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Figure 1: We survey 36 curve reconstruction algorithms and compare 14 of these with quantitative and qualitative analysis. As inputs, we take
unorganized points, samples on the boundary of binary images or smooth curves, and evaluate with ground truth.

Abstract
Curve reconstruction from unstructured points in a plane is a fundamental problem with many applications that has generated
research interest for decades. Involved aspects like handling open, sharp, multiple and non-manifold outlines, run-time and
provability as well as potential extension to 3D for surface reconstruction have led to many different algorithms. We survey the
literature on 2D curve reconstruction and then present an open-sourced benchmark for the experimental study. Our unprecedented
evaluation of a selected set of planar curve reconstruction algorithms aims to give an overview of both quantitative analysis and
qualitative aspects for helping users to select the right algorithm for specific problems in the field. Our benchmark framework is
available online to permit reproducing the results and easy integration of new algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Given a finite set of points P sampled from a planar curve Σ, recov-
ering a polygonal approximation to Σ from P is generally known
as curve reconstruction. Reconstruction of curves is a fundamental
task in many applications such as reverse engineering of geomet-
ric models, outline reconstruction from feature points in medical

imaging systems, and facial feature detection in the face recogni-
tion algorithms [ARZ05], among others, and an interesting prob-
lem by itself. Despite over three decades of tremendous research
effort in the computational geometry, computer vision and graph-
ics research communities, specific cases are still open in curve
reconstruction, and there is no algorithm that would succeed on
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all types of problems. Recent research trends, however, address
specific aspects of reconstruction such as improved sampling con-
ditions [OMW16], reconstructing from fewer number of samples
and curves with sharp corners [Ohr13], reconstruction from un-
structured and noisy point clouds [OW18a], a unified framework
for reconstruction [MPM15], incremental labeling techniques for
curve extraction [PPT∗19], and applications of curve reconstruction
to hand-drawn sketches [PM16].

A major hurdle to the ongoing efforts in designing new algorithms
for curve reconstruction is the lack of a framework that provides a
set of standard tools, algorithms and data for comparing and eval-
uating various reconstruction algorithms. Currently, algorithmic
evaluations in this domain heavily rely on visual comparison. A
meaningful practice in the empirical evaluation of reconstruction
techniques is to compare the reconstructed results against the ground
truth curves using error norms such as Hausdorff distance or L2-
error norms. However, each research group has its own data set
or generates the input data by sampling shapes from images. Such
practices make it extremely difficult for researchers and practition-
ers from other fields to assess the performance of different curve
reconstruction techniques and to conclusively determine a suitable
algorithm for their scientific studies or applications. Furthermore,
in most of the cases the algorithmic choices for the comparison are
made based on the availability of implementations in the public
domain.

To address these challenges, we have set up a
benchmark framework for 2D curve reconstruction
(https://gitlab.com/stefango74/curve-benchmark). It consists
of a set of fifteen curve reconstruction techniques, including
the recent ones, and a few support tools including a curve
sampler that generates samples from smooth curves based on
the ε-sampling [ABE98] criterion. Additionally, the benchmark
provides a set of commonly used input data along with the ground
truth curves for the experimental evaluation of algorithms in this
domain. A set of newly generated input data that exhibits diverse
features and is suitable for empirical studies is also included in the
benchmark. Finally, we provide curve reconstruction evaluation
criteria and features.

Besides presenting the curve reconstruction benchmark to the
reader, this paper also covers principles and practices used in the
curve reconstruction domain. We review the theoretical background,
algorithms and their evolution, supporting tools, and evaluation cri-
teria for curve reconstruction. The advantages and limitations of
different methods are discussed. Apart from setting up the bench-
mark and reviewing various algorithms, the main contribution of this
paper is an experimental assessment of the current state-of-the-art
in the field with respect to standard error metrics such as Hausdorff
distance, root mean square error (RMSE) and normal deviation. In
the end, we delineate a few directions for future research.

1.1. Contributions

The main focus of this work is to review the available curve re-
construction literature and evaluate a competitive subset of curve
reconstruction algorithms which take un-oriented and unorganized
points as input and generate polygonal approximations to their un-
derlying curves. We make the following key contributions.

• Algorithms Review A comprehensive review of the curve recon-
struction literature up to date.
• Benchmark A benchmark consisting of prominent curve recon-

struction algorithms, supporting tools, existing data and new test
data along with the ground truth.
• Evaluation A thorough performance evaluation study comprising

the algorithms provided in the benchmark. The study helps in
demonstrating how the benchmark can be utilized for selecting
the right curve reconstruction algorithm for a specific problem.

1.2. Related Work and Scope

To our knowledge, two prior works exist in the literature, and they
both consider reconstruction of surfaces together with curves. The
first is a comprehensive book [Dey06] which describes the basic
theory leading to the development of the ε sampling condition and
relating it to algorithms from the CRUST family with varying density
before continuing to surface reconstruction algorithms, including
noise and Morse theory there. A later concise report [KR14] adds
some faster local, visual- and optimization-based methods. An em-
pirical evaluation of a few early curve reconstruction algorithms is
presented in [AMS00].

In this survey, we look in detail at curve reconstruction and recent
developments, e.g. in terms of theoretical guarantees. In order to
compare the algorithms and highlight their respective strengths,
we have designed a benchmark for a comprehensive quantitative
evaluation. In Table 1 we compare the capabilities of 36 curve
reconstruction algorithms (categorized according to type) w.r.t. to
input point sets requirements and output piece-wise curves.

1.3. Reconstruction Taxonomy

Boundary vs. Area Samples: In general, there are two types of
inputs to the polygonal reconstruction problems: boundary sam-
ples and area samples. Boundary samples consist of points sam-
pled along a curve while area samples are sampled across an en-
tire region, including its boundaries as shown in Figure 3. While
curve reconstruction is a well-defined problem, the reconstruc-
tion from area samples is ill-posed in nature [Ede98, PM15a].
The primary reason is a lack of precise mathematical definition
for what constitutes the optimal approximation for the geomet-
ric shape of a point set with the points sampled from its in-
terior. Furthermore, the shape perception from area samples is
highly subjective since it often depends on a specific applica-
tion context or human cognitive factors. A few unified algorithms
[MPM15,DKWG08,GDJ∗11,TPM20,TPM21] that handle sampled
boundaries, as well as areas, have also been proposed. Since there
are numerous algorithms such as α-shapes [EKS83] that handle
both the input types with reasonable accuracy, we have not included
unified algorithms in our experimental study. In this work, we focus
only on reconstruction from boundary samples.

Implicit Vs. Explicit: Broadly, the reconstruction techniques can
be grouped into implicit fitting and explicit reconstruction. Implicit
methods attempt to define a smooth function f : R2→ R such that
the zero level set of f approximates the underlying curve in the
input points as illustrated in Figure 2. Explicit reconstruction deals
with connecting the input points using edges or triangular faces
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Capabilities: Param Input Output
Algorithm count n.-u. noise outl. manifold open mult. sharp guar. time complexity
Graph Based:
α-Shapes [EKS83] 1 no no no yes no yes no yes O(n log n)
β-skeleton [KR85] 1 yes no no no no yes yes no O(n log n)
γ-neighborhood [Vel93] 2 yes no no no no yes yes no O(n log n)
EMST-based [FMG94] 0 no no no yes only no no yes O(n log n)
Ball-pivoting [BB97] 1 no no no yes no yes no yes O(n log n)
r-regular shapes [Att97] 1 no no no no no yes no yes O(n log n)
Edge exchanging [OM11] 0 yes yes no yes no no yes no NP
CONNECT2D [OM13] 0 yes yes no yes no no yes yes O(n log n)
Shape-hull graph [PM15b] 0 yes no no yes no no yes no O(n log n)
Voronoi Labeling [PPT∗19] 0 yes no yes yes no yes yes yes O(n log n)
CRAWL [PM16] 0 yes no yes no yes yes no no O(n log n)
Feature Size Criteria:
CRUST [ABE98, Gol99] 0 yes no no yes no yes no yes O(n log n)
NN-CRUST [DK99] 0 yes no no yes yes yes no yes O(n log n)
CONS. CRUST [DMR99] 0 yes no yes no yes yes no yes O(n log n)
[Len06] 2 yes no no no yes no yes yes O(n log n)
[Hiy09] 0 yes no no yes no yes no yes O(n2 log n)
HNN-CRUST [OMW16] 0 yes no no yes yes yes no yes O(n log n)
Noisy Points Fitting:
[Lee00a] 1 yes yes yes yes yes no no no O(n2)
[CFG∗05] 2 yes yes no yes yes yes no yes O(n log n)
ROBUST HPR [MTSM10] 5 yes yes no yes yes yes yes no O(n log n)
[Rup14] 1 yes yes yes yes yes yes no no O(Mn)
[WYZ∗14] 4 yes yes yes no yes yes yes no O(d log d)
FITCONNECT [OW18a] 0 yes yes yes yes yes yes yes yes O(nk2)
STRETCHDENOISE [OW18b] 0 yes yes yes yes yes yes yes yes O(nk2)
Sharp Corners:
[FR01] 8 yes no no no yes yes yes yes O(n log n)
GATHAN [DW01] 1 yes no no no yes yes yes no O(n log n)
GATHANG [DW02] 1 yes no no no yes yes yes yes O(n log n)
Traveling Salesman:
[Gie99] 0 no yes no yes no no yes yes O(n log n)
[AM00] 0 yes yes no yes no no yes yes O(n log n)
[Aro98] 0 yes yes no yes no no yes yes O(n (log n)O(c))
Concorde solver [ABCC] 0 yes yes no yes no no yes TSP NP
Non-manifold:
Opt. Transp. [DGCSAD11] 0 yes yes yes no yes yes no yes O(n log n)
PEEL [PMM18] 2 yes yes yes no yes yes no yes O(n2)
EC-SHAPE [MKPM17] 0 yes no no yes no no no yes O(n log n)
HVS Based:
DISCUR [ZNYL08] 0 yes no no yes yes yes yes yes O(n log n)
VICUR [NZ08] 4 yes no no yes yes yes yes no O(n log n)

