
EuroVis Workshop on Visual Analytics (2022)
M. Angelini and J. Bernard (Editors)

A Pipeline for Tailored Sampling for Progressive Visual Analytics

Marius Hogräfer†1 , Jakob Burkhardt1 , and Hans-Jörg Schulz‡1

1Aarhus University, Department of Computer Science, Denmark

Abstract
Progressive Visual Analytics enables analysts to interactively work with partial results from long-running computations early
on instead of forcing them to wait. For very large datasets, the first step is to divide that input data into smaller chunks using
sampling, which are then passed down the progressive analysis pipeline all the way to their progressive visualization in the end.
The quality of the partial results produced by the progression heavily depends on the quality of these chunks, that is, chunks need
to be representative of the dataset. Whether or not a sampling approach produces representative chunks does however depend
on the particular analysis scenario. This stands in contrast to the common use of random sampling as a “one-size-fits-most”
approach in PVA. In this paper, we propose a sampling pipeline and its open source implementation which can be used to tailor
the used sampling method for an analysis scenario at hand. This pipeline consists of three configurable steps – linearization,
subdivision, and selection – and for each, we propose exemplar operators. We then demonstrate its utility by providing tailored
samplings for three distinct scenarios.

CCS Concepts
• Human-centered computing → Visual analytics; • Theory of computation → Sketching and sampling;

1. Introduction

A common challenge for interactive visual analysis is bringing the
user into the loop during long-running computations [EHR∗14,
MPG∗14]. A promising solution to this challenge is Progressive
Visual Analytics (PVA) [SPG14, FFNS18]. Therein, analysts are
presented with intermediate, incomplete results from these long-
running computations, allowing them to gather early insights rather
than having to wait until all data is fully processed. It has been
shown that analysts in progressive systems often outperform those
of non-progressive systems in terms of efficiency [ZGC∗17].

One common way of generating partial results is by chunking up
the data into smaller pieces, and then incrementally computing and
visualizing results for these pieces over time. In practice, this seem-
ingly simple process turns out to be rather complex, since splitting
up the data means that the interactive visual analysis process – in-
herently an uncertain and often exploratory endeavor – becomes
even more uncertain: any patterns that analysts find in the visual-
ization could change in the future, once more data is processed. The
general goal for sampling in PVA is thus to produce representative
samples of the data that reduce the likelihood of the visualization
changing over time. Yet, how exactly this “representativeness” is
characterized depends on the analysis scenario. Prior work has thus
proposed dedicated sampling methods that produce representative

† Email: mhograefer@cs.au.dk
‡ Email: hjschulz@cs.au.dk

samples in particular scenarios. For example, Chen et al. present a
method that preserves the local density and outliers in the visual-
ization, as well as temporal coherence of subsequent chunks when
progressively sampling for scatter plots [CZF∗22]. Others have ex-
plored sampling methods for spatiotemporal data [WGT∗20] or
for prioritizing salient features of the visualization in the sam-
pling [RAK∗17]. Nevertheless, the default sampling method for
scenarios, for which no such dedicated approach exists, remains
random sampling. There are however some downsides to drawing
random samples: (1) it can produce misleading visual artifacts on
some visualizations [ZOLP17], (2) it can be a poor fit for tasks like
outlier detection, where a few rare items in the data are actually of
interest [CZF∗22], and (3) it can fail to represent class distributions
of imbalanced datasets.

We thus propose a sampling pipeline for PVA that can be config-
ured to better fit the particular analysis scenario than random uni-
form sampling, providing a fallback option for analysis scenarios
not yet covered by dedicated solutions. We introduce ProSample, a
comparison tool for pipeline configurations, which allows compar-
ing how the progressive results differ between two pipelines. Using
ProSample, we showcase our sampling pipeline for three scenarios.

2. Related Work

Dividing a dataset into chunks is an integral part to the PVA pro-
cess and “getting it right” is important, since any flaws introduced
by this chunking will be present at any downstream operation. For

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/eurova.20221079 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-3649-9339
https://orcid.org/0000-0002-1678-6680
https://orcid.org/0000-0001-9974-535X
https://doi.org/10.2312/eurova.20221079


M. Hogräfer, J. Burkhardt & H.-J. Schulz / A Pipeline for Tailored Sampling for Progressive Visual Analytics

LinearizationDataset Linearized Data Subdivided Data Progressive Sample

shortest path

z-order

shuffle equal cardinality

equal density

equal attribute median element

first element

random element

Subdivision Selection

... ... ...

