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Abstract

We introduce c-Space, an approach to automated 4D reconstruction of dynamic real world scenes, represented as time-evolving
3D geometry streams, available to everyone. Our novel technique solves the problem of fusing all sources, asynchronously
captured from multiple heterogeneous mobile devices around a dynamic scene at a real word location. To this end all captured
input is broken down into a massive unordered frame set, sorting the frames along a common time axis, and finally discretizing
the ordered frame set into a time-sequence of frame subsets, each subject to photogrammetric 3D reconstruction. The result is
a time line of 3D models, each representing a snapshot of the scene evolution in 3D at a specific point in time. Just like a movie
is a concatenation of time-discrete frames, representing the evolution of a scene in 2D, the 4D frames reconstructed by c-Space
line up to form the captured and dynamically changing 3D geometry of an event over time, thus enabling the user to interact
with it in the very same way as with a static 3D model. We do image analysis to automatically maximize the quality of results in
the presence of challenging, heterogeneous and asynchronous input sources exhibiting a wide quality spectrum. In addition we

show how this technique can be integrated as a 4D reconstruction web service module, available to mobile end-users.

Categories and Subject Descriptors (according to ACM CCS):

Computer Graphics [1.3.3]: Digitizing and scanning—

Reconstruction; Computer Graphics [1.3.7]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

Image-based 3D reconstruction of real world objects nowadays is
a widely available process. However, the techniques proposed so
far mostly rely on "patient’ 3D objects that are static. In this work
we explore ways to perform image based 4D reconstruction of ani-
mated objects or entire dynamic scenes and the logistics necessary
in order to make the technique usable for crowd-based 4D model
acquisition. A 4D model can be understood as time-evolving 3D ge-
ometry stream that captures the dynamics of the scene geometry.
Capturing the dynamics of physical objects becomes interesting
when an ongoing process is to be documented or analyzed, either in
real-time, or at specific time intervals over a long period of time. An
example for the first scenario of real-time capturing could be manu-
als for constructing furniture from single parts, where the process of
assembly can be viewed in 3D, allowing the viewer to see the entire
evolution of the process from any angle necessary to understand the
steps involved. Capturing intangible heritage such as dances is an-
other example opening up ways to the viewer to follow actors from
arbitrary angles during the performance. The second scenario pro-
vides a powerful tool of analysis for science, again in the cultural
heritage domain: an excavation site is recorded from many different
angles around, during the duration of the dig, with time intervals of
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minutes or hours between the single images. This allows documen-
tation of the excavation in 3D from the moment of groundbreak-
ing to recovery of single artifacts, helping analysts to accurately
assess positions of findings retrospectively from any angle neces-
sary. Also, the entire course of the excavation itself can be ana-
lyzed afterwards from arbitrary angles and zoom levels. Due to the
necessity of precise time synchronization and correlation of input
sources image acquisition for 4D reconstruction is more complex
than for the 3D case. Fig. 1 depicts the different capturing modes
for static 3D and dynamic 4D reconstruction. The two leftmost il-
lustrations depict classical structure from motion as described and
used by Snavely et al. in [SSS06]. A series of images is created
taking a video while circulating an object and keeping it constantly
in view. These images are then correlated to each other in order to
find correspondences in image space. In the end a 3D model can be
generated by exploiting disparity between pairs of images. Instead
of using a video, single still images of an object can be captured
directly, while satisfying the requirement of sufficient overlap be-
tween one another for successful correlation between the images.
In this way even 3D reconstructions from crowd sourced images of
objects can be generated. c-Space takes this idea to the next level:
reconstruction is extended by the time dimension. Instead of using
single images per camera, video streams are generated to capture
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Figure 1: Reconstruction modes: in contrast to classical photogrammetric reconstruction (left half: multiple still images taken at the same
time, and Structure from Motion (SfM) for static objects), 4D reconstruction aims at capturing animated objects. Here, complex capturing
situations can occur especially when reconstructing based on heterogeneous data sources from a crowd of people (right half: 4D from videos

only, and mixed with still images).

and reconstruct the evolution of the object or scene over time. This
is straight forward and can be relatively easily achieved in a con-
trolled environment with calibrated, time synchronized cameras.
However, our scenario is based on a crowd of people taking photos
and video material of a scene (rightmost image of Fig. 1). To mas-
ter this scenario, additional selection, quality-based filtering, time
correlation, sorting along a common time axis and rejection of un-
suitable input material is required. 4D reconstruction additionally
requires precise timing in two ways: first, a global time reference
must be enforced among all video and image source devices for
tagging recorded footage (down to the frame level) with accurate
and comparable time stamps representing the precise moment the
image, video or even video frame was captured. Second, correlation
of frames contributing to the same 4D time step must be accurate at
a low time variance in order to minimize temporal blur of the scene
evolution in 3D. Our contributions include:

e Video stream interpreted as frames along time axis vs. as se-
quence of different static perspectives.

