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Figure 1: Visual observation of an instance selection strategy in a data labeling process. Different perspectives on the data set reveal item and
model characteristics (here: iteration 19). The visualization of metrics along the process provides navigation support for further inspection.

Abstract

We present a visual analytics approach for the in-depth analysis and explanation of incremental machine learning processes
that are based on data labeling. Our approach offers multiple perspectives to explain the process, i.e., data characteristics, label
distribution, class characteristics, and classifier characteristics. Additionally, we introduce metrics from which we derive novel
aggregated analytic views that enable the analysis of the process over time. We demonstrate the capabilities of our approach in
a case study and thereby demonstrate how our approach improves the transparency of the iterative learning process.

1. Introduction

Interactive machine learning (IML) is a complex analytical process
that is difficult to understand and to make transparent [ACKK14].
A key component in IML that directly steers the incremental
learning process is instance selection strategies (ISS). An ISS
tries to select the instance(s) from an unlabeled pool of candidates
that best facilitate(s) the learning of the IML model at the current
stage of the learning process. A prominent type of ISS proposed
in the ML community is active learning [Set12, FZL12]. Instance
selection is an ill-posed problem and thus hard to solve. Existing
strategies use heuristics, relying on either model-specific aspects
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(e.g., model uncertainty [WKBDO06]) or data-specific aspects (e.g.,
density [VPS*]). Recent experiments have shown, however, that
these strategies perform far beyond what would theoretically be
possible with an “ideal” strategy [BHL*18] in terms of accuracy.
Different expert user groups are involved in research on ISS.
First, ML engineers aim at both validating ISS implementations
and revising ISS algorithms to improve the performance with
respect to some measure of ISS quality [SC08, KCH* 17,RXC*21].
Second, VIS researchers are observing users when selecting
instances, following the goal to formalize human-based ISS that
tend to complement or even outperform model-based ISS [SG10,
BHZ"18,CBC*20]. Finally, ML and VIS researchers seek method-
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Figure 2: Observational study of the labeling process, including
(labeled and unlabeled) data, underlying classifier, and ISS.

ologies and techniques to design ISS that will perform significantly
better by making better decisions (instance selections) [BHL*18,
BHS*21]. While individual aspects of the analysis scenarios may
differ in their complexity, all expert groups are confronted with a
similar problem: The functional behavior and internal working of
the ISS, and/or the underlying classifier, and/or the characteristics
of the dataset are unknown, and, thus, cannot be explained.
Figure 2 provides an overview of this special analyis context.

We contribute a VA approach for the observation and explana-
tion of ISS for IML along a labeling process. To conduct this novel
type of study, our approach provides analysts the means to analyze
entire precomputed incremental data labeling processes, performed
by any ISS. Multiple linked views show individual labeling itera-
tions from different perspectives, including dimensionality-reduced
data representations, label distributions, classifier characteristics,
class confusions, class distance relations, and ISS scores for every
candidate instance. In addition, visual comparison techniques sup-
port the assessment of data characteristics of labeled data versus
unlabeled data. To facilitate effective analysis, we visualize data-
and model-driven metrics to derive visual cues, which serve as
entry points for the exploration of the ISS process. We demonstrate
the usefulness of our approach with the MNIST handwritten digits
dataset [LBBHO9S8] (without loss of generality) in an observational
case study on quasi-optimal ISS assessment.

2. Related Work

The assessment of decisions of ISS relates to the spectrum of ex-
plainable Al approaches [AB18, ABC*19]. While such approaches
are often categorized into data-driven [CDH*16] or model-driven
explanations [ZYMW19], we explicitly incorporate both data and
model characteristics to observe ISS behavior. One type of study
is focusing on the decision of an ISS for a winning instance
per iteration, from a possibly large set of unlabeled candidate
instances [BHS*21]. This is typically the case for pool-based
ISS [Setl2] in active learning, or for ISS based on human deci-
sions, observed in user studies [BHL*18, CBC*20]. However, to
also account for the entire labeling process, users need a means
to explain ISS behavior based on all instances selected in the pro-
cess so far, i.e., the training data with respect to the currently ob-
served iteration. Along these lines, we draw connections to the as-
sessment of model learning processes, including the assessment of
class confusions over time [HRS*22], works studying the involve-
ment of users to steer model building during training [TKC17],
as well as the identification of stable layers for in-depth investi-
gation [PHV*18]. However, none of these approaches can be used
to observe the behavior of ISS in a labeling process. In a pioneering
experiment, five experts in data analysis went through a tedious ob-
servational study with five datasets, and reflected on their findings
about principal behaviors of previously executed quasi-optimal in-
stance labeling [BHL* 18], an experimental design that was diffi-

cult to replicate so far. There are several VA approaches in the con-
text of instance selection, some of them also providing multiple
linked views [KPSK17,BHZ*18,SJS*21,EBJ*22]. However, none
of these approaches can be used to observe and study ISS behavior,
as opposed to just labeling the data interactively.