1 2 3

Figure 1: Our sampling pipeline for Progressive Visual Analytics, including some exemplar operators used at each step: (1) The input data
is first standardized into linear order in the linearization step, (2) then that data is structured into groups with the subdivision step, and
lastly, (3) elements from these groups are then picked in the selection step to form a chunk that is representative in the context of the analysis
scenario.

instance, Procopio et al. note the role sampling plays in reducing
the error bars in the visualization, i.e., the uncertainty of the analy-
sis results that analysts work on [PMS∗21]. Given this importance,
it is surprising that the most commonly used sampling method re-
mains random sampling, or shuffling the input dataset once and
then chunking it in order, in cases where the data size causes ran-
dom sampling to take too long.

Some prior work in the field of PVA has looked at specific sam-
pling scenarios, such as the work by Chen et al. on progressive scat-
terplots that we already mentioned in the Introduction [CZF∗22].
Turkay et al. propose an adaptive sampling for progressive visu-
alization of high-dimensional data, which dynamically adjusts the
size of the (in their case random) sample to ensure that the computa-
tion produces new results within a certain time interval [TKBH17].
Another example is the selective wander join method proposed by
Procopio et al., which addresses the challenges of sampling for
complex database queries that contain data joins, i.e., the data is
retrieved from multiple tables at the same time [PSWC19]. The
method also lends itself for progressively sampling from groups of
skewed data, which can be desirable for prioritizing data of interest.

Under the term “approximate query processing” (AQP) and “on-
line sampling”, dedicated sampling methods have been developed
to better capture data qualities like skew or error bounds. Sam-
ple+Seek [DHC∗16] and BlinkDB [AMP∗13] are examples of
sampling methods for reducing or bounding errors and response
times of queries on large datasets. An example for applying AQP in
PVA is so-called optimistic visualization [MFDW17], which helps
analysts recover from false conclusions drawn from the approxi-
mate data. This is done by visualizing the difference between the
approximate result at the time analysts drew their conclusions and
the current state of the progressive computation, allowing analysts
to identify any discrepancies. Others use features of the visualiza-
tion to optimize the sampling. Rahman et al. present a sampling
method that aims to retrieve data for salient features in the visual-
ization first, then sampling less salient features [RAK∗17]. Park et
al. present visualization-aware sampling, which uses prior knowl-
edge about the visual encoding (scatter plots or maps) to produce
an appropriate sample from large datasets, suggesting that running
their algorithm multiple times may be beneficial to incremental vi-

sualization [PCM16]. Wang et al. present STULL, a progressive
sampling method for spatiotemporal data that retrieves samples that
show the same distributions as in the full dataset [WGT∗20].

3. A Sampling Pipeline for PVA

On one hand, the related work shows how important it can be to
have specific sampling techniques tailored to a particular scenario
at hand. On the other hand, it also shows that we are far from hav-
ing such a specific sampling technique for all possible scenarios.
This is why we introduce a sampling pipeline for PVA, which is
shown in Fig. 1. The main design goal of this pipeline is flexibility
– i.e., to be adaptable or configurable to fit a wide range of possible
sampling scenarios. Yet at the same time, we also want to be able
to reuse parts of a sampling technique across different scenarios.
Hence, we strive for a standardized process where we make as little
assumptions about the analysis scenario as possible apart from the
format of the inputs and outputs of each step in the pipeline. The
pipeline steps can then be concretized using different operators that
are reusable across different scenarios [HA06].

Our proposed sampling pipeline for PVA consists of three
steps: linearization (which standardizes the input data), subdivision
(which structures the linearized data), and selection (which gen-
erates the chunks from that structure). We detail these three steps
below and provide general considerations for configuring each step.

3.1. Linearization

The linearization step standardizes the input data into a simple list
of elements. This is necessary, as the type of the dataset influences
the way it can be processed (e.g., graph data requires different al-
gorithms than tabular data or geospatial data). By standardizing the
input data, we essentially remove these specific characteristics from
the input dataset, reducing the assumptions we have to make about
the data at larger stages in the pipeline. This increases both the flex-
ibility and reusability of downstream operators.