e Combination of different acquisition techniques (still images,
video streams and both, static and dynamic, see Fig. 1).

e Techniques for analysis of heterogeneous sets of video streams
and still images and their transformation into single scenes sub-
ject to 3D reconstruction.

e Techniques to handle moving cameras and align arbitrary geom-
etry coordinate frames within a time-dependent 3D model se-
quence with the effect of a stable observer perspective through-
out the 4D scene evolution.

e Empowering everyone with a mobile device to contribute to the
creation of 4D reconstructions, or taking capturing of geome-
try evolution over time to the professional level using high-end
equipment in a calibrated lab setup.

2. Related Work

Several of the typical capturing modes (Fig. 1) can be handled with
existing methods. Static object 3D reconstruction based on video
can be done on mobile phones in real time as recently demon-
strated by Ondruska et al. [OKI15]. However, additional methods
are needed to improve tracking of the camera. Static object 3D re-
construction from sets of photos is called Multi-view Stereo (MVS)
and has been subject to research for a long time [SSS06, GCS06].
Photogrammetric dynamic 3D point tracking was presented for
controlled scenes by Joo et al. [JPS14]. Using the input of com-
munities or crowds adds an additional level of complexity to the

reconstruction process, since the scene is no longer captured in-
side a controlled environment. Therefore, additional methods need
to address ways to separate usable images from ones at bad qual-
ity, redundant images or even ones negatively affecting reconstruc-
tion quality [GSC* 07, GAF*10, ARSG12]. Our work adds the time
dimension to the 3D reconstruction process. This empowers users
to experience the time-dependent evolution of a scene as immer-
sive 4D video and even interact with 4D just like it is possible with
3D geometry, even during the evolution of a dynamic scene. Al-
ready in 2004, Goldluecke et al. [GMO04] proposed a method of
reconstructing the geometry of a dynamic scene, where the time-
varying scene is modeled as 3D isosurface in space-time, and inter-
section with planes of constant time yields the scene geometry at
a specific moment in time. A similar approach is used in [BLL16]
relying on an indoor multi-camera system for synchronized video
capturing, generating the visual hull to reconstruct the volumetric
silhouette of a scene at each frame of the video sequence. An ap-
proach to space-time multi-view 3D reconstruction was proposed
by Oswald et al. [OC13], which generalizes continuous global op-
timization in multi-view 3D reconstruction to 4D and especially
shows robustness for wide-baseline camera setups with unreliable
photo consistency measures. The three previously mentioned works
aim at including information defining the movement and evolution
over time into the reconstruction process of 3D geometry of a dy-
namic scene which is in accordance to the goal we are pursuing in
our work. In contrast to our contribution, however, there is no men-
tion of explicit time synchronization of various sources, especially
not for heterogeneous video and image sources with different time
spans and frame densities, which we are explicitly dealing with
in our approach, which suggests that in these works sets of time-
synchronized videos are used that are captured in a well-defined lab
setup. Surface- and volume-based shape deformation techniques
are applied in [dAST*08] to capture fast movements of persons.
Motion constraints are then extracted from video and applied to a
laser-scan of the tracked subject, using volumetric deformation to
have the 3D model mimic the movement of the actor. Our work, in
contrast, solely relies on captured image data to extract geometry,
and every moment in our 4D reconstruction captures a moment in
the time evolution of the captured scene. We deliberately designed
all pre-processing steps of highly heterogeneous input data for the
use of the robust photogrammetric Multi-view Stereo technique.
One of our main contributions and the core of this work, the time-
line discretization of a highly heterogeneous set of input sources -
possibly containing both videos and still images of a wide range
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of qualities with different time coverages and formats, captured by
a large number of independent users with mobile devices - decou-
ples the scene evolution from space by discretization into a set of
time-discrete states, each subject to independent photogrammetric
3D reconstruction, while maintaining an iteratively adjusted trade-
off between time-coherence and sufficient coverage of multi-view
perspectives. As a consequence, our approach supports a wide spec-
trum of input data, providing the basis for everyone with a mobile
device to contribute to the creation of 4D reconstructions, which is
the goal of c-Space. Our work is not bound to a specific domain of
purpose, the possibilities are only dependent on the quality of the
input data. Applications range from entertainment over architec-
ture, science in different areas, to cultural heritage, and many more.
In the cultural heritage (CH) domain the nature of scenes, i.e. spa-
tial domains that are to be recorded and reconstructed, is divided
into tangible scenes and intangible scenes [Ahm06], even though
there is discussion if the distinction might be too binary as the field
of dance alone already incorporates a complex, multi-dimensional
nature with indissoluble link between both tangible and intangible
properties [IB16]. We call tangible CH static due to the rigid nature
of objects. Nevertheless, scenes of tangible CH can include objects
with time-dependent dynamics, when rigid objects move with re-
spect to one another in a scene. Intangible CH is defined as prac-
tices of groups and individuals, where the challenge is movement
and changing geometry of possibly the entire scene from one point
in time to another during the duration of observation, making this
group even more interesting for 4D capture such as the 4D recon-
struction of dance performances. The challenge of intangible CH is
that object geometries may (and very likely do) change over time.
In our work, one 4D frame (3D reconstruction of one point in time
of the scene evolution) is independent from any other, so this chal-
lenge only comes down to a sufficiently high quality of capturing
devices, including resolution and frame rate, and and appropriate
capturing setup to minimize blur and noise in images and videos.