Table 1: Algorithms grouped by categories, with their input and output capabilities (n.-u. = non-uniform, guar. = sampling condition for
manifold reconstruction)
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(a) Point set

f(x,y)=0

f(x,y)<0

f(x,y)>0

(b) Implicit curve (c) Polygonal curve

Figure 2: Illustration of implicit function in 2D and an example of
explicitly reconstructed polygonal curve.

subjected to certain geometric criteria, which results in a piece-wise
linear approximation to the underlying curve. Implicit reconstruc-
tion algorithms utilize the orientation of the point sets to define the
curve function. The orientation of the points is obtained through
point normals or partially inferred through the segmentation of bi-
nary images (see Figure 1). On the contrary, explicit reconstruction
algorithms take un-oriented point sets. A vast majority of explicit
methods interpolate all the input points including noisy data or out-
liers. As a result, explicit curve reconstruction algorithms are not
robust to noise unless additional algorithmic criteria such as the
ones in [WYZ∗14, OW18a, OW18b] to deal with the noise/outliers
are included. Implicit methods work on noisy data. However, since
the iso-curves are extracted using marching squares on quadtrees,
an appropriate quadtree depth has to be determined and preset in
the case of implicit methods. Highly detailed curves can be gener-
ated for larger depth values, however, at the expense of increased
computational time. While popular in 3D surface reconstruction, we
have not found implementations or results for curve reconstruction,
and so this category is not included in our comparison or evaluation.
However, we have dedicated a section (Section 4) to review the
popular implicit fitting algorithms.

Categorizing the algorithms is a difficult task since some of them
could fit with several aspects. We propose the following taxonomy to
subdivide them by their characteristics we deemed most important:

• Graph Based: constructs a graph from the points and then filters
the outline by some criterion
• Feature Size Criteria: differing approaches, but the required sam-

pling density is proven in relation to local feature size
• Noisy Points Fitting: able to recover the original smooth curve

from noisy samples
• Sharp Corners: can reconstruct angles < 90◦ degrees instead of

smoothing them over
• Traveling Salesman: minimizes total curve length
• Non-manifold: also handles (self-)intersections in curves
• HVS Based: inspired by the Gestalt laws on how Human eyes

perceive visual elements

This taxonomy is also used to structure the descriptions of algo-
rithms in Section 3.

We examine the algorithms for the following properties:

Input point set:

• Non-uniformity: no uniform point spacing required
• Noise: samples can be displaced from the original curve
• Outliers: additional points far from the curve are ignored

Output piece-wise linear curve:

Figure 3: Two common types of inputs to the 2D reconstruction
algorithms. (a) Boundary sample (b) Reconstructed curves (c) Area
sample (d) Reconstruction from area samples.

• Manifoldness: each vertex has ≤ 2 incident edges
• Open curves: end vertices (=holes in boundary) can exist
• Multiply Connected: curve has 2 or more components
• Sharp corners: angles < 90◦ can be reconstructed
• Guarantees/Conditions: for successful reconstruction
• Time complexity: worst-case behavior of the algorithm.

In the following sub-section we detail challenges of these proper-
ties:

1.4. Challenges for Reconstruction

(a) Non-uniform sampling (b) Sharp corner

(c) Noisy manifold
(d) Multiply connected curve,
outliers (blue) [OW18a]

(e) Sparse sampling

(f) Non-manifold curve

Figure 4: Various challenging input point configurations for curve
reconstruction.

Here we give a list of challenging aspects in curve reconstruction
(see Figure 4) - all of the input configurations can also be found
combined:

Non-uniformity: Some algorithms require a globally uniform
maximum spacing between samples. The disadvantage is that only
features larger than that distance can be reconstructed. Algorithms
which can reconstruct from non-uniform sampling (see Figure 4a)
are then not limited to a specific absolute size for reconstructing
features, but only restricted by a too sparse sampling of features (see
Figure 4e). A limitation can also be given for relative uniformity as
a factor between spacings of adjacent samples.
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Noise: When sensing data, such as silhouettes of objects, samples
are usually perturbed by noise from measurement errors (see Fig-
ure 4c). Algorithms that strictly interpolate the input points will, in
the best case, reconstruct a locally perturbed curve. Instead, points
can be fitted in order to recover the original curve either by smooth-
ing over the noise, or by denoising with knowledge/estimate of the
local noise extent.

Outliers: Sensing data can also introduce erroneous points far
from the original curve. These are labeled outliers (see Figure 4d),
should not be considered in the reconstruction, and must thus be
classified and excluded beforehand.

Manifoldness: A boundary of an object is always a manifold
curve, i.e., points are assigned at most two neighbors (see Figure 4c).
Otherwise, the curve can become self-intersecting (see Figure 3a),
which is useful for reconstructing drawings.

Open curves: Curves can be open if samples are missing from
an object boundary, and still be manifold, also a collection of open
curves, e.g., drawings (see Figure 4a) .

Multiply Connected: If boundaries of more than one object are
to be reconstructed, these must not be interconnected in order to
remain manifold. Holes in shapes are homotopy equivalent to that
(see Figure 4d).

Sharp corners: Angles that are below 90 degrees are more dif-
ficult to reconstruct as it is more ambiguous which neighbors to
connect if they are not in the opposite half-space of the other neigh-
bor (see Figure 4b). Also, fitting algorithms tend to round off such
sharp corners.

Guarantees/Conditions: It is very useful to know to which ex-
tent a curve can be reconstructed from a sampling. Guarantees can
be given in terms of uniformly spaced sampling as a maximum
global distance value or relative factor between neighbor points, a
sampling condition in terms of the feature size (e.g., ε-sampling),
percentage of outliers, the extent of noise range and statistical dis-
tribution, and as a distance of the reconstruction from the original
curve.

Time complexity: Since points in a plane are mostly a small
number, such as a few thousand, optimization is not critical, but
worst time complexity matters, as some algorithms have O(n2) or
are not solvable in polynomial time.

2. Preliminaries

Many of the following definitions were introduced in this seminal
paper [ABE98]. We follow that up with an overview of proximity
graphs which are used in many algorithms.

2.1. Definitions and Notations

Let P be a set of n points sampled from a simple closed planar
curve Σ. The curve Σ (if closed) is said to be convex if the line
segment between any two points on the curve falls in the interior,
I(Σ). Otherwise, it is concave. The curvature κ at a point p of Σ is
the rate of change of direction of the tangent line at p with respect
to arc length s. An inflection point (IP) on the curve is a point where

κ = 0 but κ
′
6= 0. Concave subsets of a curve are characterized by

the sign of the local curvature κ. Concave subsets exist between two
inflection points and have a negative local curvature sign (κ < 0)
[PM15b].

Figure 5: Illustration of pseudo-concave subsets of a simple closed
curve in 2D. The blue curve segment constitutes its pseudo-concave
subset. Image courtesy [PPT∗19].

Let E be the set of all open, connected regions of Convexhull(Σ)\
Σ. Each region given by the closure E is defined as a pseudo-concave
region (PCR) of Σ (Figure 5). The subset of Σ in each PCR is called
a pseudo-concavity. The edges of the convex hull of Σ in each PCR
are called convex hull bi-tangents. Based on the radii of medial balls,
Peethambaran et al. [PM15b] define divergent pseudo-concavity for
simple closed planar curves. A pseudo-concave subset of a curve
Σ is divergent if the radii of medial balls monotonically increase
as they go along the outer medial axis from one end to the convex
hull bi-tangents’ end. The curve Σ is said to be divergent if all its
pseudo-concave subsets are divergent.

From Section 4 in this paper [OMW16] we repeat the following
definitions:

The medial axis M of Σ is the closure of all points in R2 with two
or more closest points in Σ [Blu67]. A medial ball B(c,r), centered
at c∈M of Σ with radius r, is a maximal ball whose interior contains
no points of Σ.

A smooth curve C (as opposed to Σ, which may contain inflection
points and sharp corners) is a (collection of) bounded 1-manifold(s)
embedded in R2, which are twice-differentiable everywhere except
perhaps at boundaries [DT14].

We define the local feature size lfs(p) for a point p ∈ C as the
Euclidean distance from p to its closest point m of M. This definition
is loosely based on [Rup93], but simplified because we are only
considering smooth curves.

Definition 1 is a widely used sampling condition [ABE98] that
captures features regardless of size as opposed to globally uniform
sampling distances:

Definition 1 A smooth curve C is ε-sampled by point set S if every
point p ∈ C is closer to a sample than an ε-fraction of its local
feature size: ∀p ∈C,∃s ∈ S : ‖p,s‖< ε lfs(p).

In contrast, the reach [Fed59] for a set S is the largest “radius”
r such that points closer than r to S have a unique closest point
of S. The reach is similar to the smallest distance to the medial
axis. This inspires our definition of the reach of a curve interval I as
inf lfs(p) : p ∈ I, where the lfs is defined by all of C. [OMW16]

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



S. Ohrhallinger & J. Peethambaran & A. Parakkat & T. Dey & R. Muthuganapathy / Curve Reconstruction Benchmark

2.2. Proximity Graphs

In general, proximity graphs such as the relative neighborhood
graph (RNG), Gabriel graph, Sphere-of-Influence graph [Tou88],
and β-skeletons [KR85] play a vital role in defining the shape and
structure of planar point sets, including curve samples [JT92]. Since
many reconstruction algorithms and accompanying theory [EM94,
Vel92, FMG94, Boi84a] are built around proximity graphs, it seems
appropriate to formally define these proximity structures for a better
review and understanding of various reconstruction algorithms.

