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Abstract

Performance characteristics of parallel particle advection algorithms can vary greatly based on workload. With this short paper,
we build a new algorithm based on results from a previous bake-off study which evaluated the performance of four algorithms
on a variety of workloads. Our algorithm, called HyLiPoD, is a “meta-algorithm,” i.e., it considers the desired workload to
choose from existing algorithms to maximize performance. To demonstrate HyliPoD’s benefit, we analyze results from 162 tests
including concurrencies of up to 8192 cores, meshes as large as 34 billion cells, and particle counts as large as 300 million.
Our findings demonstrate that HyLiPoD’s adaptive approach allows it to match the best performance of existing algorithms
across diverse workloads.

CCS Concepts
• Human-centered computing → Scientific visualization; Visualization techniques;

1. Introduction

Particle advection is a foundational operation for many flow visual-
ization techniques. The technique seeds a massless particle at some
location, and then calculates the trajectory that the particle follows.
For a given vector field, the advection process calculates a trajec-
tory that is tangent to the vector field at all locations. The process
is carried out by performing a series of advection steps, each of
which calculates a new position from the current one. In practice,
each advection step employs a numerical method (typically a 4th

order Runge-Kutta) to solve an ordinary differential equation for
where the particle travels over a short period. Finally, the particle
advection process can be very computationally expensive. When
workloads involve many particles and/or many advection steps per
particles, then this process can involve solving billions or even tril-
lions of ordinary differential equations.

With this work, we consider parallel particle advection subject
to three conditions that are quite common in supercomputing en-
vironments. First, the parallel environment is distributed-memory,
i.e., each processing element has its own private memory. Second,
the vector field data is so large that it cannot fit into the memory of
any processing element, and so it must be decomposed into blocks.
These first two conditions often make it difficult to achieve efficient
performance, as there is overhead to make sure that the advection
step for a given particle has access to the necessary block of data
from the vector field. The third condition is that the vector field
data is steady state, i.e., flow visualization techniques will operate
on a single time step. Multiple visualization algorithms have been

proposed to achieve efficient performance in this setting, and their
efficacy varies, especially based on the workload (seed locations,
number of seeds, vector field properties, and duration of advection).

Our previous work [BPYC20] performed an empirical study
to understand how different parallelization algorithms perform
for different workloads. We compared four parallelization al-
gorithms: Parallelization-Over-Data (POD), Parallelization-Over-
Particles (POP), a work requesting algorithm that used the Life-
line Scheduling Method (LSM) [BPNC19], and a Master Worker
(MW) algorithm [PCG∗09]. The results of the study showed that
the two algorithms that had the best performance are POD and
LSM. However, each one of them had some workloads where
they performed poorly. With this work, we propose an algorithm
that chooses between POD and LSM to get the best possible per-
formance. We call this algorithm HyLiPoD — Hybrid between
Lifeline and Parallelization-over-Data. In this paper, we compare
the performance of our new algorithm with the performance of the
four algorithms (POD, POP, LSM, and MW). Our results show that
HyLiPoD performs better than or equal to each of the four algo-
rithms for almost all workloads.

2. Related Work

There are three main categories of parallel particle advec-
tion: parallelization-over-data (POD), parallelization-over-particles
(POP), or a hybrid of the two. For each of POD and POP, there
is a general way to carry out the method and then possible op-
timizations within that method. With POD, data blocks are as-
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signed to different nodes, and each node advects the particles lo-
cated in its assigned blocks. Extensions of POD focused on bal-
ancing the workload between nodes. Peterka et al. [PRN∗11] pro-
posed two solutions to balance the workload: the first solution
used a round-robin block assignment and the second one used dy-
namic load balancing. Other solutions have used workload estima-
tion techniques [CF08, YWM07, NLS11] to balance the workload.
With POP, particles are distributed equally between nodes and data
blocks are loaded as needed. Extensions of POP focused on balanc-
ing the workload between nodes, as well as reducing the cost of I/O.
Work requesting [MCHG13, LSP14, BPNC19] and dynamic load
balancing [MP16, ZGH∗18] have been used to balance the work-
load. Techniques like extended memory hierarchy [CCC∗11] and
data prefetching [RTBS05,AR13] have been used to reduce the cost
of I/O. Finally, hybrids algorithms [LSP14,KWA∗11,PCG∗09] be-
tween POP and POD have aimed to limit the disadvantage that each
algorithm have individually. Our own algorithm is technically a hy-
brid, since it uses both POD and a variant of POP (LSM). That said,
previous hybrid algorithms have adapted during run-time, while
ours adapts at the beginning of execution.