The proposed linear structure is conceptually simple and most
data types can be transformed into it: a graph can be linearized
by traversing it in order of its shortest path [ORS07], geospatial

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

50



M. Hogräfer, J. Burkhardt & H.-J. Schulz / A Pipeline for Tailored Sampling for Progressive Visual Analytics

and volumetric data can be linearized using space-filling curves like
the z-order [ZOLP17, ZZY∗20] or the Hilbert [DDW14, WFG∗19,
ZJW21] curve, hierarchies can be linearized using a BFS or DFS
traversal, and n-dimensional data can be linearized using a knn-
based heuristic to solving a traveling salesman problem over the
data [JM07]. The concrete operators used in this step are thus very
much dependent on the type of the input data. Once in linear form,
it is further possible to reorder the data to account for requirements
of the analysis scenario. For example, we can randomly shuffle the
list to overcome sorting biases, or purposefully sort the list by some
attribute value. Having the data in a certain order can be beneficial
for operators in later steps of the pipeline, yet it comes at the cost
of additional computation time.

3.2. Subdivision

The subdivision step takes the linearized data and partitions it. This
can be seen as cutting-up the long list of all data into a set of smaller
consecutive lists of data items.

This subdivision is very much dependent on the task to be car-
ried out. If the task is still unspecified, we can simply subdivide
the data into sets of equal cardinality – i.e., the same number of
items in them. For an overview task that is to first show the extent
of the data and not so much its density [Shn96], we can subdivide
the data into sets that maximize coverage over a given value range.
Depending on which attribute’s value range is used, this puts addi-
tional focus on a data dimension of interest. When exploring spa-
tially clustered data items, we can run Lloyd’s algorithm on the
linearized data [Llo82], essentially computing a 1D k-means clus-
tering on it. The number of groups we subdivide the data into is
scenario-specific. For example, if analysts want to just get a rough
overview of the data, we can set the cardinality of the groups so that
the progression produces results within acceptable response times.
When using a nominal dimension to facet the data into groups, the
number of facets is an appropriate fit. When considering multiple
dimensions, we might use the number of classes found by the clus-
tering algorithm as number of groups. A hierarchical subdivision
(e.g., first dividing by coverage for one data attribute and then sub-
dividing each set further by another data attribute) is possible.

3.3. Selection

The selection step then defines a strategy for constructing chunks
from the structured data that most benefit the analysis scenario. To
that end, it subsequently selects items from the subdivisions that
best match the user interest in the data.

The choice of a selection operator depends in many ways on the
user role as it is defined by Micallef et al. [MSA∗19]. A progres-
sive observer who monitors an evolving progressive visualization
is interested in seeing a reasonable representative of the full dataset
at any time. In this case, the selection could thus simply draw the
medians from each subdivision. This is different for a progressive
searcher, who uses the progression to quickly find an answer with-
out having to look at all the data. If the searcher is interested in ex-
treme values, the selection should draw min/max values from each
subdivison. If the searcher is interested in the largest clusters, the
selection operator should draw exclusively from the largest subdivi-
sion generated by the k-means operator mentioned above and then

work its way downward to the smaller clusters. Finally, the pro-
gressive explorer uses PVA to be able to quickly switch between
different configurations at runtime, depending on observations and
insights gained from the partial results. Hence it is not a single se-
lection strategy in which the explorer is interested, but in the abil-
ity to switch between different selections and their parametriza-
tions to adjust the incoming data chunks to their current needs.
For example, the size of the selection (and thus of the resulting
chunks) may need to be changed to meet a desired response time.
The statistical characteristics of the selection can be varied as well,
either to yield selections that are (close to) representative of the
entire dataset, or that are purposefully biased in order to retrieve
certain data first, thus steering the progression towards data of in-
terest [ED02, CKBE19].

4. Usage Examples of the Sampling Pipeline

We showcase the versatility of our approach by applying it to a use
case for which we configure and compare three sampling pipelines.
To that end, we make available an open source implementation
of our pipeline, called ProSample, which allows analyzing the ef-
fect of different pipeline configurations on the PVA process (see
https://github.com/vis-au/prosample). In ProSam-
ple, the user can configure two sampling pipelines, which are then
used to simultaneously process a dataset, showing the results in
side-by-side views as regular or binned scatter plots. An optional
third view encodes the delta between the two views in a binned
scatter plot. The views can be explored with zoom and pan, us-
ing linked navigation. The interface of ProSample is implemented
using D3 [BOH11] and runs in current browsers. Our implementa-
tion of the backend providing the configurable pipelines is done in
Python, using the numpy package [VCV11].