The relative neighborhood graph consists of edges (p,q) such
that d(p,q)≤ d(p,x) and d(p,q)≤ d(q,x) ∀ x ∈ P where x 6= p or
q [JT92]. Varying the size (β) of the region of influence of each pair
of points in RNG generates a set of neighborhood graphs called
β-skeletons [KR85]. In β-skeletons, the neighborhood Up,q(β) of
two points p and q for any fixed β (0 ≤ β ≤∞) is defined as the
intersection of two spheres [JT92] as follows:
Up,q(β) = B((1 − β

2 )p + β

2 q, β

2 d(p,q)) ∩ B((1 − β

2 )q +
β

2 p, β

2 d(p,q)).

A minimal spanning tree MST(P) of P is a tree (a cycle-free graph)
that spans all the points in P with the least total cost of edge weights.
The Gabriel graph of P contains an edge (p,q) if and only if the ball
passing through p and q centered at the edge (p,q) is empty [JT92].
A triangulation of P is a subdivision of the plane by edges between
vertices in P such that no edge connecting two vertices in P can be
added in the plane without creating a self-intersection.

MST RNG GG Delaunay

Figure 6: Examples of proximity graphs for a point set.

A Delaunay triangulation is a triangulation D(P) such that no
point in P is inside the circumcircle of any triangle in D(P). A
graph is a Delaunay graph if it is the Delaunay triangulation of
some set of points in the plane. The Delaunay graph has many
interesting properties that make it a central data structure in many
curve reconstruction algorithms. The relationship among different
proximity graphs, i.e., MST (P)⊆ RNG(P)⊆ GG(P)⊆ D(P) (see
Figure 6) is a well-established result [JT92].

For p∈ P, let rp be the minimum distance from p to P\ p, and let
B(p,rp) denotes the open ball of radius rp centered at p. Then there
exists an edge (p,q) in the sphere of influence graph of P if and
only if d(p,q)≤ rp + rq [Tou88]. These definitions may result in a
graph rather than a simple polygon and may contain disconnected
regions, non-manifold edges and vertices.

3. Explicit Reconstruction of Curves

In this section, we describe the algorithms, grouped by categories.
The first set of reconstruction algorithms (see Subsection 3.1) were
developed based on the proximity graphs mentioned above. Then,
the introduction of a feature size based sampling condition permit-
ted to reconstruct features of arbitrary size (see Subsection 3.2).

These algorithms were then extended to handle noisy samples (see
Subsection 3.3) and sharp corners (see Subsection 3.4). The trav-
eling salesman problem (see Subsection 3.5) solves a special case
of curve reconstruction. Some algorithms can even reconstruct self-
intersecting curves (see Subsection 3.6), which allows for new appli-
cations. The Gestalt laws of perception led to curve generation based
on the Human Visual System (see Subsection 3.7). Finally, curves
can be fitted approximately to an implicit function (see Section 4)
describing the underlying curve.

3.1. Graph-Based Reconstruction

Jarvis [Jar77] was the first to develop a notion of shape for a dense
unorganized point set in a plane.

This was later formalized by Edelsbrunner et al. [EKS83]. They
defined α-shapes as a generalization of the convex hull, which per-
mits replacing edges shorter than a globally uniform constant with
the opposite two edges of the containing triangle in the Delaunay
triangulation of the points.

Edelsbrunner and Mücke [EM94] later extended this concept to
R3. It can intuitively be understood as a mass of soft ice cream
(the convex hull) containing hard chocolate chips (the points) from
which a ball-shaped spoon with radius α nibbles off the ice cream
where it can move freely between the chocolate chips, leaving the
α-shape (which is equal to the convex hull for the case al pha =∞).

Bernardini and Bajaj [BB97] used that definition to design a
construction algorithm for α-shapes in R2: It rotates a disk of radius√

(α) around a point until it touches another point which is then
connected by an edge and continues with the new point until a loop
is created.

Later Bernardini et al. [BMR∗99] developed an extension to R3,
the ball-pivoting algorithm.

For point sets that are sampled on a curve (as opposed to dense
sampling inside the shape as well), edges reconstructing this curve
can be selected using the definition of the β-skeleton [KR85]: All
edges of the Delaunay triangulation of the point set that are shorter
than β

2 times the radii of the circumcircles of their adjacent triangles
belong to this β-skeleton.

Veltkamp proposed the γ-neighborhood graph [Vel92], which
unifies the convex hull, the Delaunay triangulation, the Gabriel
graph, and the β-skeleton, and presents the relations to and between
other neighborhood graphs.

Based on the γ-neighborhood graph, he later showed that a greedy
algorithm based on both local and global measures could also re-
construct boundary polygons that are not in the Delaunay triangula-
tion [Vel93].

This was necessary because Delaunay triangulations do not al-
ways contain a Hamiltonian cycle, a simple polygon interpolating all
its points, although that case has been shown to be very rare [Gen90].

Boissonat [Boi84a] used sculpturing to replace edges in the con-
vex hull with their Delaunay triangle counterparts (same as for
α-shapes), successively ordered by diminishing edge length. While
this still guarantees the resulting polygon to remain manifold, it can
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only reconstruct a single curve. The algorithm may also get stuck in
case densely sampled points remain in its interior instead of being
interpolated.

O’Rourke [OBW87] proposed to compute the minimal length tree
in the Voronoi diagram corresponding to a polygonal boundary in
its Delaunay triangulation dual, but this requires a distinct skeleton
to work.

De Figueiredo and Gomes [FMG94] proved that the Euclidean
minimal spanning tree (EMST) reconstructs open curves from suf-
ficiently dense samples, with density defined by an empty tubular
neighborhood.

Attali defined an r-regular shape [Att97] as having a boundary
with curvature ≥ r everywhere. Then they proved its reconstruction
from a uniform sampling of that boundary such that all discs with
radius < r

2 centered on the boundary contain at least one sample.

Stelldinger [Ste08] proved both the correctness of the above-
mentioned ball-pivoting algorithm [BMR∗99] and a much more
strict bound on required sampling of the points, but only for the
uniformly sampled case: minimum 6 points for a sphere, as op-
posed to 22 [NSW08], 484 (ε = 0.1, [ABK98]) or 1343 (ε =
0.06, [ACDL00]).

Stelldinger and Tcherniavski [ST09] extended the proof above to
noisy uniform samples.

Ohrhallinger and Mudur [OM11] also exploited the minimum
length property of the EMST. They used edge exchange operations
to transform it into a manifold. While they show successful recon-
struction for several sparsely sampled and noisy point sets, there
is no easily applicable sampling condition. Its time complexity is
non-polynomial in principle, even if, for many cases, it terminates
in O(NlogN) time.

In a later paper [OM13], they define a modification of the EMST
which relaxes its vertex valence constraint from ≥ 1 to ≥ 2. This
minimum boundary complex can be approximated well in O(nlogn)
time. By inflating (a dual to the sculpturing [Boi84a] operation)
they achieve a manifold boundary already close to the points. This
facilitates the subsequent sculpturing step, with much-reduced risk
of falling into local minima. They proved correct reconstruction for
a tightened sampling condition of ε < 1

2 , although it additionally
requires a local uniformity u < 1.609 as expressed in the proportion
of the lengths of adjacent edges.

Peethambaran et al. [PM15b] defined a proximity graph called
shape hull graph (SHG), which faithfully reconstructs smooth curves
that exhibit divergent concavity. The authors characterize the di-
vergent concave curves based on the exterior medial balls in the
pseudo-concave [PM15b] areas. The algorithm constructs the SHG
by repeatedly removing boundary Delaunay edges subjected to
geometric and topological properties. The geometric criterion (cir-
cumcenter location of the Delaunay triangle) is used to prune off
elongated Delaunay triangles whose vertices lie further apart from
each other on the curve, and the regularity criterion eliminates non-
manifold elements, e.g., dangling edges and junction points, in the
resultant polygon, thereby making it topologically equivalent to a
circle (sphere in 3D).

In subsequent work, the authors [PPT∗19] employed an incre-

mental algorithm to classify Voronoi vertices into inner and outer
with the help of normals estimated through Voronoi poles. Such a
classification not only helps reconstructing the underlying curve but
also aids in medial axis computation and dominant point detection.
Theoretical guarantees under bi-tangent neighborhood convergence,
a slightly modified version of divergent concavity for simple closed
and planar curves, is also provided.

In a greedy approach introduced by Parakkat and Muthugana-
pathy [PM16], starting from the smallest edge in the Delaunay
triangulation (which is guaranteed to be part of the reconstructed
curve under ε-sampling), the algorithm iteratively adds an appro-
priate shortest edge to the result until it satisfies some conditions.
The procedure is repeated to facilitate the capturing of disconnected
components. Also, they employ a heuristic to identify whether the
reconstructed curve is open or not.

Graph-based curve reconstruction methods often require the user
to choose a global parameter, and in consequence, they yield good
results only for uniformly sampled points. This means that for sam-
ples spaced too widely apart, the reconstructed curve may contain
holes. On the other hand, if the spacing is too dense, not all sam-
ples may be interpolated by the output. On top of that, there is no
guarantee that a Delaunay graph contains a polygon interpolating
all samples.

