing.
Computer Graphics Forum 26, 3 (2007), 415–424. doi:10.1111/j.
1467-8659.2007.01064.x. 2

[PL10] PANTALEONI J., LUEBKE D.: HLBVH: Hierarchical LBVH
Construction for Real-Time Ray Tracing of Dynamic Geometry. In High
Performance Graphics (2010), The Eurographics Association, pp. 87–95.
doi:10.2312/EGGH/HPG10/087-095. 2

[RHI∗15] RIZZI S., HERELD M., INSLEY J., PAPKA M. E., URAM T.,
VISHWANATH V.: Large-Scale Parallel Visualization of Particle-Based
Simulations using Point Sprites and Level-Of-Detail. In Eurographics
Symposium on Parallel Graphics and Visualization (2015), The Euro-
graphics Association. doi:10.2312/pgv.20151149. 2

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A Multiresolution Point
Rendering System for Large Meshes. In Proceedings of the 27th an-
nual conference on Computer graphics and interactive techniques - SIG-
GRAPH '00 (2000), ACM Press. doi:10.1145/344779.344940.
2

[SGG15] STAIB J., GROTTEL S., GUMHOLD S.: Visualization of Particle-
based Data with Transparency and Ambient Occlusion. Computer Graph-
ics Forum 34, 3 (2015), 151–160. doi:10.1111/cgf.12627. 2

[Wie21] WIEDEMANN M.: Modeling Concurrent Data Rendering and
Uploading for Graphics Hardware. PhD thesis, 2021. doi:10.5282/
EDOC.27979. 1, 3

[WJA∗17] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C., KNOLL
A., JEFFERS J., GÜNTHER J., NAVRÁTIL P.: OSPRay - A CPU Ray
Tracing Framework for Scientific Visualization. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 931–940. doi:
10.1109/TVCG.2016.2599041. 3

[WK19] WIEDEMANN M., KRANZLMÜLLER D.: Statistical Analysis
of Parallel Data Uploading using OpenGL. Eurographics Symposium
on Parallel Graphics and Visualization (2019). doi:10.2312/PGV.
20191114. 3

[WKJ∗16] WALD I., KNOLL A., JOHNSON G. P., USHER W., PASCUCCI
V., PAPKA M. E.: CPU Ray Tracing Large Particle Data with Balanced
P-k-d Trees. In 2015 IEEE Scientific Visualization Conference, SciVis
2015 - Proceedings (2016), IEEE, pp. 57–64. doi:10.1109/SciVis.
2015.7429492. 1, 2, 7

[ZAMW20] ZELLMANN S., AUMÜLLER M., MARSHAK N., WALD I.:
High-Quality Rendering of Glyphs Using Hardware-Accelerated Ray
Tracing. In Eurographics Symposium on Parallel Graphics and Visual-
ization (2020), The Eurographics Association. doi:10.2312/pgv.
20201076. 1, 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

37

https://doi.org/10.1109/tvcg.2009.142
https://doi.org/10.1140/epjst/e2019-800167-5
https://doi.org/10.1109/tvcg.2014.2350479
https://doi.org/10.1109/pacificvis.2012.6183593
https://doi.org/10.1109/pacificvis.2012.6183593
https://doi.org/10.1016/b978-0-12-370604-1.x5000-7
https://doi.org/10.1111/j.1467-8659.2009.01698.x
https://doi.org/10.1111/j.1467-8659.2009.01698.x
https://doi.org/10.1109/pacificvis.2009.4906839
https://doi.org/10.1109/pacificvis.2009.4906839
https://doi.org/10.18419/darus-3458
https://doi.org/10.1109/ldav51489.2020.00012
https://doi.org/10.1109/visual.2003.1250404
https://doi.org/10.1109/visual.2003.1250404
https://doi.org/10.1016/j.jcp.2019.109077
https://doi.org/10.1109/TVCG.2021.3114788
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/glslang
https://doi.org/10.1111/j.1467-8659.2012.03128.x
https://doi.org/10.1111/j.1467-8659.2012.03128.x
https://doi.org/10.1109/vr.2019.8798111
https://doi.org/10.1109/vr.2019.8798111
https://github.com/UniStuttgart-VISUS/megamol
https://doi.org/10.1021/ct500169q
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/nsight-perf-sdk
https://developer.nvidia.com/nsight-perf-sdk
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1111/j.1467-8659.2007.01064.x
https://doi.org/10.1111/j.1467-8659.2007.01064.x
https://doi.org/10.2312/EGGH/HPG10/087-095
https://doi.org/10.2312/pgv.20151149
https://doi.org/10.1145/344779.344940
https://doi.org/10.1111/cgf.12627
https://doi.org/10.5282/EDOC.27979
https://doi.org/10.5282/EDOC.27979
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.2312/PGV.20191114
https://doi.org/10.2312/PGV.20191114
https://doi.org/10.1109/SciVis.2015.7429492
https://doi.org/10.1109/SciVis.2015.7429492
https://doi.org/10.2312/pgv.20201076
https://doi.org/10.2312/pgv.20201076