4.1. Scenarios

The scenarios are based on a dataset of mountain peaks from Open-
StreetMap [Ope], which contains about 650,000 items, providing
longitude, latitude, and number of edits. For comparability, we
sample one element from each group of an equal cardinal-
ity subdivision into 10,000 items, and the selection operations
consider only the dimension containing the number of edits. We
precomputed linearizations.

We begin by configuring the sampling for an overview task. We
use the random linearization to transform the spatial dataset to
a list and structure it into groups using the equal cardinal-
ity subdivision, since we are still unfamiliar with the underlying
dataset. As selection method we set the random strategy, so that
items per chunk are randomly picked from each subdivision group.
We can see how the progressive visualization in ProSample early on
shows the outlines of the continents, and we can also quickly iden-
tify regions on the map that contain many mountain peaks, such
as Central Europe, the Himalayas, and the Andes (see highlighted
regions in Fig. 2). If we were unfamiliar with the dataset, the first
observation lets us quickly notice that the dataset contains spatial
data, collected on a global scale, and the second observation al-
lows us to identify that the measured points are mountain peaks.
Based on these insights, we move on to the next scenario, where

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

51

https://github.com/vis-au/prosample


M. Hogräfer, J. Burkhardt & H.-J. Schulz / A Pipeline for Tailored Sampling for Progressive Visual Analytics

Scenario 1

Pipeline

Overview
~25k items

Details
~25k items

Scenario 2 Scenario 3

random equal cardinality random z-order equal cardinality randomz-order equal cardinality median

Figure 2: The three scenarios discussed in the paper, showing the used pipeline configuration in terms of linearization, subdivision, and
selection strategies, as well as an overview and detail view of the mountain peaks dataset after processing around 25 thousand items.

we tailor the pipeline for a density analysis, in which we look first
and foremost for regions with many mountain peaks. We do so by
using a z-order linearization, which maintains spatial proxim-
ity between items in the standardized order, meaning that subse-
quent points in that list not are indeed located close to each other.
Thus, when using the median selection operator, we will sample
dense regions of the data. We notice that the data in early chunks
is “clumped” into highly dense regions, which is exactly what we
wanted, but it misses the contextual information of the sparser re-
gions. To also yield this context, we adjust the configuration again
by exchanging the selection step for the random operator, which
selects items across the groups defined by the subdivision. We can
see the effect in the zoomed-in views in Fig. 2, in that the sampled
items are less “clumped” as before. With this context, we can for
example identify the Alps in the context of Central Europe.

5. Conclusion and Future Work

We have presented a sampling pipeline for PVA, which can be used
to tailor the sampling process to the scenario at hand. We demon-
strated the flexibility of this pipeline in three scenarios, through the
comparison tool ProSample that is available as open source.

Having a framework for tailorable PVA sampling in place opens
up space for future applications. For instance, we want to explore
guidelines for choosing the most beneficial sampling strategy for a
particular PVA scenario, that go beyond general considerations as
we outlined in Sec. 3. This will require more qualitative, and cer-
tainly more quantitative evaluation of our framework. Qualitative
evaluations could widen the scope to also consider the dedicated
progressive sampling techniques presented mostly from database
perspectives (see Sec. 2), while quantitative evaluations could mea-

sure the performance of progressive sampling using our framework,
compared to these existing techniques. Future work also needs to
improve the practical implementation of our framework, extending
the operators that are available so far in ProSample. Tool support is
a general challenge in PVA, with only few research-focused frame-
works like ProgressiVis [Fek15] and P5 [LM20] in existence, and
therefore most research being conducted on custom implementa-
tions. A progressive sampling library could however be a starting
point towards more reusable solutions. Lastly, we also want to ex-
pand on the principal considerations of sampling in PVA. In this
paper, we have discussed sampling solely as a method for dividing
the input dataset into smaller chunks that are then passed down-
stream to a PVA pipeline. However, given the thread-based process
model presented by Schulz et al. [SASS16], dividing the data into
chunks could also happen at different points in the PVA pipeline.
In fact, their model suggests that each operator in the progressive
pipeline can freely decide on when to process its input. This raises
research questions regarding appropriate sampling pipelines ded-
icated for the view rendering step, best practices for combining
operators using different sampling pipelines, or even having more
than one pipeline per operator. As each operator only has access
to parts of the full dataset, an important question that arises is how
our pipeline can be extended to account for this. The naïve way is
to linearize and subdivide in batches, yet that may be detrimental to
the performance, so alternative strategies like using a dynamic tree
structure to organize the subdivisions deserve consideration. Our
pipeline provides parts of the groundwork towards these questions.