3. Research Questions

The analysis context at hand is special, as the dataset is always sep-
arated into disjoint sets of already labeled and unlabeled instances.
Also, users either focus on a single winning instance from the pool
of unlabeled instances or all instances that have already been se-
lected to form the training data. Figure 2 sheds light on these special
analysis challenges and their data and model-centered ingredients.
The selected instance per iteration transitions from the unlabeled to
the labeled set. The entire labeling process means an iterative swap
from 100% unlabeled to 100% labeled data in the dataset. To ex-
amine the potential of visualization techniques for the explanation
of decisions of possibly not well-understood ISS, we focus on the
detailed analysis of individual iterations and the corresponding ISS
decision. This can be broken down into four research questions.
Can the instance selection of an ISS be explained by observing:

R1: the given data characteristics?

R2: the categorical label distribution of the (un)labeled data?
R3: the data characteristics of the individual classes?

R4: the predictions of the underlying classifier?

4. Visual Workspace for ISS Behavior Assessment

Assessment Metrics We define a set of metrics to further
examine context information of the ISS and to better understand
ISS decisions. This approach is inspired from the long list of
endeavors making complex data and model characteristics mea-
surable by expressing key aspects in numbers. Examples include
Scagnostics measures [WAGOS], the per-instance uncertainty of
classifiers [RAL*17], or the separability of classes [SNLH09] and
clusters [STMT12]. Here, metrics produce one value for each iter-
ation in the labeling process, with respect to the selected instance,
and present one possible metric for each research question.

e R1: Local density: Implemented with a k-Nearest Neighbor al-
gorithm [Kral3]. It captures the local spatial density around the
selected instance. High values imply high density.

e R2: Simpson’s diversity measure: The Simpson’s diversity mea-
sure [Sim49] was chosen to assess the label diversity in the la-
beled dataset. High values imply low diversity (balance).

e R3: Local class density: Same as R1, but only instances of the
same class are considered as nearest neighbors. This metric mea-
sures how densely the neighborhood is populated with members
from the same class. High values imply high density.

e R4: Model uncertainty: Denotes the probabilistic confidence that
the underlying model assigns to the selected instance [YL16].
High values imply high uncertainty, i.e., low confidence.

General Visualization and Interaction Designs Two driving
design principles were a) using standard chart types where
possible, and b) re-using visual structures from inspiring and/or
related approaches when appropriate. In addition, visual encodings
are provided in a way that recurrence across views is leveraged
whenever possible. One example is a categorical color coding,
used when class information is depicted (six views). The class of
the selected instance is highlighted in all class-granularity views,
mostly by encoding the background area (three views). The solu-
tion for representing instances in projection plots is using a generic
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Figure 3: Data and classifier metrics referring to iteration 17.

point mark, or, if appropriate, a small icon/shape representing the
semantics of the classes (here: digits 0-9, three views). Labeled
instances are additionally underlined to be better distinguishable
from unlabeled instances (three views). The selected instance
in the current iteration has a circular outline (two views). When
users hover over components of the class confusion view, the
corresponding instances are highlighted across views (two views).
Finally, the metrics along the time axis provide a visual navigation
support to directly identify interesting iterations.

4.1. Observing the Given Data Characteristics (R1)

We provide three views to show the underlying data distribu-
tion. Building upon best practices in visualization research, we
represent high-dimensional data instances in projection plots,
in combination with different dimensionality reduction meth-
ods [BLBC12, SA15, HMdCM17], as shown in Figure 1 (center
row). The choice of the dimensionality reduction method is a user
parameter, to account for shortcomings of individual methods and
to always allow different perspectives on the data. Inspired by the
visualization of high-quality decision boundary maps [REHT19],
our decision was in favor of coloring the background of the
(2D) data space [BHS*21], as opposed to coloring individual
instances [BHZ"18]. Here, we make use of a Voronoi tesselation
of the 2D manifold, leading to non-regular area marks to be
colored. The background color refers to the categorical class labels
of the instances (Labeled Set view and All Instances view) or to
the ISS scores per instance (Instance Selection Scores view).