3. Concept

We propose a process allowing the use of standard photogrammet-
ric reconstruction for dynamic scenes to be applied on heteroge-
neous image sources covering a time span. The process results in a
series of 3D geometries that, seen as a sequence over time, repre-
sent a 4D scene, which is then used like a 3D movie. An overview
of the process is given in Fig. 2.

4D input data preparation: All usable footage provided by end-
users, captured with arbitrary mobile input devices, is clustered into
’scenes’. Available sensor information from the mobile end-user
devices such as GPS position and camera orientation is consid-
ered, together with time stamps linked to the imagery according
to a global time reference, thereby achieving clustering of infor-
mation into scenes only containing relevant data. This ensures that
scenes are spatially coherent and bounded in the time dimension.
Every scene consists of a set of videos and/or still images captured
from various perspectives over the duration of the scene evolution.
Since c-Space operates on the frame level of the input material, it is
transparent to processing whether frames are part of a video frame
stream, or originate from single still images. Reconstruction of a
scene starts by gathering all relevant material. Every media item
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Figure 2: Overview of the reconstruction core process: Various
heterogeneous image sources are first split into single frames, the
resulting unordered frame set is then sorted and discretized in time
into a sequence of 4D frames. A 4D frame is a set of images of
highest quality, contributing to the 3D reconstruction of one geom-
etry representing the evolution of the scene at one discrete moment
in time. The series of 4D frames is then reconstructed, frame by
frame in parallel, using methods of 3D photogrammetry, leading
to a sequence of independent 3D geometry representations of the
scene. These independent geometry models are finally aligned with
respect to each other using the averaged camera positions deter-
mined for each frame.

comes with tracking information and time stamps necessary for
correlating and sorting frames. This information is provided by the
c-Space app that is controlling the capturing process for videos and
still images on different end-user devices and takes care of a com-
mon time by regularly synchronizing itself with a common time
server. For later time discretization videos are split into their single
frames. This involves extracting and reconstructing still images in
full quality for each discrete time step defined by the video stream,
with the number of frames depending on the frame rate. Video
streams often use run length compression and interpolate between
key frames that are inserted every so many frames. Only moving
parts in the video stream are recorded in a compressed form, while
static (unchanged) parts are redundant information and only fully
stored at key frames. The challenge here is to reconstruct every sin-
gle frame available at maximum quality and completeness. After
frame splitting, the scene consists of one single unordered set of
frames from different media sources (videos or still images), which
from this moment on are treated equally (visualized in Fig. 3, left
as blue disk). For each frame in this set, all available meta data such
as tracking information and, most importantly, the time stamp, are
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attached to the respective frame for subsequent correlation along
the time axis. The set of frames is yet unordered since it contains
frames from all different sources that are possibly interlocking in
time. The next step, time line sorting, introduces a strict time sort-
ing by making use of the time stamps attached to each single frame.
Time stamps serve as global reference due to the synchronization
enforced by the c-Space capturing app in that it maintains a com-
mon clock for each device through a central time server prior to
capturing. Tracking information includes the GPS position and ori-
entation of the capturing device at the start of the process of captur-
ing a video or still image and additionally for some single frames
within a video stream. If no information exists for certain frames
originating from videos, information is generated from the start-
ing time stamp of the video and its FPS (frames per second), and
by interpolation between information at the closest frames where
information is available, such as key frames. One special case of
4D reconstruction is static 3D reconstruction, which can be seen
as one discrete time step in the evolution of a 4D model. When
providing input data for reconstruction, the user can set a scene to
static 3D, in which case all scene media is assumed to have been
captured at the same time, as described in Sec. 1 and Fig. 1 (left
half), and consequentially, just a single time step is reconstructed
as one static 3D model.

