
Reims 2022

CUDA and Applications
to Task-based Programming

B. Kerbl, M. Kenzel, M. Winter, and M. Steinberger

In this first part of the tutorial, we will give a quick overview of the history of the GPU, followed by an
introduction to CUDA and how to set up basic CUDA applications. Afterward, we will consider the
CUDA execution model and how it maps to the underlying hardware architecture, followed by a few
examples for writing CUDA code and first steps towards performance optimization.

1

Reims 2022

Tutorial Resources

• We have prepared course notes and code samples for this tutorial
• Course notes include presented slides with additional notes
• Code samples include buildable versions of the code in the tutorial

• If you want to try them as you go along, feel free to fetch and build them now
• Important: CMake 3.20 required!

• May also be extended in the future to stay up to date

• Find them here: https://cuda-tutorial.github.io

25.04.2022 CUDA and Applications to Task-based Programming 2

2

Tutorial Presenters
Bernhard Kerbl
TU Wien

Institute for Visual Computing
and Human-Centered Technology

25.04.2022 CUDA and Applications to Task-based Programming 3

Michael Kenzel

DFKI Saarbrücken

Markus Steinberger

Graz University of Technology
Institute for Computer Graphics and Vision

Martin Winter

3

Reims 2022

History of the GPU and CUDA
From 2D blitters to pure parallel co-processors

The history of the GPU, even though it started somewhat recently, describes a fast-moving stream of
advancements and improvements, which turned the initial 2D blitting devices into massively parallel,
general-purpose processors.

4

Reims 2022

Evolution of the GPU in a Nutshell

1987 - Commodore Amiga, 2D Blitter („bit block transfer), 4096 colors
1996 - 3dfx Voodoo1, triangle rasterization, 500 Mhz, 4MB RAM
1999 - NVIDIA GeForce 256, transform-and-lighting, 120 Mhz
2001 - NVIDIA GeForce 3, vertex and fragment shaders, 200 Mhz
2006 - NVIDIA GeForce 8, compute shaders, 1500 Mhz, 576 GFLOPs
2009 - ATI Radeon HD 5000, tessellation, 850 Mhz, 2720 GFLOPs
2017 - NVIDIA Titan V, tensor cores, 1.2 GHz, 12 TFLOPs
2018 - NVIDIA Geforce 2080, task shaders, ray-tracing, 1.5 Ghz, 14 TFLOPs

25.04.2022 CUDA and Applications to Task-based Programming 5

The blitter, which is a portmanteau of „bit“, „block“ and „transfer“, was featured in the Amiga with fixed
resolution and 4096 colors. These cards had no 3D functionality, only the ability to combine and output
different 2D color information. The first 3D capabilities for the wider consumer market arrived with 3dfx
and the Voodoo 1, which would be installed alongside already running 2D graphics cards to extend
machines with 3D functionality (3D accelerators). These accelerators would take care of rasterization
only, so geometry processing would still occur on the CPU. With the GeForce 256, GPUs were now
capable of doing both 2D and 3D with a single piece of hardware, and the basic geometry process for 3D
content, transformation and lighting, was moved from the CPU to the GPU as well. Shortly after, we saw
the introduction of vertex and fragment shaders, that is, the first example of programmable consumer-
grade GPUs.

These abilities to execute custom code on a parallel device were quickly exploited by crafty developers,
who would compute complex simulations by feeding arbitrary „vertex“ data and interpreting pixel color
outputs as results with improved performance. Luckily, the vendors eventually responded to these trends
and make the exploitation of the GPU‘s parallel processing more convenient with the introduction of the
unified shader model and compute shaders. Most recently, the developments of the GPU indicate an
interesting trend: developers are given more options for programmability of the graphics and processing
pipeline, and some fixed functions are either removed or made configurable. At the same time, the most
common operations are facilitated by specialized hardware modules that can accelerate them over pure
software implementations. The GPU today is, therefore, becoming more general and more specialized at
the same time.