We compared HyLiPoD to four algorithms: POP, POD, LSM,
and MW. For POD and POP, we used straightforward implemen-
tations rather than some of the improvements that have been pub-
lished previously. In particular, some of the POD approaches re-
quire pre-processing time, and we envision HyLiPoD being used in
scenarios with no pre-processing overhead. One optimization we
did not implement was round robin assignments; we felt the extra
communication would be problematic for our workloads, but feel
further evaluation would be good future work. For POP, some op-
timizations read a block a single time and then communicate that
block to other ranks, rather than reading it again. We experimented
with this optimization, and found that it did not enhance perfor-
mance for our supercomputer and workloads. Other POP optimiza-
tions are captured in our LSM implementation. For hybrid algo-
rithms, we feel MW and the work by Kendall et al. [KWA∗11] have
similar elements and choosing one for evaluation is sufficient. The
other noteworthy hybrid algorithm comes from Lu et al. [LSP14].
We do not compare with their algorithm because it has ranks com-
municate blocks, which, as mentioned before, we found did not
enhance performance for our supercomputer and workloads.

3. Algorithm
Our main idea is to create a meta-algorithm. There are two steps for
creating this meta-algorithm: (1) data collection and (2) construct-
ing an oracle. The data collection step entails studying the perfor-
mance of existing algorithms on important workloads. The oracle
step involves using the results of the first step to choose the best per-
forming for a workload. In all, when a meta-algorithm encounters a
workload, it should be capable of deploying the best existing algo-
rithm. Fortunately, our previous work [BPYC20] already generated
the results of the data collection step, which accelerated work for
this study.

Our oracle is based on two key observations from the data col-
lection step. First, POD and LSM consistently ranked as the best
performers, and so we only needed to consider these two algo-
rithms. Second, the matching between workload and best perform-
ing algorithm was straightforward. The POD algorithm has the best

Algorithm 1 Pseudocode for the HyLiPod algorithm.
1: ListBlockIdInBox← GetBlocksInBox(seedingBox)
2: blocksIncludedPercent← ListBlockIdInBox.size()/NumBlocks
3: if blocksIncludedPercent > T hreshold then
4: algo← POD
5: else
6: algo← LSM
7: end if
8: numActive← TotalNumParticle
9: activeParticles← GenerateParticles(ListBlockIdInBox)

10: while numActive > 0 do
11: if activeParticles.size()> 0 then
12: WorkerFunction(activeParticles,algo)
13: end if
14: CommunicationFunction(activeParticles,algo)
15: end while

performance for workloads with uniform particles distribution, i.e.,
large seeding box. The LSM algorithm has the best performance
for workloads with denser particles distribution, i.e., small seeding
box, because there are fewer blocks to load, which leads to less I/O
cost.

The remainder of this section describes our HyLiPoD algorithm
in more depth. In the beginning of the program, the algorithm calls
a function that takes the seeding box and calculates what percent-
age of the total data domain is included. Then, this information is
used to decide which algorithm is better (POD or LSM) by com-
paring the percentage of included blocks to a given threshold. In
Section 5.1, we describe our process for choosing this threshold.

Pseudocode can be found in Algorithm 1, which uses the follow-
ing building blocks:

• GetBlocksInBox(): a function that returns a list of block ids that
are within the seeding box boundaries.
• GenerateParticles(): a function that generates the initial seeds.
• WorkerFunction(): a function that performs I/O operations, ad-

vection and process the particles after advection.
• CommunicationFunction(): a function that sends and receives

data (particles or messages) between nodes.

4. Experiment Overview

We compare the performance of HyLiPoD with the four algorithms
we considered in our previous study: POD, POP, LSM and MW.
4.1. Algorithm Comparison Factors
We consider three factors in our study: Size of Seeding Box (3
options), Total Number of Steps (6 options), and Concurrency (3
options). We considered the cross product of this factors, i.e., 54
configurations (3*6*3). Further, we tested each configuration on
all algorithms, meaning 270 tests (54*5).

Size of Seeding Box: The seeding box size represents the dis-
tribution of particles across the data domain. This can impact the
I/O cost, communication cost, and the load balance. We consider
three seeding boxes: large box, mid box, and small box. The large
seeding box option has particles distributed across the entire data
set (100%), while the mid (50%) and small (10%) seeding boxes
have particles distributed in sub-regions of the data.
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Total Number of Steps: The total number of steps determine the
amount of computations need to be performed. The total number of
steps is a product of the number of particles and the duration of each
particle.