Time line sorting: The most important preparatory step for time
line discretization, which is the core of 4D reconstruction, is sorting
of the unordered frame set. Frame time stamps are used to impose a
correlated order among frames along the time axis of the scene evo-
lution to be reconstructed. As Fig. 3 (left) indicates, available het-
erogeneous data sources from various end-users over the time ex-
tent of an event for a scene are likely to be unordered in time. At the
frame level, different frames typically interlock when projected on
the time axis in sorted order due to a large number of time-parallel
sequences of frames, making this step vital. The result is a set of
frames sorted in ascending order according to their capturing time,
each frame originating from one of the input sources (video or still
image). The frame distribution for an example scene along the time
line versus the different image sources in Fig. 3 (right) confirms
that the scene dynamics was acquired by 12 videos plus 12 still im-
age frames from individual perspectives at certain times. It can be
easily verified that correlation within the set of 24 media sources
and alignment on the time axis has been established properly. The
24 rows (12 for videos, 12 for still images) are color coded to allow
better identification, with each row representing one individual me-
dia source. The visualization contains every input frame, bringing
capturing time and originating media source per frame into visual
correlation over the common time axis.

Time line discretization: The time range covered by frames be-
tween the earliest and latest time stamp needs to be discretized
into single frame sets (Fig. 3, left), each of them ultimately sub-
ject to 3D reconstruction to represent one 4D frame, or discrete
time step. A more visual term for the time-discrete nature of the
set of frames for one 4D time step is "bucket’, since all contribut-
ing frames, captured from different perspectives, are collected in
a set of frames (=bucket) which represents one discrete point in
time within the time evolution of the scene to be reconstructed.
One of the greatest challenges is to meet the optimal trade-off for

the bucket size (=time extent of one 4D frame). On one side, this
parameter must be large enough to cover a sufficient number of in-
put frames from different sources, and thus perspectives, to allow
for successful and robust reconstruction, whereas on the other side,
it must be chosen sufficiently small to avoid blur in time evolution,
as bucket size corresponds to the time range within which differ-
ent frames are still considered to contribute to the same state of the
scene evolution. The approach to 4D reconstruction proposed uses
an iterative scheme to adaptively identify the optimal tradeoff. The
number of available frames from distinct sources for each bucket
depends both on the intersection set of the time spans covered by
each source, corresponding to the number of usable sources over
their common time coverage, and on the time density of the sin-
gle sources, i.e. the number of frames per unit time. Obviously, a
bucket cannot contain frames from the same source, as this would
at best introduce blur in time evolution of the scene, but not con-
tribute to overlap between different perspectives, and thus to the
reconstruction result. Buckets with a frame count too low are re-
jected since they do not lead to successful photogrammetric 3D re-
construction. The resulting frame rate of the 4D reconstruction is
thus variable and depends on the above requirements. In theory,
three different perspectives are sufficient for Multi-view Stereo re-
construction (see [GCS06]). In practice, however, a larger lower
bound is set to achieve all-around complete and robust reconstruc-
tion. For the example in Fig. 3 (right), the minimum required num-
ber of frames per bucket was set to 12. Details are discussed in
Sec. 5. As mentioned above, the iterative approach tries to meet the
best tradeoff between completeness and quality of reconstruction
on one side, and sharpness of time evolution on the other side. The
number of successfully reconstructed 4D frames, and especially the
presence of potential streaks of discarded 4D frames, is an indicator
as to how well the tradeoff is met. The bucket width, defining the
maximum allowed time difference between the latest and the earli-
est frame within a bucket, is used to control the tradeoff. If buckets
are non-overlapping, bucket size corresponds to the time interval
between two subsequent buckets. A bucket size too low results in
streaks of rejected buckets due to the inability of the discretiza-
tion algorithm satisfying all constraints for the input frame set. As
a response, the discretization process is restarted with an adjusted
setting of the parameter. These steps are repeated until both a set
of buckets allowing for successful reconstruction, and a 4D stream
with sufficiently stable frame rate defined by the number of recon-
structed buckets in sequence, is achieved.