3.2. Feature Size Criteria Reconstruction

Amenta et al. proposed in their seminal paper [ABE98] to apply the
concept of the local feature size [Rup93] to the spacing of samples
and define the Crust as a subset of the Delaunay triangulation of
the point set. The CRUST algorithm which reconstructs this curve
does not require the user to tune a global parameter for the (uniform)
sample spacing. Instead, it permits reconstruction of this subset
from non-uniformly sampled points, which is a curve as long as they
conform to their stated sampling condition. This sampling condition
requires a minimum angle between adjacent edges (assuming equal
edge lengths) of the reconstructed piece-wise curve, which increases
with their proportion of lengths. CRUST requires an ε-sampling of
ε < 0.252, which corresponds to an angle α > 151.05◦ between ad-
jacent edges. While it is important as a theoretical result, in practice,
these angle requirements are quite restrictive and difficult to ensure
for point sets.

Gold [Gol99] developed a one-step algorithm that extracts above
Crust without having to construct the Voronoi diagram on top of
the Delaunay triangulation, and with it, the Anti-Crust, the skeleton
approximating the medial axis.

Dey and Kumar [DK99] improved on that result with the elegant
and simple NN-CRUST algorithm that relaxes the sampling condi-
tion to ε < 1

3 , corresponding to α > 141.62◦. It first connects the
points to their nearest neighbors and then adds a second edge, where
necessary, to the nearest point such that it creates an angle > 90◦.

Dey et al. [DMR99] extended CRUST as well to CONSERVATIVE

CRUST, which filters specific edges from the Gabriel graph. It can
reconstruct (collections of closed and) open curves, and it is also
robust to outliers. However, it requires a parameter and misses
some sharp corners, which can be reconstructed by CRUST and
NN-CRUST.
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Lenz [Len06] claimes to relax the required density of NN-CRUST

to ε < 0.4 and up to ε < 0.48 depending on the angle α but without
proof. The proposed algorithm also permits the reconstruction of
sharp corners and self-intersecting curves, starting with a seed edge
between the two closest points and connecting edges by tracing
along with a probe shape.

Hiyoshi [Hiy09] adapted the Traveling Salesman Problem to
multiply connected curves, making it solvable in polynomial time as
a maximum-weight 2-factor problem. The algorithm operates on the
Delaunay triangulation and proved correct reconstruction for ε < 1

3
and relative uniformity of adjacent edge lengths, differing at most
by a factor of 1.4656.

Ohrhallinger et al. [OMW16] described a simple variant of NN-
CRUST, which they call HNN-CRUST since they connect both
nearest neighbor and a so-called half neighbor per point (unless it
forms an endpoint of the curve). This half neighbor is defined as
the nearest point lying in the half-space opposite the bisecting edge
of the nearest neighbor edge. Connecting these neighbor points re-
duces the minimum angle from 90◦ (for NN-CRUST) to 60◦. They
improve the sampling condition for this algorithm up to ε < 0.47.
Furthermore, they introduce a new reach-based sampling condition
which they relate to ε-sampling, ρ = ε

1−ε
. It manages to reduce the

number of required samples for reconstruction and permit sharp an-
gles by defining the distance to the medial axis at intervals between
samples instead of at samples only.

3.3. Fitting Curves to Noisy Points

The algorithms mentioned above do not reconstruct curves well if
the samples are contaminated by noise.

Lee [Lee00a] uses a technique called moving least-squares
(MLS) [Lev98] which iteratively projects points on a curve fitting
their local neighborhood by distance-weighted regression. This re-
sults in a thinned point cloud which can be locally approximated by
a line inside a constant-sized neighborhood so that the center can
be connected with its furthest neighbor points to form the edges of
the reconstruction. The weighting function for the MLS projection
considers points only inside a globally constant radius, which could
also include unwanted points. Therefore the connectivity of points
is created using the EMST, which minimizes edge length, and is
then traversed to determine the local noise extent.

A noise-robust extension [MTSM10] of the Hidden Point Re-
moval (HPR) operator [KTB07] computes local connectivity be-
tween points based on a projection onto their convex hull. The
global reconstruction is then extracted by approximating the maxi-
mum weight cycle from a weighted graph combining the local con-
nectivity. The algorithm does not denoise or smoothen, i.e., simply
interpolates points, and the reconstruction exhibits holes or misses
points in regions with moderate noise extent.

Rupniewski [Rup14] first sub-samples a noisy point set with
minimum (globally constant) density. Then he uses a heuristic that
alternatingly moves these points to local centers of mass based on
the Voronoi diagram and eliminates points that do not have exactly
two neighbors in a density-sized neighborhood until the point set is
stable. Finally, after hundreds of iterations, the points can be ordered
consecutively. Only very basic results are shown in the paper.

Cheng et al. [CFG∗05] resample a thinned point set from noisy
points and then use NN-CRUST to reconstruct the curve. They prove
a probabilistic sampling condition, however, it is impractical due to
its restrictive sampling density constraints, and they only prove but
do not show any results of their proposed algorithm.

Wang et al. [WYZ∗14] first construct a quad-tree on the samples
to determine the inner and outer boundaries of noisy samples on a
grid. After smoothing these boundaries, they compute their Voronoi
diagrams in order to extract the skeleton which represents the recon-
structed curve. While their method is very resilient to outliers and
noise, it requires careful tuning of several parameters and does not
handle sparse samples well.

FITCONNECT [OW18a] seamlessly extends parameter-free
HNN-CRUST to handling noisy samples. The conforming condition
of the latter, which specifies whether three points can be connected
in exactly a single way is extended by fitting a circular arc to the
local neighborhood if consisting of more than three points. Where
local fits do not overlap consistently, they are grown to larger neigh-
borhoods until covering these noisy clusters. The resulting ordered
consistent local fits are then denoised to this locally estimated noise
extent (the variance of the fits) by blending them together. The algo-
rithm also manages to classify sharp corners which would otherwise
be smoothed. Its runtime is however, O(k2) in the size k of noisy
neighborhoods.

STRETCHDENOISE [OW18b] improves the blending technique
used for denoising in FITCONNECT by modeling the recovered
manifold connectivity separated from the high-frequency residuals.
These are used to shift point positions by minimizing angles between
edges in the least-squares sense. Additionally, the movement of
points is restricted to lie inside a probability density function cut-off
distance, which is estimated from the variance of the fitted arcs but
can also be input from sensor noise models. This also guarantees
stochastic error bounds for the noisy samples.

Fitting curves to approximate noisy samples is a difficult task and
trades off recovering feature detail vs. robustness.

It is worth noting that, for some applications, instead of a polyg-
onal reconstruction, they prefer the reconstructed result to be a
polynomial curve(s). A few among such applications include vector
representation of computer fonts [IG16] and reconstructing the con-
tours of medical images [IGA18]. Unlike polygonal reconstruction
methods (which is the main focus of this report - and uses straight
lines to connect appropriate points), these methods fit the input
points by polynomial curves (mainly B-Splines or Bezier curves)
that minimize a particular cost function.

3.4. Reconstructing Sharp Features

The well-known and established ε-sampling condition has a signifi-
cant drawback; it cannot sample a sharp corner. That is because the
medial axis touches the corner and hence would require an infinite
amount of samples at that particular point to satisfy ε-sampling for
any ε.

Assuming a new sampling condition based on the tangential cir-
cles with respect to a point in the curve (to avoid the need for infinite
sampling at sharp corners), GATHAN [DW01] modifies the nearest
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neighbor strategy to handle sharp corners. While selecting an edge
e, the improved algorithm takes into account both the angle between
the dual Voronoi edge and the estimated normal of e, ratio of its dual
Voronoi edge length to its length and the degree of all the vertices.
This method is, later on, extended [DW02] by carefully structuring it
to provide a theoretical guarantee. The improved algorithm requires
only one parameter, which gives the minimum angle of all sharp
corners based on which the sharp corners are locally sampled.

Rather than imposing extra conditions, Funke et al. [FR01] pro-
posed an algorithm that guarantees to reconstruct the curve faith-
fully under a specific sampling condition. They proposed a sampling
condition relying on the edges of the correct reconstruction for a
smooth curve and later on relax it at corner points to generate a
weak sampling around it. Starting from justifiably ‘smooth’ edges,
their reconstruction explores potential corners. The identified cor-
ner edges are then merged with the smooth edges to give the final
reconstructed result.

While algorithms specialized to handle sharp features reconstruct
these cases quite well, their conditions are often complex, and they
do not compete well for the general case.

3.5. Traveling Salesman Methods

Giesen [Gie99] showed in an existence guarantee that for sufficiently
dense sampling, the boundary can be reconstructed by solving the
Euclidean Traveling Salesman Problem (ETSP) for a set of points.
He proposes two algorithms in that paper but does not present any
results.

Althaus et al. [AM00] add to this that it also works for non-
uniform sampling. Furthermore, they show that if constrained by an
ε-sampling [ABE98], the NP-hard ETSP terminates in polynomial
time. However, they manage to prove that only for a very restrictive
ε < 1

20 , which permits just angles > 174.27◦.

Althaus et al. [AMS00] compared approximation algorithms for
the ETSP, based on heuristics, but noted that these all fail for sparsely
sampled cases where the ETSP would have succeeded. An interest-
ing observation is that the complexity for the ETSP construction
decreases as the sampling gets denser. A naive ETSP construction
takes O(2n) time which is unfeasible even for very small point sets.

Arora et al. [Aro98] approximate the ETSP within (1+ 1
c ) in

O(n(logn)O(c)) time, but their reconstructions result in poor visual
quality. The fastest exact TSP solver, the Concorde [ABCC], would
still take years to compute the boundary for practical point sets, as
can be derived from a discussion of its complexity [HS09].

In analogy to the Traveling Salesman problem of minimizing
curve length, polyhedra with minimal area were proposed for surface
reconstruction [O’R81]. But for this NP-hard problem no algorithm
exists. Furthermore, Boissonat showed by a simple example that
this minimum is not always visually pleasing [Boi84b].