5

Reims 2022

The Free Lunch is Over[1]

• Ca. 1970 – 2003: The Free Performance Lunch
• Ability to increase transistor count no longer maps to performance gain
• Performance of already-written code no longer increases on its own

• Three walls (as defined by D. Patterson at UC Berkeley)
• Power wall: Cooling expanses not economized by additional performance
• Memory wall: Multiple fast cores are bottlenecked by slow main memory
• ILP wall: There is only so much prediction and pipelining you can do

• Maintain growth with parallel architectures and programming paradigms!
25.04.2022 CUDA and Applications to Task-based Programming 6

These changes are strongly motivated by several roadblocks that conventional, CPU-side execution is
facing. Around 2003, it became apparent that CPU performance no longer increases as time goes by since
further optimizations appear to hit one of three walls: either the power wall, where raising a CPU’s clock
rate is no longer feasible or safe or the memory wall, which implies that even on multi-core systems,
collaborative computations will be bottlenecked by slow main memory or lastly the ILP (instruction-level
parallelism) wall, which tells us that branch prediction and machine code analysis can only do as much
optimization as the program flow allows. Thus, in order to maintain growing performance for processing,
the hardware, paradigms, and programming patterns with which we approach problems have changed in
favor of massively parallel processing.

6

Reims 2022

Today: GPUs Without Graphics

• Pure compute power for massively-parallel co-processors

• Designed for machine learning, data centers

• E.g.: NVIDIA Tesla/Volta V100, Ampere A100

• No rasterization engines, no display output

25.04.2022 CUDA and Applications to Task-based Programming 7

Wikimedia Commons, NVIDIA TESLA V100. CC-BY-SA-4.0:
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Today’s GPUs provide an answer to this demand for consumers, developers, and researchers alike. The
benefits of their raw compute power for applications like machine learning, off-line rendering, data
science, physics simulations and many more have given rise to extremely powerful hardware models like
the V100 or the A100 which, despite being called GPUs, no longer feature a display port: these
developments reflect how the ability to produce real-time graphics has in many cases become secondary.

7

Reims 2022

Physically-based
Simulations

The GPU: A Parallel Powerhouse

• Vast range of applications

25.04.2022 CUDA and Applications to Task-based Programming 8

Rasterization
Procedural Content

Generation

Parallel Matrix Operations / Machine Learning

Medical ImagingGeometry Subidivison /
Manipulation

8

Reims 2022

CPU vs. GPU Architectural Properties

• Architecture design dictates programming paradigms for both

25.04.2022 CUDA and Applications to Task-based Programming 9

Control
ALU

ALU

ALU

ALU

Cache

DRAM DRAM

CPU GPU

Let us quickly compare the CPU and GPU architecture in broad strokes. The CPU is a latency-oriented
design, meaning it will attempt to receive the result of computations as quickly as possible. For this
purpose, it features large L1 caches to reduce the average latency of data and only requires a few, high-
performance arithmetic logic units to quickly compute results. Today’s models will also make heavy use
of instruction-level parallelism to compute partial results ahead of time to further reduce latency. The
GPU design, on the other hand, is throughput-oriented. Due to the vast number of parallel processors it
contains, it cannot provide L1 caches for each of them with a size similar to the CPU. Memory accesses
are therefore more likely to go to slower memory types, which incurs latency. However, if the GPU is
“over-subscribed” with threads, that is, it runs significantly more threads than physical cores, it can hide
these latencies by quickly switching execution between those threads.

GPU threads are in general more lightweight than CPU threads, which makes switching between them
more efficient. Even though latencies may be higher, the ability to switch threads and pipeline additional
instructions quickly ensures that the GPU can achieve a high throughput during the execution of a job.
Hence, the payoff from using GPUs for processing can rise the more threads are being used for a given
compute job.

9

Reims 2022

CUDA

• Compute Unified Device Architecture, first SDK in February of 2007

• Describes full architecture, encapsulates three APIs
• Driver API
• Runtime API
• Device Runtime API

• Driver API is a superset of runtime
API and can be mixed freely with it

25.04.2022 CUDA and Applications to Task-based Programming 10

// Runtime API:
int* a;
cudaMalloc(&a, 4);
cudaMemcpy(a, c, 4, cudaMemcpyHostToDevice);
cudaDeviceSynchronize();

// Driver API:
CUdeviceptr b;
cuMemAlloc(&b, 4);
cuMemcpyHtoD(b, c, 4);
cuCtxSynchronize();

The Compute Unified Device Architecture, or CUDA for short, defines hardware standards and several
APIs to perform high-performance computing on GPUs in parallel. The three APIs it includes are the
driver API, the runtime API, and the device runtime API. Since it is easiest to get used to and used in
most teaching materials, we will be focussing on the runtime API in this tutorial. However, the use of the
driver API is not much more difficult, and it provides a strict superset of the runtime API in terms of
functionality, with a few additional advanced features.