The abstract core process of c-Space, time line discretization,
is presented by Alg. 1. Precondition is a set of frames F correlat-
ing to the same scene, captured from ideally at least 12 different
perspectives with homogeneous distribution around the scene and
covering the duration of the scene evolution, unordered with re-
spect to capturing time. Each frame is bound to a globally compa-
rable time stamp (with regard to the scene event). The number of
elements in a discrete set T is defined here as |T'|. The time extent
of a set T of frames is expressed by ||T||, := max¢(T) — mine(T),
with ming(T) and max¢(T') defining the earliest and latest frame f;
in T according to their time stamps 7. The algorithm starts by sort-
ing all frames f; in F (line 1) in ascending order with respect to ,
resulting in an ordered set (or list) T of frames. Parameters control-
ling the algorithm are minFrames, the minimum required number
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of frames from distinct sources per bucket, and the bucket width
or time extent (maxExtent). The result of the algorithm is a set of
discrete buckets, each of size at most maxExtent and containing at
least minFrames frames, such that as many frames as possible are
clustered together in a bucket representing a point in time closest to
their time stamps. The subsequent steps can be regarded as a sliding
window of size maxExtent moving over the time axis. The window
is moved over the frames in 7T, starting from the earliest frame, in
the direction of the latest frame, until the window covers the min-
imum required number of frames (minFrames). Then the earliest
frame is removed from 7 and added to the window, which is re-
peated until the maximum window width maxExtent is reached. A
new 4D frame is then defined as the set of all frames covered by the
window, and the window is moved further to define the next bucket.
The positions of buckets, or 4D time stamps, on the time axis are
defined by the time distribution and density of the frames, as well as
the number and time axis coverage of the sources. The challenge is
to satisfy both the minimum required number of frames minFrames
per bucket and the maximum allowed time span maxExtent per
bucket at the same time, only by sequentially adding more frames
from the time line to and removing earliest frames from the win-
dow. In more detail, the sliding window is realized by the loop in
lines 2-14, which terminates as soon as the ordered set of frames
T is empty (as an abstraction, the loop is aborted from any point
within as soon as this condition does no longer hold). In every iter-
ation, W is initialized as the empty set (line 3). Until the size of W
reaches the minimum number minFrames of frames required per
bucket, the earliest frame from 7 is added repetitively to W (line
5), and consequentially removed from 7. If the frame to be added
originates from the same source as a frame already part of W, the
better frame according to an image quality metric as presented by
Marichal et al. [MMZ99] is chosen to satisfy the condition of dis-
tinct sources per bucket. Adding frames results in a growing time
extent of W, a probable exceeded maximum bucket width is thus
corrected by repeatedly removing earliest frames from the begin-
ning of W until the maximum bucket width maxExtent is again sat-
isfied (lines 6-8). Frames removed are dropped and are not consid-
ered in reconstruction, a situation which occurs in the presence of
sparse frame distribution of 7', either because the number of captur-
ing sources is too low, or due to insufficient frame coverage density
per source along the time line. The result of the loop in lines 4-9
is a frame set W satisfying both minFrames and maxExtent. The
possible resulting leeway in time extent of W is now exploited by
the loop in lines 10-12 in that more frames from 7T are added un-
til the bucket width limit maxExtent is reached. As above, frames
added from T are also removed, ensuring single use of frames and
termination of the algorithm. Frame set W now satisfies all crite-
ria and is added as new 4D frame, subject to 3D reconstruction,
and the algorithm continues with line 3, where W is reset to pre-
pare determination of the next frame bucket. Instead of using non-
overlapping buckets, possibly sparse bucket distribution can be ad-
dressed by allowing a certain bucket overlap, and hence the reuse
of a frame for its immediate neighboring buckets. This brings about
the benefit that constraints are easier to satisfy, resulting in less
4D frame drops, but with the possible consequence of time evolu-
tion blur in the 4D reconstruction. The effect of blur in time evolu-
tion of geometry, however, is strongly dependent on the dynamics
of the scene, and becomes evident especially whenever the scene
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changes significantly per unit time, which leads to different frames
within the same bucket representing differing evolutionary states
of an object. The consequence is that photogrammetry tries to find
matching surface points in different perspectives, assuming that the
physical counterpart remains in the same position in space. If the
positional discrepancy captured in a set of frames is too high, trian-
gulation thus leads to erroneous 3D surface points, i.e., the camera
rays of different perspectives that should intersect in the same sur-
face point on the object intersect at an arbitrary distance from the
actual surface, or do not intersect at all, which leads to blurry ge-
ometry or holes. Our experience shows that a good starting value
for bucket time extent is around 50ms. For the special case of static
3D reconstruction (see above), an additional parameter controls the
maximum number of images used for scene reconstruction. If the
input frame set exceeds this limit, only the best frames according
to the quality metric, also used to ensure distinct sources per bucket
as described above, are considered.

Algorithm 1 Time Line Discretization

1: T :=sorte(F)

2: while |T| > 0 do

3: W:=0

4 while |W| < minFrames) do

5: W =WU(fi :=mine(T)), T:=T\ f
6: while |W||, > maxExtent do

7 W =W\ ming(W)

8 end while

9: end while

10: while |W U (f; := ming(T))||, < maxExtent do
11: W:=WUf, T:=T\f

12: end while
13: «add W as new 4D frame bucket»
14: end while

4D frame pre-processing: After discretization of the frame set,
the quality of the distribution of 4D frames can be assessed. Low
frame coverage over the scene duration either due to an insuffi-
cient image source count or low time density, or a bucketSize set-
ting too small, can have two negative effects. First, the distribution
of 4D frames along the time axis is sparse as a consequence of too
many buckets being rejected due to the discretization criteria not
being met, with the effect of a nonuniform representation of the
scene’s time evolution. Second, the number of frames within the
buckets is just above the requirement, leading to sparse 3D recon-
struction. In this case, a feedback loop controlling the parameter
maxExtent adjusts the bucket size of the discretization as a param-
eter to counteract the above two negative effects. Bucket size is
iteratively increased until a satisfying 4D frame discretization is
reached, leading to a representation of the scene’s time evolution at
higher coverage but lower density (4D frame rate). Using the pho-
togrammetric Multi-view Stereo algorithm, the frame set contained
in each bucket results in a 3D geometry model, representing the
state of the scene evolution at one specific point in time.