The runtime performance of the ETSP degrades drastically for
sparsely sampled points. Those point configurations tend to be rather
ambiguous w.r.t. which points are connected to the boundary. There-
fore, the ETSP is not a suitable tool for curve reconstruction as it
puts almost all computational effort where it makes little difference
in terms of visual aesthetics.

3.6. Curves with Self-Intersections

Most of the curve reconstruction work concentrates on reconstruct-
ing a (set of) simple closed or open curve(s). But for applications
like sketching [PMM18] or point sets generated from images, the
inputs might also contain self-intersections.

The first one in this category [DGCSAD11] formulates and solves
an optimal transport problem. Starting from the Delaunay triangula-
tion of the input point set, their approach generates a coarse mesh
in a greedy fashion with the objective of minimizing the total cost.
With the help of intelligent vertex relocation, this approach is spe-
cially designed to handle noise and outliers. Since this procedure
does not impose any manifold or degree constraints on the input
while filtering out edges from the simplified mesh, it can reconstruct
shapes with self-intersections.

Instead of modifying the algorithm to adapt to reconstructing
curves with self-intersections, Parakkat et al. [PMM18] use a post-
processing step to identify and restore self-intersections. Initially, a
reconstruction step with a vertex degree constraint of a maximum
of three is used. Later on, potential intersections are explored at
the vertices with degree one. Based on a user parameter and the
one-ring Delaunay neighborhood of the considered vertex, potential
self-intersections are recovered by the appropriate Delaunay edges.

It is worth mentioning that even if CRUST [ABE98] and NN-
CRUST [DK99] are not particularly designed to handle curves with
intersections, in some cases, they capture self-intersections since
they do not impose a manifold restriction on the vertex degree.

3.7. Curve Generation based on Human Visual System

A few curve reconstruction algorithms rely on a subset of Gestalt
laws of perception, which describe how humans perceive visual ele-
ments. Among the six Gestalt rules, proximity and continuation are
very important to curve reconstruction strategies. While the proxim-
ity rule suggests that the human visual system has a natural tendency
to group nearest points, the law of continuation states that the human
eyes will follow the smoothest path when viewing curves and hence
helps to guide our eyes in a certain direction while connecting the
points [Mat16]. Following the Gestalt law of proximity, Zeng et
al. [ZNYL08] proposed a parameter-free algorithm called DISCUR
for reconstructing multiple simple curves that may be closed or open
as well as contain sharp features. A successful reconstruction using
DISCUR depends on an appropriate sampling of interior curves
and an accurate identification of boundary curves. Since DISCUR
relies on the proximity criterion, wrong connections may occur
when a sample has two or more nearest neighbors. In such cases,
the selection is quite arbitrary. Furthermore, it requires a very dense
sampling near sharp corners in order to reconstruct these correctly.

An improved version of DISCUR has been presented as
well [NZ08]. The authors utilize the Gestalt principles of prox-
imity and continuity to formulate a vision function that is supposed
to best mimic the natural human vision. The main intuition behind
the algorithm is that any abrupt changes while connecting the points
are reflected in the statistical properties of the curve, which are in
turn captured through the vision function. The algorithm, known as
VICUR, employs appropriate rules based on the vision function to
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reconstruct multiple closed or open curves with or without sharp fea-
tures. A drawback of VICUR algorithm is that it is highly sensitive
to the user-tuned parameters.

Note that Edge exchanging [OM11] and Connect2D [OM13]
algorithms (already described in Subsection 3.1 both also relate to
the Gestalt laws.

4. Implicit Curve Fitting

Implicit functions for curve or surface fitting have been widely
investigated in the computer graphics community. Implicit methods
attempt to define a smooth function f : R2 → R such that the
zero level set of f approximates the underlying curve in the input
points as illustrated in Figure 2. The zero level set of the curve (also
referred to as contour) or surface can be directly visualized by using
a ray tracer or by polygonizing it using the well-known marching
squares or cubes algorithm [LC87]. Many algorithms have been
developed for algebraic curve fitting to a set of 2D or 3D points,
e.g., conic planar curves [Boo79, FMZB91] and curves of arbitrary
degrees [Pra87, Tau91, Tau93]. A curve or surface is algebraic if
their representative functions, i.e., f are polynomials of some degree
d. Fitting algebraic curves to a finite set of points is normally posed
as a least-square fitting problem where the objective is to minimize
the mean square distance from the sample points to the curve.

In general, implicit functions are extremely compact and suitable
for representing free-form curves [dALJ∗15]. Though most of the
implicit techniques focus on surface fitting, many of them can be
either directly applied or adapted for planar curve fitting. A typical
choice for the implicit function is the Signed distance function (SDF).
The SDF for an arbitrary point p is the signed distance between p
and its nearest point on the boundary where the sign component
indicates the location of p with respect to the curve, i.e, whether the
point lies inside or outside the boundary. Reconstruction methods
employing SDF range from tangent plane estimation [HDD∗92] to
polynomial splines over hierarchical T-meshes [SJP10].

Radial basis functions (RBF) represent an excellent tool for the
smooth interpolation of scattered points. Carr et al. [CBC∗01] for-
mulate the implicit function f as a linear sum of weighted and
shifted radial functions, i.e., f (p) = ∑

n
i=1 wiφ(‖p− ci‖), where the

weights wi are determined by solving a linear system constructed
from various surface constraints at input points ci. Choices for the ba-
sic function φ include Gaussian (φ(r) = exp(−cr2)), multi-quadric
(φ(r) =

√
c2 + r2), polyharmonic (φ(r) = r or φ(r) = r2) and thin-

plate spline (φ(r) = r2 logr). In a related work [TO02], the authors
estimate the implicit surface as an RBF that minimizes thin-plate
energy subject to a set of interior and exterior constraints.

Poisson reconstruction [KBH06] solves for an indicator function
for the curve (or surface), whose gradient best approximates the
normal field N, i.e., F =argminS ‖ ∇S−N ‖2

2. This optimization
problem leads to a Poisson equation, which is solved by a locally
supported radial basis function on an adaptive octree (quadtree in
2D). As the current gold standard in the community for surface
reconstruction, it however, requires normals at points to be specified.
In related works, Fourier [Kaz05] and wavelet [MPS08] bases have
been employed for an accelerated solving of Poisson equations.

An alternative to RBF curve interpolation is the moving least

square (MLS) method. The MLS projection [Lev04] method first
defines a local reference frame H for a point q to be projected
and then fits a local polynomial approximation g to the weighted
input points. Here, the weight for each input sample pi is a function
of its distance to the projected q on H. Once the polynomial is
computed, the projection of q onto g represents the MLS projection
of q. Lee [Lee00b] mentioned above describes an improved moving
least-squares technique using Euclidean minimum spanning tree and
region expansion for fitting non-intersecting curves to unorganized
point clouds. Several MLS based approaches including surface re-
sampling [ABCo∗03], progressive point set surfaces [FCOAS03],
sharp feature reconstruction [FCOS05], algebraic spheres (or circles)
[GG07], provable MLS surfaces [Kol08], have been proposed. Being
insensitive to noise, MLS approaches are suitable for fitting curves
to noisy data.

The idea of decomposing the input data domain into sub-domains
and locally fitting piece-wise quadratic functions to the data is preva-
lent in the surface reconstruction and is equally applicable to 2D
curve fitting. Ohtake et al. [OBA∗03, OBS06] blend the locally fit-
ted quadratic functions using a weighing function (the partitions of
unity) to create the global approximation to the underlying surface.
Alliez et al. [ACSTD07] utilize a Voronoi diagram of the input point
set to deduce a tensor field whose principal axes and eccentrici-
ties locally represent the most likely direction of the normal to the
surface and the confidence in this direction estimation respectively.
An implicit function is then computed by solving a generalized
eigenvalue problem such that its gradient is most aligned with the
principal axes of the tensor field, providing a best-fitting iso-surface
or curve reconstruction.

In general, implicit curves employ acquired or estimated point
normals to facilitate the reconstruction process and are found to be
robust against noise. However, since the iso-curves are extracted
using marching squares on quadtrees, an appropriate quadtree depth
has to be determined and preset in the case of implicit methods.
Detailed curves can be generated for larger depth values, however,
at the expense of increased computational time. While popular in
surface reconstruction, we have not found implementations or results
for curve reconstruction, and so this category is excluded from our
comparison or evaluation.

5. The Benchmark

In this section, we briefly describe the curve reconstruction bench-
mark. The motivation behind setting up such a benchmark is to
encourage the use of standardized datasets and evaluation crite-
ria for research and advancements in curve reconstruction and re-
lated applications. The proposed benchmark repository consists
of a driver program, data sets, associated ground truth, sampling,
and evaluation tools in the shape of test scripts for a compre-
hensive experiment on 2D curve reconstruction algorithms. We
also provide a set of publicly available curve reconstruction algo-
rithms in the benchmark. The selected algorithms include early
ones from the late nineties up to recent papers. The components
of the benchmark repository and their interactions are illustrated
in Figure 1 and discussed in the following sections (Sections 5.1-
5.5). Full source of the benchmark is available here: https:
//gitlab.com/stefango74/curve-benchmark/.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://gitlab.com/stefango74/curve-benchmark/
https://gitlab.com/stefango74/curve-benchmark/


S. Ohrhallinger & J. Peethambaran & A. Parakkat & T. Dey & R. Muthuganapathy / Curve Reconstruction Benchmark

5.1. Algorithms

We have included a set of fifteen publicly available curve recon-
struction algorithms in the benchmark. Table 2 records the list of
algorithms and the abbreviations that we use in our experiments to
refer to them. Note that we were not able to obtain code for some
of the algorithms ( [MTSM10], [Lee00a], [WYZ∗14], [Hiy09]) and
therefore could not include those in the benchmark. All the algo-
rithms except OPTIMAL TRANSPORT [DGCSAD11] interpolate
or try to closely fit the input points. On the contrary, OPTIMAL

TRANSPORT focuses on simplified reconstruction, and hence, for a
fair comparison, we have not included it in any of our experiments
but presented some representative results.