To account for the two disjoint sets of instances, we always use
the left data view (Labeled Set view) to only show labeled in-
stances. Using Figure 1 as an example, analysts can always see how
well current labeled instances represent the dataset to be labeled.
The view at the center (All Instances view) shows all instances and
can serve two purposes: a) Showing the ground truth information
for all instances, and coloring all instances (Active Learner view),
b) Showing the predictions of all unlabeled instances, and color-
ing the false predictions only (Model view). In Figure 1, the Ac-
tive Learner view perspective is shown, whereas Figure 4 shows
the Model view (left) and Active Learner view (right) next to each
other. In Figure 1, the ground truth labels are shown in the All
Instances view. The visual comparison of the Labeled Set view
and the All Instances view thus helps to assess how well the in-
stances in the labeled dataset can already capture the basic struc-
ture of the whole dataset. This can be visually assessed by com-
paring the coloring of the different regions of the Voronoi tesse-
lations. The projection plot on the right (ISS view) encodes the
scores of the chosen ISS for every instance. According to the clas-
sical active learning approach, the instance with the highest score
is always selected to be labeled next. In general, the observed ISS
can be an active learning algorithm [Set12,FZL12], a human-based
ISS [SG10,BHZ* 18, CBC*20], or a quasi-optimal ISS [BHL*18]
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as observed in the case study (Section 5). A continuous colormap
assigns bright colors to instances with high ISS scores.

4.2. Observing the Label Distribution (R2)

The label distribution has an influence on label selection, as
in many cases a well-balanced training set is preferable [Setl2,
BHL™18]. To always be aware of the label distribution, we provide
two views, both shown in Figure 3 (left). We use a horizontal bar-
chart to visualize the current label distribution. By using the shown
example, the given ISS seems to consider label balance quite inten-
sively: most of the classes have been selected twice, with only three
classes (3, 8, 9) being selected only once yet. We use the same en-
coding also for the visualization of the unlabeled instances, as for
pre-executed processes the ground truth can be leveraged as well.
The resulting barchart helps to assess whether a given ISS considers
the balance/imbalance of unlabeled data when selecting instances.

4.3. Observing Data Characteristics of Individual Classes (R3)

We support answering the question if a given ISS exploits charac-
teristics of data instances, according to their distributions for indi-
vidual classes. This puts to focus of analysis on the granularity of
classes [STMT12,BHZ*21]. The two main design targets are a) the
spatial arrangement of instances per class and b) the distances of in-
stances to their class center. A second line of thought is whether the
focus shall be on the already labeled instances or not. With the La-
beled Set view, we support the analysis of the spatial arrangement
of instances per class only for labeled instances, whereas the All
Instances view addresses the spatial arrangement of all classes.

To also account for distances of selected instances to the class
center, we present a strip plot [BHZ*21] visualization, shown in
Figure 3 (Class Centroid Distances view). The view also shows ev-
ery individual instance as a thin line mark, with gray instances be-
ing unlabeled and global class colors for labeled instances. The ver-
tical position shows item distances (global normalization), whilst
classes are distributed horizontally. The view allows both the anal-
ysis and comparison of density characteristics for every class and
the comparison of density characteristics between labeled and un-
labeled instances. In the example, the classes 2, 5, 6, and 8 seem
to have instances with comparatively large class centroid distances,
i.e., the classes have high within-class variations. The largest class
centroid distance across all classes can be observed for an instance
of class 1, also defining the global maximum distance (y axis).

4.4. Observing the Predictions of the Classifier (R4)

Traditionally, the output of the underlying classifier is maybe the
best described relation to ISS behavior, as many ISS are based on
active learning leveraging model-based characteristics such as un-
certainty [Set12]. For the observation, we deem two aspects im-
portant, each of which can be analyzed in a dedicated view. The
first aspect is to focus on the predictions per instance (instance
granularity), which is why we further extend the All Instances
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Figure 4: All Instances View, referring to iteration 17. Here, the
two different configurations, i.e. the Model view (left) and the Active
Learner view (right), are shown next to each other.

view with additional optional encodings. Analysts can use the view
to observe classifier predictions for every instance using the data
space coloring (see Section 4.1). An example can be seen in Fig-
ure 4 (left), which shows the predictions for each instance in the
unlabeled dataset, highlighting incorrect class predicitons by their
color encoding. Analysts can use this as a visual cue for where the
model could still be improved. The second aspect of observation
shifts the focus towards class characteristics (class granularity). In-
spired by confusion matrices [HRS*22], we show all pairwise con-
fusions in the unlabeled data in a corresponding heatmap in Fig-
ure 3 (right). The color-coding highlights pairs of classes which
are currently particularly difficult to predict correctly and helps an-
alysts to focus on decision boundaries between most problematic
pairs of classes, which is a prominent design target for active learn-
ing ISS [TVC*11]. In the example, the dominant pairwise class
confusion is between class 2 and 3, with 18 occurrences.