4D frame post-processing: 3D geometry generated by pho-
togrammetry is not aligned, since during 3D reconstruction,
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Figure 3: Left: process chain from heterogeneous input sources (top) over unordered set of frames and time-axis sorting to 4D frame
discretization (bottom), right: time-correlated frame distribution for all 12 video (V;) and 12 still image (1I;) sources of a test scene, visualized
as single frames per source (rows), and time discretization into buckets containing selected frames taken from the above sources (below).

4D frames are processed individually in parallel, independently
from the other frames of the 4D model stream, and an arbitrary
reference coordinate frame is defined for each. In contrast to the
geometries of the 4D frames, the set of known cameras from which
the frames of a specific 4D frame were captured, i.e. their positions
and orientations in space, stay mostly constant. In order to align all
4D frames throughout the time evolution of a scene our approach
makes use of this observation. As a first step, we align the set of
camera positions of the current 4D frame to the set of its prede-
cessor, leading to respective transformations that we then apply to
the 3D geometry of the respective 4D frame. Since the positions of
the cameras are subject to noise and uncertainty, and also to slight
movement of the observer guiding the camera, it is not sufficient
to find four reference points to describe the orientation from one
4D frame to another. Therefore, we use an approach similar to the
deformation technique described by Miiller et al. in [MHTGOS5].
Analogously to the shape that needs to be matched in the work
cited, we use the technique to match the current camera setup to
the reference (predecessor) setup, and repeat this approach for all
4D frames. As outlined in Fig. 4, our algorithm consists of the
following steps:

1. Calculation of offset between current set of camera poses (posi-
tion and orientation) and reference (predecessor) set of camera
poses by determining the offset vector of their centers of mass.

2. Scaling is obtained as the average distance for each camera to
the center of mass for the current set in relation to the reference
set.

3. Both sets of camera poses now have the same center and scal-
ing, thus the rotation can be obtained by iteratively finding the
camera pose with the biggest deviation and rotating the set until
it matches the reference set.

4. The transformation for the current camera set, describing the op-
erations necessary to transfer all cameras into the poses of the
respective cameras of the reference camera set, is applied to the
3D geometry of the current 4D frame in order to analogously
align it to the reference coordinate frame.

These steps are applied to each 4D frame in the sequence, thus
aligning all to the reference orientation. The stream of 3D geome-
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Figure 4: Determination of 3D geometry alignment transforma-
tion between a single 4D frame to a reference 4D frame by align-
ing their respective camera setups, using a basic shape matching
approach: (A) Center of gravity is determined (black box). (B) Av-
erage distance of the cameras to the center of gravity for two subse-
quent frames in relation corresponds to the relative scaling factor
between both. (C) After aligning and scaling, the rotation transfor-
mation is found that aligns both setups with respect to each other.

tries, representing the sequence of discrete evolutionary steps of the
scene over time, can then be rendered, e.g., by the c-Space app.

4. Implementation

The 4D reconstruction module is loosely embedded within a web
service structure. The c-Space app serves as entry point for video
and image footage and interface to the user on smart phones. Also,
the app is responsible for providing exact time synchronization
among heterogeneous devices of a large number of independent
end-users, and to collect sensor information from the devices. The
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CAI (Content Access Infrastructure) serves as data base for the
footage and allows clustering of the content into virtual scenes,
based on the time extent covered, as well as position and orienta-
tion of the capturing devices. c-Space is designed for a large num-
ber of users, leading to high numbers of scenes to be reconstructed
in parallel and massive amount of data. The CAI provides a list of
available scenes that were identified as set of relevant media, corre-
lating to the same target object or scene, based on their location,
sensor orientation and time information, and having a sufficient
number of sources covering the scene evolution. The 4D recon-
struction module handles local data synchronization and process-
ing of the input data. For splitting videos into single frames, we use
OpenCV (Open Source Computer Vision Library), providing great
flexibility in formats and encoding standards. Existing scenes are
constantly updated and recomputed as soon as a significant set of
new media is available. For the reconstruction of all 4D time steps
for a scene as single 3D models, the big advantage of our approach
is the use of the standard photogrammetric Multi-view Stereo al-
gorithm used for static scenes. This way the reconstruction for all
4D frames can be performed in parallel. The alignment process (4D
frame post-processing, Sec. 3) was implemented as a post-process
after completion of all 3D reconstructions. The results show that
the algorithm establishes scene continuity, where previously arbi-
trary coordinate frames had been assumed, leading to a jumping ob-
server perspective. Strong deviations among the camera positions
and misalignment can still lead to deviations for single 4D frames,
but since the resulting transformations are averaged over all cam-
eras, the impact of single outliers is drastically reduced. The results
can be further improved by detecting non-plausible deviations by
means of thresholds, but the current results are of sufficient quality.
After the alignment processing of all 4D time steps for a scene as
single 3D models, each model is compressed and uploaded to the
CAI for mobile presentation to the user. Subsequently, the 4D frame
sequence is accessed by the post-processing module, which com-
presses and transforms the data into a 4D stream for efficient ren-
dering on the end-user mobile device.