Algorithm Open Source
CRUST [ABE98] yes
NNCRUST [DK99] yes
CCRUST [DMR99] yes
GATHAN [DW01] yes
GATHANG [DW02] yes
LENZ [Len06] yes
CONNECT2D [OM13] yes [Ohr13]
CRAWL [PM16] yes [Par16]
HNNCRUST [OMW16] yes [Ohr16]
FITCONNECT [OW18a] yes [Ohr18a]
STRETCHDENOISE [OW18b] yes [Ohr18b]
PEEL [PMM18] yes [Par18]
OPTIMALTRANSPORT [DGCSAD11] yes [ACSd∗18]
DISCUR [ZNYL08] yes
VICUR [NZ08] yes

Table 2: Algorithms compared in our study. The source is provided
together with our benchmark unless referenced here, in which case
it will be pulled from the respective repository.

Figure 7: Examples of different types of test data. (a) Classic data
collected from different papers, (b) Points sampled from a binary
image boundary, (c) LFS-sampling from a cubic Bézier curve, (d)
Points sampled from a synthetic curve, (e) Synthetic data generated
by extruding sharp corners from circles.

5.2. Data Sets and Associated Ground Truth

We collected data from various sources as well as synthetically
generated test cases using analytical functions. We also provide the
ground truth associated with the test data if they represent a linear
approximation to the input curve. We classify the test data based on

Figure 8: (a) A binary image, (b) Extracted edges, (c) Result of
sampling with radius = 20, (d) Same for radius = 50.

the data source and mode of generation (see Figure 7 for examples
from the different categories) as follows:

CLASSIC This data set consists of all the point sets collected
from various curve reconstruction papers or projects, mostly from
the project page or repository. A few data sets were extracted from
the images using webplot digitizer [Roh20]. Test data include well-
known point sets used for evaluating the reconstruction quality of
sharp features, open curves, and sharp corners. We collected 25
manifold curves, 16 non-manifold curves, 21 curves with sharp
corners, 23 open curves and 52 multiply connected curves.

IMAGE This set consists of contours extracted from silhouette
images (see Figure 8) from various image databases, e.g., MPEG-7
Core Experiment CE-Shape-1 Test Set [mpe02], Edinburgh Kitchen
Utensil Database [AD15], and the 1070-Shape Database [107]. A de-
scription of how the contours (2158 manifold, 2 multiply connected,
206 sharp corners) are extracted is given in Subsection 5.3.

SYNTHETIC Two analytical shapes (bunny, sharp corner) were
sampled with this method [OMW16], also detailed in Subsection 5.3.
These data sets were used for our experiments on feature-sized
noise, sampling density, and curves with sharp features. The code
to generate sharp curves with varying degrees of sharpness (see
Figures 7(d)- 7(f)) is available as a part of CurveBenchmark.cpp,
the driver program.

All the experimental data are organized inside different subdi-
rectories, i.e., multiple-curves, open-curves, sharp-corners, non-
manifolds, and manifolds. Test data sampled from curves exhibiting
multiple features are placed under more than one directory. Each
test case that we experimented with has an associated ground truth
which is used to evaluate the reconstruction quality. This ground
truth is represented using either an indexed list or ordered vertices.
In the indexed list representation, the ground truth file stores all the
vertices first, followed by the pairs of vertex indices representing
the edges. Ordered vertices represent the edges of the curve using
consecutive vertices in the file.

5.3. Sampling Tools

To analyze how reconstruction algorithms perform w.r.t. vary-
ing sampling density, we repeat here a simple sampling algo-
rithm [OMW16] that creates an approximate ε-sampling on cubic
Bézier curve input.

First, we densely sample the segments of the Bézier curve along
its parametrization. Then the normal ni at each curve sample si ∈ S is
computed as orthogonal to the edge connecting its neighbor samples
on the curve. The largest empty disc at si can be established by
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si,ni and querying each other curve sample s j ∈ {S\ si} by setting
the disc center c j = si + tni,‖csi‖ = ‖cs j‖. After solving this, the
c j with the largest radius of all empty discs are added to the set
of medial axis points M. Now, having sampled this medial axis
approximation, we can simply estimate the lfs for each si by locating
its nearest neighbor in M and its distance. Note that this computation
is not exact due to the discretization of the original curve as well
as floating-point precision error. However, computing medial axis
and thus the lfs exactly is a hard and computationally expensive
task [AAA∗09], [ABE09]. But since ε-sampling requires an upper
bound on distance, and the curve is also discretized, the chosen
samples should be mostly within that bound. In order to sample
the curve with a given ε, we now start with any curve sample si (or
any on its boundary if the curve is open) and iterate over successive
samples along the curve while ‖si,s j‖/lfs < ε and choose the last
valid one as next point in our ε-sampling.

Since we have now computed the lfs for all samples, we can
further perturb these in relation to the lfs, in order to simulate feature
size varying noise. We retain the sampling density by just moving
each sample along their normal, which was incidentally determined
by the fitting of the empty discs.

We also provide a discrete sampling tool written in Processing3
(www.processing.org/) for extracting points from a given bi-
nary white-on-black image. It first extracts the pixels lying on the
object boundary by comparing each pixel with its 8-neighborhood.
Then, the extracted boundary is fed to a boundary sampling algo-
rithm. Based on a user given radius r (which determines the sampling
density), the sampling algorithm randomly picks a pixel at position
(x,y), inserts a point at the location (x,y), and erase all boundary
pixels lying at a distance less than r from (x,y). This procedure is
repeated until all boundary pixels have been erased. Figure 8 shows
a sample binary image, its extracted edges, and samples generated
for two radius values.

Interactive sampling: For some randomly sampled point sets,
identifying the ground truth is tricky since no algorithm can claim
a proven reconstruction. In such cases, in order to help the user
generate the ground truth, we use an interactive ordering program.
The interactive ordering program displays the point set, the user
selects points by clicking on them, and the points are saved in this
user-specified order. This program then also displays the edges
according to that order.

5.4. Evaluation Criteria

In order to measure how well a reconstructed curve C′ approxi-
mates the original C, we compute the distance for closest points
between the two curves, similar to this benchmark [BLN∗13] be-
tween both shortest distance maps M : C 7→ C′ and M′ : C′ 7→ C
since the mapping is not bijective: M′ 6= M−1.

We sample sets of points S,S′ on the two respective curves C,C′

(which consist of edge-chains) uniformly and densely. Then for
each sample s ∈ S, we determine its closest point t ∈C′ to create
a discrete mapping (s, t) from all s′ ∈ S′ to t′ ∈ C, and a similar
reverse mapping (s′, t′).

The set of closest point correspondences are then:

D = (s, t)|s ∈C′, t = M(s) (1)

D′ = (s′, t′)|s′ ∈C, t′ = M′(s′) (2)

Based on these mappings, with N = |D|+ |D′|, we can approxi-
mate the following metrics, first Hausdorff distance:

HD(C,C′) = max
{

max
(s,t)∈D

‖s− t‖, max
(s′,t′)∈D′

‖s′− t′‖
}

(3)

and then root mean squared distance:

RMSD(C,C′) =

√√√√ 1
N

(
∑

(s,t)∈D
‖s− t‖2 + ∑

(s′,t′)∈D′
‖s′− t′‖2

)
(4)

Note that we do not evaluate distance bilaterally as our sam-
pling algorithm requires manifold closed curves, whereas the recon-
structed curves in our experiments may be open and non-manifold,
and therefore measuring the distance from a sampling on them
would be less meaningful.

5.5. Benchmark Driver and Test Scripts

CurveBenchmark.cpp is the C++ driver program of the curve re-
construction benchmark. This program consists of an algorithm list
and functions for input-output processing, sampling, noise or outlier
synthesis and evaluation. The driver program can be run from the
terminal or using a test script. While running the driver executable,
necessary arguments along with the command-line options should
be provided to interpret the argument type or values. A few exam-
ples of arguments and associated options are input file (−i), output
file (−o), algorithm name (−a), and ground truth file (−g). The
parameter −h displays the list of options and their usage.

The architecture of our benchmarks consists of some test scripts
that quantitatively and qualitatively evaluate the curve reconstruc-
tion algorithms by feeding the input data sets to algorithms and
processing the evaluated data into graphs. Each test script includes a
list of algorithms that need to be considered for the experiment and
a list of test data. To add a new reconstruction algorithm, namely
A, for a particular curve feature, A has to be first downloaded to the
benchmark repository, compiled, and the executable of A has to be
linked to the benchmark driver via the given make file. Additionally,
A needs to be included in the algorithm list of the benchmark driver
program. Finally, A has to be included in the appropriate test script
and to be run, which in turn invokes the benchmark driver, thereby
generating the resulting polygonal curves as well as the graph plots.
All this can simply be copied and modified from the existing struc-
ture. It should be noted that our test scripts also make it easy for the
benchmark users to run selective experiments using a subset of the
benchmark data. The list of test scripts in our benchmark evaluates
RMS error for the following input data unless otherwise noted:

© 2022 The Author(s)
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• run-sampling.sh: ε-sampled [ABE98] test data
• run-noisy.sh: perturbed with uniform noise
• run-lfsnoise.sh: perturbed with lfs-based noise
• run-outliers.sh: added outlier points
• run-manifold.sh: whether reconstruction is a manifold
• run-sharp-corners.sh: sharp feature curves
• run-open-curves.sh: open curves
• run-multiple-curves.sh: multiply connected curves
• run-intersecting.sh: curves with intersections

6. Evaluation & Results

In this section, we demonstrate the utility of the benchmark by com-
paring the curve reconstruction algorithms included in the bench-
mark. The algorithms have been evaluated on different test data
using various criteria implemented in the benchmark. For the sake
of fair comparison, a majority of the experiments use only the inter-
polatory algorithms, i.e., optimal transport [DGCSAD11] has been
discussed separately. Both the quantitative and qualitative compar-
isons have been presented along with a detailed interpretation of the
results. Besides the comparison of classic and recent algorithms, this
section also focuses on the demonstration of a comprehensive ex-
perimental design for curve reconstruction techniques, i.e., to show
how the quantitative and qualitative comparisons are designed and
performed using the test data and the scripts available in the curve
reconstruction benchmark. Note that any new curve reconstruction
algorithm can be easily added to the benchmark by duplicating and
adapting the appropriate wrappers and subsequently be compared
with the existing algorithms in the benchmark.