We consider three options for the number of particles and two
options for the duration of each particle, which results in six total
options (3×2). The options for the number of particles represented
as a ratio of particles per cell, i.e., 1 particle for each C cells. The
three options are: for every 100 cells (P/100C), for every 1000 cells
(P/1KC), and for every 10,000 cells (P/10KC). With this configu-
ration, as the data size increases, the number of particles increases.
For the duration of each particle we consider two options: 1000
steps (1K) and 10,000 steps (10K).

Concurrency: We test the weak scalability by varying the num-
ber of MPI tasks, and then increasing the number of data blocks and
the number of particles in proportion. We considered three concur-
rencies, and for each concurrency we ran 4 MPI tasks per node.
Further, as concurrency increased, we increased the number of data
blocks, and kept the size of each data block constant (1283 cells).
In all, the three options for concurrency were:

Config. Name Nodes MPI tasks Cores Blocks
Concurrency1 4 16 128 256
Concurrency2 32 128 1024 2048
Concurrency3 256 1024 8192 16384

4.2. Data Set
We primarily used the “Fishtank” data set for our study, which is
a thermal hydraulics simulation by the NEK5000 [FLK08] code. It
is a simulation of twin inlets that pump water of different temper-
atures into a box, the vector field represent the fluid flow. In this
data set, the mixing behavior and the temperature of the water are
of interest. Finally, the initial round of experiments considers two
additional data sets, to ensure that our approach is not specific to
a single data set. These additional data sets are “Astro,” a simu-
lation by the GenASiS [ECBM10] code of a magnetic field sur-
rounding a solar core collapse, and “Fusion,” a simulation by the
NIMROD [SGG∗04] code of a magnetically confined plasma in a
tokamak device.

4.3. Hardware Used
Our experiments were primarily run on Cori, from Lawrence
Berkeley National Laboratory’s NERSC facility. Cori has 2,388
Intel Xeon “Haswell” processor nodes. Each node has 128GB of
memory and two sockets, and each socket has a 2.3 GHz 16-core
Haswell processor, where each core supports 2 hyper-threads. The
only experiments not run on Cori are plotted in Figure 1. These
experiments were run on “Alaska,” a cluster at the University of
Oregon, also with Xeon Haswell nodes, but running at 3.5GHz. A
different machine was used for these experiments because our al-
location on Cori expired, but we still wanted to study more data
sets. Further, the results for these experiments were highly similar
to comparable runs on Cori.

5. Results

This section discusses the results of our study in three phases. Phase
1 discusses results on picking the best threshold to switch between
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Figure 1: Comparing the performance of POD and LSM for the
workload P/1KC ∗ 10K for 10 seeding box sizes and 3 data sets
(Astro, Fishtank, and Fusion) using Concurrency1.

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

10
10
0

10
00

10
00
0

#Total Steps, (Particle for every C Cells * #Steps per Particle)

E
xe

cu
tio

n 
Ti

m
e 

in
 S

ec
on

ds
 (l

og
 s

ca
le

)
Small Box
Mid Box
Large Box
Concurrency 1
Concurrency 2
Concurrency 3

Figure 2: Execution times for HyLiPoD for the three different seed-
ing box sizes (color) and concurrencies (glyph size).

POD and LSM. Phase 2 discusses the performance of HyLiPOD
for all workloads. Finally, Phase 3 compares the performance of
HyLiPOD with the four algorithms POD, POP, LSM, and MW.

5.1. Phase 1: Threshold Selection
Our previous results [BPYC20] demonstrated that meta-algorithm
oracle could predict the best algorithm strictly on seeding location
(concentrated or spread out). To confirm the stability of this finding,
we began by re-running experiments using more seeding locations
and more data sets. Specifically, we tested the performance of POD
and LSM for seeds that occupied 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%, and 100% of the volume for each of the Fishtank,
Astro, and Fusion data sets. Figure 1 shows that the POD algorithm
performs better when the size of the seeding box covers more than
70% of the data domain, while the LSM algorithm performs better
when the size of the seeding box covers less or equal than 70%. The
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Figure 3: The difference in execution time between our hybrid par-
allel particle advection algorithm (HyLiPoD) and the four algo-
rithms. For each workload in the heat map, the number represents
the execution time of the algorithm divided by the execution time of
HyLiPod.

results fit previous findings. The POD algorithm has less I/O cost
than LSM because each rank is responsible for part of the data only,
while in the LSM algorithm, ranks load data on demand. On the
other hand, LSM performs better than POD for smaller seeding box
sizes because it is better at balancing the workload. This is because
in the POD algorithm each rank is responsible for advecting only
particles located in its data blocks, which cause some ranks to stay
idle.