5. Results and Conclusion

We have presented c-Space, a 4D geometry reconstruction pipeline.
The technique allows to capture time-dependent evolution in 3D as
immersive and interactive 4D video. Fig. 5 and 6 present 4D re-
construction results for three different dynamic scenes. In theory,
three different perspectives are sufficient for Multi-view Stereo re-
construction (see [GCS06]). In practice, however, robust 3D recon-
struction at acceptable quality is possible only when satisfying cer-
tain conditions during image acquisition. One is the overlap be-
tween neighboring perspectives, an overlap of 70-80% is ideal. If
the reconstruction is to cover 360° of the scene, we have experi-
enced a number of at least 12 perspectives, placed homogeneously
around the scene, to be a minimum requirement. However, it is
also possible to only reconstruct a partial arc around a scene, in
which case the required minimum number of perspectives can go
down to as low as the theoretical number of three. Best results in
density and completeness of the geometry reconstructed, however,
are reached with a spherical setup of homogeneously distributed
cameras, all at the same distance from and facing the center of the
object, with the number of cameras high enough to provide suffi-

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.

Figure 5: Results of our 4D reconstruction as 3D renderings of ex-
ample 4D frames (=discrete scene evolution state at a certain point
in time) for two scenes. Top: remote-controlled toy digger in action,
bottom: dynamic interaction with figurine. Input images originate
from full HD videos (1920x1080) captured by 12 QUMOX cameras
with wide angle lenses.

cient neighboring overlap. The below part of Fig. 3 (right, below)
shows the result of time discretization consisting of a sequence
of buckets. Frames used from the input frame set (above) appear
again in the respective bucket (below) to show which frames were
actually used. Also, the above requirements are reflected in the
graph, in that time intervals with sufficient source coverage lead
to buckets subject to successful reconstruction, while others are re-
jected based on the minimum required number of frames (=differ-
ent sources/perspectives) per bucket, which for the example was
set to 12. Obviously, static pictures as in this document only allow
presentation of static 3D renderings for selected time steps. Please
watch our 4D rendering videos or try the c-Space app to experi-
ence the 4D reconstruction technology. In analogy to the benefit
that a video has over a still image, 4D brings an added value over
3D, namely by adding information on the temporal scene evolu-
tion and dynamics. The 4D representation of an object or scene as
demonstrated by c-Space brings about several benefits: c-Space be-
comes a spatio-temporally sorted repository of the digital resources
available in the area, which end-users can contribute to through a
creative crowd sourcing approach in which new localized digital
content is created, linked (logically, geographically, and visually),
and shared within its surrounding space, and thus fills a gap not
covered by any current technology in the market. As examples for
specific scenarios, imagine a 4D instruction manual guiding the
user through the process of constructing a product from a set of
primitive constituents to the final composed state, a furniture item
for instance, and all in 3D with nearly unlimited possibilities to
view the steps of construction from all around, and even enabling
the user to zoom in, remove occluding parts, in parallel to the con-
tinuous evolution of the process - compared to current instruction
manuals that use a set of discrete states of the process, statically de-
picted in 2D from one perspective, and abstracting from many im-
portant intermediate steps. Other domains where 4D shows nearly
unlimited potential are cultural heritage, where dynamic exhibits
can be brought closer to the visitor, and research, where scientists
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Figure 6: Results of our 4D reconstruction as 3D rendering of four
example 4D frames for a cultural heritage artifact, being placed
upright and assembled. Time sequence is from left to right and
from top to bottom. Input images originate from full HD videos
(1920x1080) captured by 12 middle class LG smart phones. Noisy
background geometry is due to the lack of image features on a ho-
mogeneously colored background.