6.1. Quantitative Evaluation

We rank the 14 algorithms by the following six aspects. The close-
ness to the original is measured by computing the root of the mean-
squared error (RMSE) metric. This permits determining the robust-
ness with respect to various sampling artifacts.

• Sampling density as ε-sampling
• Noise robustness as δ of bounding box diagonal
• Noise robustness as δ of lfs
• Noise+sampling density as ε-sampling and δ of lfs
• Outliers robustness in % of samples
• Average runtimes (in s)

The test set consists of point sets sampled from multiply con-
nected and disconnected curves and curves with sharp corners. For
some experiments, we used smooth curves of the bunny sampled as
required (see Figures 9, 11 and 12).

6.1.1. Sampling Density

First, we look at simple reconstruction from a non-uniform sampling
of curves, free of artifacts such as noise or outliers. For this, we
determine an ε-sampling on a cubic Bézier curve (bunny), see Sub-
section 5.3 for our detailed implementation. Reconstruction from
sufficiently dense samples is not a difficult task. In order to show
which algorithms also work well on sparser sampling, we sample
with decreasing density: ε = 0.25,0.5,0.75 (see Figure 9). As can be
seen, irrespective of the density, for dense sampling (ε = 0.25,0.5),
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Figure 9: RMS Error of reconstructed curves from ground truth
for a cubic Bézier curve sampled with ε = 0.25,0.5 and 0.75 (run-
sampling.sh). The point sets sampled from the bunny curve are
shown in the figure.

all the algorithms perform equally well (except for LENZ - which
gives a comparatively poor performance in all cases, and VICUR).
But, as the sampling becomes sparse (ε = 0.75), the performance
of algorithms like CONNECT2D, FITCONNECT, and STRETCHDE-
NOISE deterioratess compared to other algorithms. Note that mini-
mum error levels stem from comparing the coarser reconstruction to
the original smooth curve.

6.1.2. Robustness to Noise

To evaluate the performance of the algorithms on the noisy point
set, we ran our benchmark on point sets perturbed by different noise
levels. In our first experiment, we introduced uniform noise, then,
we varied the noise in terms of the local feature size, and finally, we
fixed the latter while varying the sampling density (also in terms of
the lfs):

Uniform Noise:
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Figure 10: RMS Error of reconstructed curves from ground truth
for the point sets used in Figure 16, with the points perturbed with
uniform noise of δ = 0.003,0.01 and 0.03 as well as the non-noisy
original (run-noisy.sh). An example input with varying noise is
also shown in figure. LENZ results are not directly comparable as
it reconstructs a non-manifold and thus largely the original as a
subset.

We simulated noise of maximum extent δ by defining perturbing
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a sample on the curve si to s′i = si +σvi, where σ is an uniform
random variable in [0,δ], δ is in terms of the bounding box diagonal,
and vi is a unit vector of uniformly random direction, similar to the
noise model used here [MTSM10].

Using different perturbation levels of 0.003, 0.01, 0.03, we gen-
erated 3 additional noisy datasets from the original for the 25
CLASSIC-manifold points sets. Figure 10 shows a graph represent-
ing the performance of the various algorithms on our synthetically
generated noisy dataset together with the non-noisy original. For the
latter, reconstruction often fails already. The close plots show how it
degrades with additional noise, except for LENZ, which reconstructs
less wrong cross-connections. HVS- and Delaunay-based algorithms
such as CRAWL, PEEL, CRUST families gave the best performance
for uniformly distributed noise, while CONNECT2D, FITCONNECT,
and STRETCHDENOISE fail to reconstruct the original in several
cases due to sharp corners or too sparse sampling, but degrade much
less for correctly reconstructed ones.

LFS-based Noise:
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Figure 11: RMS Error of reconstructed curves from ground truth for
the sets of cubic Bézier curves in Figure 9, sampled with ε= 0.3, and
the points perturbed with local feature sized noise of δ = 0.1, 1

3 and
0.5 (run-lfsnoise.sh). The figure also shows the lfs sampled bunny
curve with varying noise (LENZ crashes for δ = 0.5, therefore the
false 0 value).

In this experiment, we simulate noise in terms of the extent of the
local feature size. To add noise to such a sampling of the bunny as
above, we perturb the sample si only along the curve unit normal
vector ni in order to preserve the sampling density as well as possi-
ble, such that s′i = si+σni, with uniform random σ = [−δ,+δ]lfs(s).
Figure 11 shows the performance of the various curve reconstruc-
tion algorithms compared to the noise-free original, all with an
ε-sampling of ε = 0.3. The algorithms show similar characteristics
as for global uniform noise, as shown above. Algorithms such as
CONNECT2D, FITCONNECT and STRETCHDENOISE showed supe-
rior performance under the lfs-noise model, similar to the global
uniform noise model tested above. This is no surprise as the algo-
rithms such as FITCONNECT and STRETCHDENOISE are specially
designed to handle noise and provide guarantees under the lfs based
sampling.

Varying Sampling Density + LFS Noise:

Now we introduce noise as above but with fixed δ = 1
3 and vary
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Figure 12: RMS Error of reconstructed curves from ground truth
for sets of cubic Bézier curves, with the points perturbed with noise
of δ = 1

3 and sampled with ε = 0.1,0.2 and 0.4 (run-sampling-
noise.sh). The point sets of the bunny in the figure represent the
inputs with varying sampling and noise.

the sampling density with ε = 0.1,0.2,0.4 on the bunny, again ac-
cording to Subsection 5.3. We can see in Figure 12 that varying
sampling density does not have a large impact on reconstruction
from noisy samples across all algorithms.

6.1.3. Outliers
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Figure 13: RMS Error of closed reconstructed curves for the classic
point sets used in Figure 16, with a share of 5%,10% and 20% out-
liers added. (run-outliers.sh). LENZ results are not directly compa-
rable as it reconstructs a non-manifold and thus largely the original,
while connecting outliers.

To evaluate the performance of reconstruction in the presence
of outliers, we simply generate n% additional samples uniformly
distributed inside the bounding box of the point set. All the inter-
polatory algorithms were tested on 25 input curves from CLAS-
SIC dataset. Figure 13 shows the robustness of reconstruction after
adding a varying amount of outliers as uniformly random distributed
points inside the bounding box of the input point set. While CRUST

and HNNCRUST algorithms perform very well in the presence of
outliers, other algorithms such as STRETCHDENOISE and FITCON-
NECT are found to be comparatively sensitive to outliers.
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Figure 14: Averaged runtime for the reconstruction of 2183 man-
ifold point sets for 14 algorithms (run-manifold.sh). Note the log
scale due to the large variance.

Algorithm Runtime(s)
CRUST [ABE98] 0.0018
NN-CRUST [DK99] 0.0004
CCRUST [DMR99] 0.0022
GATHAN1 [DW01] 0.0009
GATHANG [DW02] 0.0066
CONNECT2D [OM13] 0.0277
CRAWL [PM16] 0.0012
HNN-CRUST [OMW16] 0.0023
FITCONNECT [OW18a] 0.5081
STRETCHDENOISE [OW18b] 0.6182
PEEL [PMM18] 0.0058
DISCUR [ZNYL08] 1.5291
VICUR [NZ08] 1.7037
LENZ [Len06] 0.0576

Table 3: Average runtime of 14 algorithms reported for 2183 mani-
fold point sets.

6.1.4. Computational Time

Figure 14 shows a bar chart of average run times for the various
curve reconstruction algorithms. The test set consists of 2183 noise-
free manifold point sets with an average of 283.9 points per test case,
each of which represents a closed boundary of either a silhouette
image or a geometric shape. We use CLASSIC as well as IMAGE con-
tours for the experiment. Nearly 99% of the inputs were extracted
from silhouette images available in different image databases men-
tioned in Section 5.2. The exact time values are also reported in
Table 3. Computational times are based on the experiment performed
on an Intel core-i7 2.4 GHz CPU with 16 GB memory. As indicated
by the bar chart and the Table, NNCRUST is the fastest of all the
compared algorithms with an average time of 0.0004 ms for recon-
structing 2183 noise-free point sets, contrasting to 1.78s for the
slowest, VICUR, with the majority of algorithms finishing in <10ms.

6.2. Qualitative Comparison

We compare how well the algorithms perform on these qualitative
aspects:

• Manifold curves
• Non-manifold
• Sharp corners
• Open curves
• Multiple curves

Figure 15 shows example reconstruction results by the 11 algo-
rithms which are able to handle all these aspects contained in the
leaf input (sharp-corners, non-manifold edges, multiple and open
curves).