Acknowledgements

This work has been funded in part by the Innovation Fund Denmark
through the Grand Solution project Hospital@Night.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

52



M. Hogräfer, J. Burkhardt & H.-J. Schulz / A Pipeline for Tailored Sampling for Progressive Visual Analytics

References
[AMP∗13] AGARWAL S., MOZAFARI B., PANDA A., MILNER H.,

MADDEN S., STOICA I.: BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In Proc. of EuroSys
(2013), ACM, pp. 29–42. doi:10.1145/2465351.2465355. 2

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3 Data-Driven
Documents. IEEE TVCG 17, 12 (2011), 2301–2309. doi:10.1109/
TVCG.2011.185. 3

[CKBE19] CUI Z., KANCHERLA J., BRAVO H. C., ELMQVIST N.:
Sherpa: Leveraging User Attention for Computational Steering in Vi-
sual Analytics. In Proc. of VDS (2019), IEEE, pp. 48–57. doi:
10.1109/VDS48975.2019.8973384. 3

[CZF∗22] CHEN X., ZHANG J., FU C.-W., FEKETE J.-D., WANG
Y.: Pyramid-based Scatterplots Sampling for Progressive and Stream-
ing Data Visualization. IEEE TVCG 28, 1 (2022), 593–603. doi:
10.1109/TVCG.2021.3114880. 1, 2

[DDW14] DEMIR I., DICK C., WESTERMANN R.: Multi-Charts for
Comparative 3D Ensemble Visualization. IEEE TVCG 20, 12 (2014),
2694–2703. doi:10.1109/TVCG.2014.2346448. 3

[DHC∗16] DING B., HUANG S., CHAUDHURI S., CHAKRABARTI K.,
WANG C.: Sample + Seek: Approximating Aggregates with Distribution
Precision Guarantee. In Proc. of SIGMOD (2016), ACM, pp. 679–694.
doi:10.1145/2882903.2915249. 2

[ED02] ELLIS G., DIX A.: Density control through random sampling:
an architectural perspective. In Proc. of IV (2002), pp. 82–90. doi:
10.1109/IV.2002.1028760. 3

[EHR∗14] ENDERT A., HOSSAIN M. S., RAMAKRISHNAN N., NORTH
C., FIAUX P., ANDREWS C.: The human is the loop: new directions for
visual analytics. Journal of Intelligent Information Systems 43, 3 (2014),
411–435. doi:10.1007/s10844-014-0304-9. 1

[Fek15] FEKETE J.-D.: ProgressiVis: a Toolkit for Steerable Progressive
Analytics and Visualization. In Proc. of the Workshop on Data Systems
for Interactive Analysis (Chicago, United States, 2015), pp. 1–5. URL:
https://hal.inria.fr/hal-01202901. 4

[FFNS18] FEKETE J.-D., FISHER D., NANDI A., SEDLMAIR M.: Pro-
gressive data analysis and visualization. Dagstuhl Reports 8, 10 (2018),
1–40. doi:10.4230/DagRep.8.10.1. 1

[HA06] HEER J., AGRAWALA M.: Software design patterns for in-
formation visualization. IEEE TVCG 12, 5 (2006), 853–860. doi:
10.1109/TVCG.2006.178. 2

[JM07] JOHNSON D. S., MCGEOCH L. A.: Experimental Analysis of
Heuristics for the STSP. Springer, Boston, MA, 2007, pp. 369–443.
doi:10.1007/0-306-48213-4_9. 3

[Llo82] LLOYD S.: Least squares quantization in PCM. IEEE Transac-
tions on Information Theory 28, 2 (1982), 129–137. doi:10.1109/
TIT.1982.1056489. 3

[LM20] LI J. K., MA K.-L.: P5: Portable progressive parallel processing
pipelines for interactive data analysis and visualization. IEEE TVCG 26,
1 (2020), 1151–1160. doi:10.1109/TVCG.2019.2934537. 4

[MFDW17] MORITZ D., FISHER D., DING B., WANG C.: Trust, but
Verify: Optimistic Visualizations of Approximate Queries for Exploring
Big Data. In Proc of CHI (2017), ACM, pp. 2904–2915. doi:10.
1145/3025453.3025456. 2