can profit from the potential of a 4D model to analyze aging of arti-
facts in 3D, over time. Capturing the dynamics of physical objects
becomes interesting when an ongoing process is to be documented
or analyzed, either in real-time, or at specific time intervals over a
long period of time. Using high-resolution cameras, 4D becomes
a powerful tool of analysis for science, again in the cultural her-
itage domain: an excavation site is recorded from many different
angles around, during the duration of the dig, at long time inter-
vals between the single images. This allows documentation of the
excavation in 3D from the moment of groundbreaking to recovery
of single artifacts, allowing analysts to accurately assess positions
of findings retrospectively from any angle necessary. Also, the en-
tire course of the excavation itself can be analyzed afterwards from
arbitrary angles and zoom levels. Using high-resolution and high
frame rate capturing equipment opens up the possibility of captur-
ing intangible heritage such as dances, thus empowering the viewer
to follow actors from arbitrary angles during the performance. Yet
another example scenario is capturing dynamic material tests in 4D,
opening up the possibility of assessing details about the state of the
tested material sample at any point in time in 3D.

6. Acknowledgments

This work was funded in part by FP7-ICT-2013-10 European Grant
Agreement No. 611040 - c-Space. More information can be found
here: http://www.c-spaceproject.eu/.

References

[Ahm06] AHMAD Y.: The scope and definitions of heritage: From tangi-
ble to intangible. International Journal of Heritage Studies 12, 3 (2006),
292-300. 3

[ARSG12] ACKERMANN J., RiTZ M., STORK A., GOESELE M.: Re-
moving the example from example-based photometric stereo. In Trends
and Topics in Computer Vision, Kutulakos K., (Ed.), vol. 6554 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 197—
210. 2

[BLL16] BLACHE L., Loscos C., LucAs L.: Robust motion flow for
mesh tracking of freely moving actors. The Visual Computer 32, 2
(2016), 205-216. 2

[dAST*08] DE AGUIARE., STOLL C., THEOBALT C., AHMED N., SEI-
DEL H.-P., THRUN S.: Performance capture from sparse multi-view
video. In ACM SIGGRAPH 2008 Papers (New York, NY, USA, 2008),
SIGGRAPH 08, ACM, pp. 98:1-98:10. 2

[GAF*10] GOESELE M., ACKERMANN J., FUHRMANN S., KLOWSKY
R., LANGGUTH F., MUCKE P., RITZ M.: Scene reconstruction from
community photo collections. Computer 43, 6 (2010), 48-53. 2

[GCS06] GOESELE M., CURLESS B., SEITZ S.: Multi-view stereo revis-
ited. In Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on (2006), vol. 2, pp. 2402-2409. 2, 4,7

[GM04] GOLDLUECKE B., MAGNOR M.: Space-time isosurface evolu-
tion for temporally coherent 3D reconstruction. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE
Computer Society Conference on (June 2004), vol. 1, IEEE, pp. I-350—
1-355 Vol.1. 2

[GSC*07] GOESELE M., SNAVELY N., CURLESS B., HOPPE H., SEITZ
S. M.: Multi-view stereo for community photo collections. In Proceed-
ings of 11th International Conference on Computer Vision, ICCV 2007
(2007). 2

[IB16] IAcoNoO V. L., BROWN D. H. K.: Beyond binarism: Exploring a
model of living cultural heritage for dance. Dance Research 34, 1 (2016),
84-105. 3

[JPS14] Joo H., PARK H. S., SHEIKH Y.: Map visibility estimation for
large-scale dynamic 3d reconstruction. In Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on (June 2014), pp. 1122—
1129. 2

[MHTGO5] MULLER M., HEIDELBERGER B., TESCHNER M., GROSS
M.: Meshless deformations based on shape matching. ACM Trans.
Graph. 24, 3 (July 2005), 471-478. 6

[MMZ99] MARICHAL X., MA W.-Y., ZHANG H.: Blur determination
in the compressed domain using dct information. In Image Process-
ing, 1999. ICIP 99. Proceedings. 1999 International Conference on (Oct
1999), vol. 2, pp. 386-390 vol.2. 5

[OC13] OswALD M., CREMERS D.: A convex relaxation approach to
space time multi-view 3d reconstruction. In Proceedings of the IEEE In-
ternational Conference on Computer Vision Workshops (2013), pp. 291—
298. 2

[OKI15] ONDRUSKA P., KOHLI P., IZADI S.: Mobilefusion: Real-time
volumetric surface reconstruction and dense tracking on mobile phones.
Visualization and Computer Graphics, IEEE Transactions on 21, 11
(Nov 2015), 1251-1258. 2

[SSS06] SNAVELY N., SEITZ S. M., SZELISKI R.: Photo tourism:
Exploring photo collections in 3d. In ACM SIGGRAPH 2006 Papers
(2006), SIGGRAPH ’06, pp. 835-846. 1, 2

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.