6.2.1. Manifold Curves

We evaluate the reconstruction algorithms for their performance on
the manifold curves. The set of 14 algorithms considered for this
experiment were run on 2183 noise-free point sets used for the run
time experiment (Section 6.1.4). Figure 16 shows the qualitative
performance of the algorithms for exact reconstruction of manifold
curves. The percentage of exactly reconstructed manifold curves
lies in the range of 22.6-45% for the majority of algorithms. Among
the tested algorithms, CONNECT2D performs best, with 52.13% of
curves reconstructed faithfully. Contrary to the design objectives
of LENZ, only 1.7% of the manifold curves were reconstructed cor-
rectly. This could be partly due to the presence of holes or multiply
connected curves, as we observed that LENZ algorithm does not
handle multiple curves well.

6.2.2. Non-manifold Point Sets

Figure 17 shows the bar chart of our experimentation on non-
manifold curves. In this experiment, we have included only five
algorithms that are known to handle non-manifold curves. We used
16 point sets created from various papers and ten synthetic point
sets for the experiments. The synthetic point sets were generated by
sampling randomly drawn self-intersecting curves. As can be seen,
all the five algorithms gave a similar performance on non-manifold
curves in terms of RMS error. In terms of the percentage of correct
reconstruction, approximately 11% of the curves were faithfully re-
constructed, which is the maximum by any of the tested algorithms.
From the results, we observed that all the algorithms except LENZ

reconstructed the curves reasonably well. However, the resulting
curves lacked one or two edges and, therefore, did not exactly match
the corresponding ground truths. This could potentially lead to such
a low percentage of correct reconstruction.

6.2.3. Sharp Corners

Figure 18 shows the bar chart representing our experiments on
curves with sharp corners. We tested algorithms that handle sharp
corners on a test set consisting of 47 input curves. The test set
consists of classic curves collected from the literature and synthetic
data. Each curve in the synthetic dataset is a closed convex curve
which was generated using an arc of a unit circle opening to two
tangent lines joining at a specified angle to form a sharp corner.
Circles were sampled with 10, 16 and 20 points with opening angles
of the tangents of 10-90 degrees in steps of 10 and 5 and sampled
with similar density. GATHANG performs best. It was specifically
designed for curves with sharp features and correctly reconstructs
80.85% of the test cases. The second best algorithm in handling
sharp corners is CONNECT2D, which handled 65.95% of the inputs
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crust ccrust nncrust gathan gathangpoint set

connect2D hnncrust crawl peel discur vicur

Figure 15: A qualitative comparison of different algorithms on the leaf input that contains sharp-corners, non-manifold edges, multiple and
open curves (run-qualitative.sh).
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Figure 16: Percentage of exactly reconstructed curves from a set
of 2183 noise-free point sets predominantly generated from images,
for 14 algorithms (run-manifold.sh).

correctly, followed by GATHAN1 with a success rate of 44.68%. The
remaining algorithms succeed only for few cases, i.e., [0, 23.40]%.

6.2.4. Open Curves

Figure 19 shows a bar diagram with the percentage of correctly re-
constructed open curves per algorithm along the y-axis. Input to the
algorithms wass a set of 23 open curve point sets manually selected
from various reconstruction papers. We excluded CONNECT2D and
STRETCHDENOISE because both these algorithms were not designed
for open curves. The VICUR algorithm reconstructs most (52.2%)
of the open curves. Other algorithms such as HNNCRUST, CRUST,
PEEL, and DISCUR also perform reasonably well on open curves.

6.2.5. Multiple Curves

We considered two types of inputs in this experiment: multiply
connected curves (curves with holes) and disconnected curves. We
evaluated 11 algorithms on 54 point sets. We omitted CONNECT2D,
STRETCHDENOISE, and LENZ because these algorithms were not

Figure 17: RMS error of reconstructed non-manifold curves com-
pared with ground truth. We tested these algorithms on 26 in-
puts which consist of 16 curves collected from various curve re-
construction papers and 10 synthetically created curves (run-non-
manifold.sh).

designed to handle multiple curves. Figure 20 shows the bar diagram
displaying the percentage of curves reconstructed per algorithm
along the y-axis. In our experiment, PEEL and HNN-CRUST handled
multiple curves comparatively well.

6.3. Guarantees as Sampling Conditions

For some algorithms, reconstruction is guaranteed if a certain sam-
pling condition is fulfilled, this specifies, e.g., with which maximum
distance the points are allowed to be sampled on the original curve,
often depending on some other criteria, but other conditions also
exist. Older algorithms like α-shapes based Ball-pivoting [BB97]
require a globally uniform maximum distance for samples. Most
of the algorithms compared here in Table 4 rely on the ε-sampling
condition, which depends on the local size of features. Among
these, HNN-CRUST performs best with ε < 0.47. ε-sampling can
be relaxed if other conditions are added, such as an angle condition
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Figure 18: Percentage of exactly reconstructed curves having sharp
corners by various algorithms. We tested the algorithms on 47
inputs which consist of 21 curves collected from various curve
reconstruction papers and 26 synthetically created curves (run-
sharp-corners.sh).
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Figure 19: Percentage of exact reconstruction of open curves by
different algorithms. We tested the algorithms on 23 different open
curves collected from various curve reconstruction papers (run-
open-curves.sh).

(GATHANG) or a maximum factor between adjacent edge lengths
(CONNECT2D). Ohrhallinger et al. [OMW16] propose a new kind
of sampling condition, ρ-sampling, which applies to curve intervals
instead of curve points, and therefore permits a sparser sampling
and thus fewer required points than the ε-sampling they show it
correlates with. Funke et al. [FR01] design a sampling condition
explicitly for sharp corners (algorithm not compared here), but it
is very complex and requires 8 parameters. DISCUR uses a com-
plex vision function as sampling condition. We observed that often
curves can be successfully reconstructed from much sparser sam-
pling than proven for the algorithms across the field. This indicates
that sampling conditions could still be improved.

6.4. Summary

Figures 21 and 22 show manually chosen examples of successful
and failed reconstructions for all the 15 algorithms reported in the
respective papers. Failure cases represent worst-case point sets for
various aspects such as noise-free, sparsely-sampled, noisy, out-
liers, noisy+outliers, non-manifold, sharp corners, etc. We report the
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Figure 20: Percentage of exactly reconstructed curves (multiply
connected as well as disconnected curves) by various algorithms.
We tested the algorithms on 52 different point sets collected from
various curve reconstruction papers, and 2 point sets sampled from
image silhouette boundaries (run-multiple-curves.sh).

Algorithm Sampling condition
CRUST [ABE98] ε < 0.252
NN-CRUST [DK99] ε < 1

3
CCRUST [DMR99] ε < 0.0625
GATHAN [DW01] none
GATHANG [DW02] ε < 0.5, α > 150◦

LENZ [Len06] ε < 0.48 (no proof)
CONNECT2D [OM13] ε < 1

2 , u < 1.609
CRAWL [PM16] none
HNN-CRUST [OMW16] ε < 0.47≡ ρ < 0.9
FITCONNECT [OW18a] as HNN-CRUST

STRETCHDENOISE [OW18b] as HNN-CRUST

PEEL [PMM18] none
OPT.TRANS. [DGCSAD11] none
DISCUR [ZNYL08] vision function
VICUR [NZ08] none

Table 4: Sampling conditions of algorithms w.r.t. reconstruction of
a manifold curve, where applicable. ε refers to ε-sampling [ABE98],
α to an opening angle between adjacent edges, u to local uniformity
as factor of adjacent edge lengths.

best two algorithms for handling specific types of input and curve
characteristics in Table 5.

7. Conclusion

After analyzing the properties of 36 algorithms and comparing up
to 15 of them, we showed that there are quite diverse approaches for
curve reconstruction. This stems from the various challenges in the
field, ranging from connecting uniformly distributed feature points
over noisy silhouettes from sensors, non-smooth curves to non-
uniform sampling and sketches which do not represent an outline.
In order to choose a suitable algorithm for a specific application,
the user can first narrow the field by availability (as open source)
and category, which roughly corresponds to the above applications,
then select among those based on importance regarding the criteria
compared in our evaluation. In our survey, we also describe the
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Figure 21: Representative and failed results of various curve reconstruction algorithms (part 1).
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Representative Limitations
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Figure 22: Representative and failed results (part 2) of OPTI-
MALTRANSPORT (row 1), LENZ (row 2) and VICUR (row 3).
Image courtesy: row 1 [DGCSAD11], row 2 [Len06] and row 3
(left) [NZ08]. Note that all three algorithms are sensitive to lower
sampling density.

Curve/Input feature Best two algorithms in order
Uniform Noise DISCUR, VICUR
Non-uniform Noise STRETCHDENOISE, CONNECT2D
Outliers HNN-CRUST, CRUST

Non-uniform sampling HNN-CRUST, PEEL

Runtime NN-CRUST, GATHAN1
Manifold curves CONNECT2D, CRAWL

Non-manifold curves CRUST, LENZ

Sharp features GATHANG, CONNECT2D
Open curves VICUR, HNN-CRUST

Multiple curves PEEL, HNN-CRUST

Table 5: Summary of the experimental study. We list the best and
second-best algorithms in each category of input or curve char-
acteristic. Note that a few algorithms were not included in these
experiments due to their unavailability as open source, and hence,
the proposals that we make here are not comprehensive. The two
fastest algorithms were reported based on the manifold curve recon-
struction experiment on a test set consisting of 2183 inputs.

evolution of the algorithms, so some are simply outperformed by
later ones. In terms of theoretical guarantees, the potential of ε-
sampling only being based on local feature size seems to be maxed
out.

7.1. Future Directions

In this mature field, we still consider some directions to be worth-
while for future work, mostly building onto this fundamental re-
search surveyed here.

• Improving and simplifying sampling conditions, especially for
non-smooth and self-intersecting curves
• Reconstructing curves from hand-drawn sketches with varying

stroke thickness and intensity
• Deep learning on curves, as for surface reconstruction
• Reconstruct smooth curves instead of (open) polygons
• Reconstruction of surfaces from networks of 3D curves
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