[MPG∗14] MÜHLBACHER T., PIRINGER H., GRATZL S., SEDLMAIR
M., STREIT M.: Opening the Black Box: Strategies for Increased User
Involvement in Existing Algorithm Implementations. IEEE TVCG 20,
12 (2014), 1643–1652. doi:10.1109/TVCG.2014.2346578. 1

[MSA∗19] MICALLEF L., SCHULZ H.-J., ANGELINI M., AUPETIT M.,
CHANG R., KOHLHAMMER J., PERER A., SANTUCCI G.: The Human
User in Progressive Visual Analytics. In Proc. of EuroVis Short Papers
(2019), Eurographics, pp. 19–23. doi:10.2312/evs.20191164. 3

[Ope] OPENSTREETMAP: Mountain Peaks Data. downloaded 01-
May-2021. URL: https://wiki.openstreetmap.org/wiki/
Tag:natural=peak. 3

[ORS07] ONUS M., RICHA A., SCHEIDELER C.: Linearization: Locally
Self-Stabilizing Sorting in Graphs. In Proc. of the ALENEX Workshop
(2007), SIAM, pp. 99–108. doi:10.1137/1.9781611972870.
10. 2

[PCM16] PARK Y., CAFARELLA M., MOZAFARI B.: Visualization-
aware sampling for very large databases. In Proc. of ICDE (2016), IEEE,
pp. 755–766. doi:10.1109/ICDE.2016.7498287. 2

[PMS∗21] PROCOPIO M., MOSCA A., SCHEIDEGGER C., WU E.,
CHANG R.: Impact of Cognitive Biases on Progressive Visualization.
IEEE TVCG (2021), 1–13. doi:10.1109/TVCG.2021.3051013.
2

[PSWC19] PROCOPIO M., SCHEIDEGGER C., WU E., CHANG
R.: Selective Wander Join: Fast Progressive Visualizations for
Data Joins. Informatics 6, 1 (2019), 1–21. doi:10.3390/
informatics6010014. 2

[RAK∗17] RAHMAN S., ALIAKBARPOUR M., KONG H. K., BLAIS E.,
KARAHALIOS K., PARAMESWARAN A., RUBINFIELD R.: I’ve Seen
“Enough”: Incrementally Improving Visualizations to Support Rapid
Decision Making. Proc. of VLDB Endowment 10, 11 (2017), 1262–1273.
doi:10.14778/3137628.3137637. 1, 2

[SASS16] SCHULZ H., ANGELINI M., SANTUCCI G., SCHUMANN H.:
An Enhanced Visualization Process Model for Incremental Visualiza-
tion. IEEE TVCG 22, 7 (2016), 1830–1842. doi:10.1109/TVCG.
2015.2462356. 4

[Shn96] SHNEIDERMAN B.: The Eyes Have It: A Task by Data Type
Taxonomy for Information Visualizations. In Proc. of VL (1996), IEEE,
pp. 336–344. doi:10.5555/832277.834354. 3

[SPG14] STOLPER C. D., PERER A., GOTZ D.: Progressive Visual An-
alytics: User-Driven Visual Exploration of In-Progress Analytics. IEEE
TVCG 20, 12 (2014), 1653–1662. doi:10.1109/TVCG.2014.
2346574. 1

[TKBH17] TURKAY C., KAYA E., BALCISOY S., HAUSER H.: De-
signing Progressive and Interactive Analytics Processes for High-
Dimensional Data Analysis. IEEE TVCG 23, 1 (2017), 131–140. doi:
10.1109/TVCG.2016.2598470. 2

[VCV11] VAN DER WALT S., COLBERT S. C., VAROQUAUX G.: The
NumPy array: A structure for efficient numerical computation. Comput-
ing in Science and Engineering 13, 2 (2011), 22–30. doi:10.1109/
MCSE.2011.37. 3

[WFG∗19] WEISSENBÖCK J., FRÖHLER B., GRÖLLER E., KASTNER
J., HEINZL C.: Dynamic Volume Lines: Visual Comparison of 3D Vol-
umes through Space-filling Curves. IEEE TVCG 25, 1 (2019), 1040–
1049. doi:10.1109/TVCG.2018.2864510. 3