5. Case Study

To demonstrate the effectiveness of our approach, we investigate a
particularly interesting ISS in a case study. We observe a simulated
quasi-optimal greedy strategy that always picks the instance that
improves learning performance most using ground truth informa-
tion [BZL* 18] (more details in the supplemental materials.) Even if
this ISS is not a strategy that can be used in a practical setting (since
it actually cheats), it is of particular interest, because it widely out-
performs conventional 1SS [BHZ* 18] and thus holds unexplored
potential. We want to leverage our VA approach to answer the ques-
tion: what selection criteria does greedy ISS implicitly apply along
the labeling process? Thereby, we want to shed light on the internal
hidden logic and selection criteria to better understand what makes
a strategy “optimal”. We refer to the supplemental materials for a
detailed description of the dataset, the underlying classifier, as well
as an encompassing overview of (visual) findings along the process.

The tool at hand guides the user through the exploratory analy-
sis of ISS. Figure 1 shows the state of the tool at iteration 19. This
means that at this moment, 19 instances are in the labeled set, and
the bar charts reveal that the labeled instances are evenly distributed
among all classes, except the class representing no. 8. This number,
however, will be the label of the next instance which is selected, as
can be seen in Figure 1, e.g., in the Instance Selection Scores view
(circle around the instance to be labeled next). This visual cue is
given in several components of the visualization. Interestingly, not
a single instance in the unlabeled set is predicted to have label 8,
as can be seen in the Pairwise Confusions view. This can be ex-
plained by the imbalance in the labeled set at this iteration, because
the model is biased towards the instances which provide a majority
to the train set. Moreover, in the Instance Selection Scores view,

it is visible that the instances in the cluster of 8s from which the
next instance will be selected all have the highest scores. Such a
balancing behaviour was also detected at iteration 9, as well as by
Bernard et al. [BHL*18]. Thus, this analysis confirms the assump-
tion that a quasi-optimal greedy ISS favors balanced datasets in the
early stages of the labeling process. More interesting findings can
be made, e.g., in iteration 17. As it can be seen in the Pairwise Con-
fusions view in Figure 3, the ISS tries to tackle the largest source
of class confusions, i.e., 18 instances with true label 3 that are pre-
dicted as 2. We use highlighting (circular outline) to analyze the
spatial characteristics of these 18 affected instances in the All In-
stances view, using a visualization where only false positive predic-
tions of the classifier are shown (Figure 4, left). The visualization
shows that the ISS not only tackles the largest class confusion, but it
also selects an instance in a particularly dense area of the confusion.

To summarize, our approach is a first step towards enabling a
deeper look into the selection criteria of a given ISS. We demon-
strate the usefulness of our tool with the validation of many of the
findings of previous research on the greedy ISS [BHL" 18].

6. Discussion

This VA approach supports the analysis of individual labeling
iterations, as well as the entire process. We report on several
aspects of discussion items, limitations, and future work ideas. To
start with, we used only one dataset in the manuscript, meaning
that claims for generalizability and scalability need to be postponed
to future work. One remaining challenge is a meaningful iconic
representation of classes, beyond handwritten digits. We deem the
focus on metrics useful, even if we did not exploit the whole design
space for metrics. One future work aspect includes the systematic
design of metrics. Further, in our examples and the cases study,
we limited scope to one ISS only. Due to space limitations, the
study on other interesting cases can not be presented. Finally, we
echo the observation of the case study that even our quasi-optimal
strategy seemed not always to be “perfect”. We point to other
quasi-optimal implementations, which however are computation-
ally much more expensive to be pre-computed. Another discussion
aspect is the use of dimensionality-reduced data in combination
with the Voronoi area coloring. We are aware that this cascade
of data representations may communicate errors, but realized
through careful study that the benefit seems to outweigh the
downsides. Still, this representation needs to be used with care,
e.g., by seamlessly switching back and forth between data space
coloring and direct instance coloring. Our final point of discussion
regards the targeted user group, which is ML and/or VIS experts
interested in the systematic study of ISS behavior. To make the
approach applicable also for other/larger user groups, collaborative
approaches and design study settings may be useful.

7. Conclusion

‘We have presented a VA approach for the interactive visual obser-
vation of ISS to improve the transparency of interactive machine
learning. Multiple linked views allow the assessment of both ISS
behavior within iterations as well as across the iterations of a lon-
gitudinal labeling process. The findings of our case study show the
usefulness of our approach, e.g., when observing a quasi-optimal
ISS, whose internal working is unknown. This work is one step
towards the long-term vision of leveraging lessons learned from
user strategies and from quasi-optimal ISS in particular, to design
and implement model-based ISS of yet unimaginable good quality.
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