Importantly, both algorithms show clear monotonic trends —
LSM gets slower as the seeding box size increases, while POD gets
faster. As a result, we can feel more confident that our straight-
forward oracle will perform well, i.e., there are not unusual local
minima or maxima for algorithm behavior. Therefore, we assign a
threshold of 70% for the rest of the study, which corresponds to the
crossover point between the two algorithms.

5.2. Phase 2: HyLiPoD Performance
Figure 2 shows the performance of HyLiPoD for the three seed-
ing box sizes at different concurrencies. Since HyLiPoD deliv-
ers the best algorithm for a given workload, its overall perfor-
mance informs future research for our community. In particular,
Figure 2 has six particle advection workloads, for each one of the
workloads, the number of particle advection steps per MPI rank is
the same through different concurrencies. Troublingly, the perfor-
mance varies by almost a factor of 10X. For example, the “P/10KC
* 1K” workload takes about a second for a small box at low concur-
rency, but takes over 10 seconds for a mid box at high concurrency
— even though both tests are doing the same number of advec-
tion steps per MPI rank. Concurrency is still clearly an issue, as the
“P/10KC * 1K” with a small box at high concurrency is still ~5X
slower than the small concurrency test. Other workloads have sim-
ilar disparities, indicating that many workloads still have no good

parallelization approach. Further, for the worst performers, HyLi-
PoD is actually switching between algorithms — some are with
mid box (which uses LSM) and some are with large box (which
uses POD) — meaning both perform similarly (and poorly).

5.3. Phase 3: Comparing the Algorithms
Figure 3 shows the performance of HyLiPoD compared to the four
algorithms. We feel there are several interesting findings. First, the
improvement of HyLiPoD over the four algorithms varies greatly.
For each of the four algorithms, we calculated an average speedup,
i.e., the average over our 54 configurations. These averages are
1.2X for LSM, 1.4X for POP, 2.8X for MW, and 6.6X for POD.
Further, these averages inform the benefit of deploying HyLiPoD
over any single algorithm. Second, we see that our choice focusing
on only two algorithms was mostly good. POP did beat LSM (and
thus HyLiPoD) in a few cases, due to extra communication and
sometimes extra I/O. That said, the performance differences were
small (0.97 and 0.95), and disappear at higher concurrency. We feel
the simplicity of using only two algorithms outweighs this small
potential speedup. Finally, we find the patterns for each algorithm
to be interesting. While POD’s behavior (good for large boxes and
poor elsewhere) was expected, MW’s behavior is more varied. MW
adapts its execution dynamically, and so it avoids doing as poorly
as POD for mid and small seeding boxes. That said, other over-
heads prevent it from actually exceeding the LSM/POP approaches
on these boxes, and so it fails to win any workloads. Regardless, its
somewhat uniform behavior over workloads may indicate potential
going forward, provided overheads can be removed.

6. Conclusions And Future Work
This paper introduced HyLiPoD, and demonstrated that its perfor-
mance is equal to or better than four prominent existing algorithms.
Going forward, we believe the meta-algorithm approach is the best
way to deliver performant parallel particle advection to domain sci-
entists. We view HyLiPoD as the start of such an effort. Further, as
troublesome particle advection workloads merit the development of
new algorithms, we believe that these algorithms should be placed
within a meta-algorithm.

From the meta-algorithm perspective, HyLiPoD was fortunate
in two key ways: (1) the assessment step for its oracle ran quickly
enough to not impact execution time and (2) the oracle was quite
easy to devise. In the future, as more workloads and more algo-
rithms are added, these two fortunate properties may no longer
hold, and thus building an oracle will likely require additional re-
search. Finally, this work focused on steady state flow, and it will
take new investigation to understand which lessons learned will be
applicable in an unsteady state setting. In particular, particle posi-
tions from one time slice will form the seed positions for the next
time slice, and the data-specific ways they advance may lead the
fundamentally different types of seeding configurations than the
steady state case. We plan to study the impact of different oracles
on the performance of our algorithm. As well as adding techniques
to adjust the parallelization algorithm used during run time.
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