[WGT∗20] WANG G., GUO J., TANG M., QUEIROZ NETO J. F. D.,
YAU C., DAGHISTANI A., KARIMZADEH M., AREF W. G., EBERT
D. S.: STULL: Unbiased Online Sampling for Visual Exploration of
Large Spatiotemporal Data. In Proc. of VAST (2020), IEEE, pp. 72–83.
doi:10.1109/VAST50239.2020.00012. 1, 2

[ZGC∗17] ZGRAGGEN E., GALAKATOS A., CROTTY A., FEKETE J.,
KRASKA T.: How Progressive Visualizations Affect Exploratory Anal-
ysis. IEEE TVCG 23, 8 (2017), 1977–1987. doi:10.1109/TVCG.
2016.2607714. 1

[ZJW21] ZHOU L., JOHNSON C. R., WEISKOPF D.: Data-Driven
Space-Filling Curves. IEEE TVCG 27, 2 (2021), 1591–1600. doi:
10.1109/TVCG.2020.3030473. 3

[ZOLP17] ZHENG Y., OU Y., LEX A., PHILLIPS J. M.: Visualization
of Big Spatial Data using Coresets for Kernel Density Estimates. In
Proc. of VDS (2017), IEEE, pp. 23–30. doi:10.1109/VDS.2017.
8573446. 1, 3

[ZZY∗20] ZHOU Z., ZHANG X., YANG Z., CHEN Y., LIU Y., WEN
J., CHEN B., ZHAO Y., CHEN W.: Visual Abstraction of Geographi-
cal Point Data with Spatial Autocorrelations. In Proc. of VAST (2020),
IEEE, pp. 60–71. doi:10.1109/VAST50239.2020.00011. 3

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

53

http://dx.doi.org/10.1145/2465351.2465355
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/VDS48975.2019.8973384
http://dx.doi.org/10.1109/VDS48975.2019.8973384
http://dx.doi.org/10.1109/TVCG.2021.3114880
http://dx.doi.org/10.1109/TVCG.2021.3114880
http://dx.doi.org/10.1109/TVCG.2014.2346448
http://dx.doi.org/10.1145/2882903.2915249
http://dx.doi.org/10.1109/IV.2002.1028760
http://dx.doi.org/10.1109/IV.2002.1028760
http://dx.doi.org/10.1007/s10844-014-0304-9
https://hal.inria.fr/hal-01202901
http://dx.doi.org/10.4230/DagRep.8.10.1
http://dx.doi.org/10.1109/TVCG.2006.178
http://dx.doi.org/10.1109/TVCG.2006.178
http://dx.doi.org/10.1007/0-306-48213-4_9
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/TVCG.2019.2934537
http://dx.doi.org/10.1145/3025453.3025456
http://dx.doi.org/10.1145/3025453.3025456
http://dx.doi.org/10.1109/TVCG.2014.2346578
http://dx.doi.org/10.2312/evs.20191164
https://wiki.openstreetmap.org/wiki/Tag:natural=peak
https://wiki.openstreetmap.org/wiki/Tag:natural=peak
http://dx.doi.org/10.1137/1.9781611972870.10
http://dx.doi.org/10.1137/1.9781611972870.10
http://dx.doi.org/10.1109/ICDE.2016.7498287
http://dx.doi.org/10.1109/TVCG.2021.3051013
http://dx.doi.org/10.3390/informatics6010014
http://dx.doi.org/10.3390/informatics6010014
http://dx.doi.org/10.14778/3137628.3137637
http://dx.doi.org/10.1109/TVCG.2015.2462356
http://dx.doi.org/10.1109/TVCG.2015.2462356
http://dx.doi.org/10.5555/832277.834354
http://dx.doi.org/10.1109/TVCG.2014.2346574
http://dx.doi.org/10.1109/TVCG.2014.2346574
http://dx.doi.org/10.1109/TVCG.2016.2598470
http://dx.doi.org/10.1109/TVCG.2016.2598470
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/TVCG.2018.2864510
http://dx.doi.org/10.1109/VAST50239.2020.00012
http://dx.doi.org/10.1109/TVCG.2016.2607714
http://dx.doi.org/10.1109/TVCG.2016.2607714
http://dx.doi.org/10.1109/TVCG.2020.3030473
http://dx.doi.org/10.1109/TVCG.2020.3030473
http://dx.doi.org/10.1109/VDS.2017.8573446
http://dx.doi.org/10.1109/VDS.2017.8573446
http://dx.doi.org/10.1109/VAST50239.2020.00011