10

Reims 2022

Terminology

• Parallel execution GPUs can be performed through a variety of APIs:
CUDA, OpenCL, DirectX, OpenGL, Vulkan, Mantle…

• Each define their own terminology for components and techniques
• Easily can be confusing, attempts for vendor/API “dictionaries” exist[2]

• Focusing on CUDA, we will employ the associated terminology

• Examples:
• “device” for CUDA-capable parallel processor (NVIDIA GPU)
• “host” for architecture that controls devices (usually CPU)

25.04.2022 CUDA and Applications to Task-based Programming 11

Before we get started with CUDA, we must note that the terminology being used in materials is often
vendor-specific. This complicates things slightly when we try to communicate common concepts that you
may already know from other APIs or architectures because many of them are given another name by
different vendors. Some attempts at making corresponding dictionaries exist, but we will try to make an
effort here to introduce each of the concepts with basic descriptions and illustrations, and hopefully you
will be able to establish the connections yourself. The first piece of terminology that is common to CUDA
is the separation of platforms where code is executed. This can be either the device, which represents a
CUDA capable parallel graphics processing unit, or the host, which communicates with the device via the
runtime or driver API, usually the CPU.

11

Reims 2022

Why you should care

• Programming Convenience
• Call stacks, heap memory, pointers!
• Strong support for modern C++ features (e.g., template meta-programming)
• Code reuse between host and device, standard library cuda::std
• Vast range of well-maintained libraries for frequent use cases
• Basic compute pipeline setup with only 5 lines of C++ code
• …

• Ahead of the curve: cutting-edge NVIDIA hardware features are often
available in CUDA first (although porting speed has been increasing)

25.04.2022 CUDA and Applications to Task-based Programming 12

A valid question is why you should care about CUDA in particular, given that by now, there is a large list
of frameworks and libraries that handle processing on the GPU for you, while low-level graphics APIs
can provide direct access to the GPU’s compute capabilities via compute shaders or similar concepts.
However, a strong point of CUDA over other low-level approaches is the combination of both. For
developers, it is more convenient to write CUDA applications over computer shaders, since CUDA is
continuously improving its support for the C++ standard. Furthermore, CUDA comes with a collection of
ready-to-use libraries for common use cases. At the same time, low-level GPU functionality is often
exposed by CUDA first, ahead of their adoption in other vendor-agnostic APIs yet. Hence, CUDA can
offer you a versatile approach to GPU programming: convenient, high-level functionality with libraries,
high-performance with low-level instructions, and a convenient approach to managing your codebase
between different architectures.

12

Reims 2022

History in the Making

• Volta marks a turning point for many aspects of GPU programming

• In the last few years, CUDA functionality has drastically expanded
• Some changes are obvious and related to general hardware trends
• Others are more subtle and specific to the CUDA environment

• Disclaimer: Some of our code samples today are non-optimal
• Not because they are wrong or deprecated, but because other options exist
• Fundamental patterns can be better realized with recent features
• We will revisit them tomorrow when we discuss novel CUDA capabilities

25.04.2022 CUDA and Applications to Task-based Programming 13

The history of the GPU is not over. In the last few years, the GPU architecture has arguably undergone its
most transformative era, introducing the ability to perform ray tracing and machine learning directly in
hardware. However, these features may have overshadowed some of the less spectacular changes, which
are nonetheless important. In this tutorial, we will try to introduce first the fundamentals of CUDA.
During this part, we will adhere to the basics and the legacy commands that are also heavily featured in
the CUDA programming guide. However, it should be noted that the paradigms for programming in
CUDA are shifting towards a clearly defined, cleaner coding style, enabled by newly introduced features.
Thus, the code samples shown today should be taken with a grain of salt: they are meant to illustrate the
features and common patterns for using CUDA, but developers who are interested in writing stable and
portable code should strive to replace these concepts with more recent alternatives, which we will be
introducing in the third part of this tutorial, after discussing the underlying hardware details in part 2.

13

Reims 2022

Getting Started
Environments, Guidelines, Compilers and Debuggers

Before we can write CUDA applications, there are a few requirements that we need to fulfill first.

14

Reims 2022

Setup and Getting Started (Python)

• CUDA Toolkit

• Classical (full control over kernel design)
• C++ build environment
• PyCUDA

• Python-centric
• Numba (parallel GPU code from Python)
• Pyculib (library bindings)

25.04.2022 CUDA and Applications to Task-based Programming 15

Initially, we need to decide which method of using CUDA is most suitable for us. CUDA is available in
many shapes in forms, for instance, it can be accessed via a C++ build environment or via Python. Any
use of CUDAwill require the installation of the CUDA toolkit first. If you choose to go with Python, you
may use low-level libraries like PyCUDA, which enable you to follow the instructions in the CUDA
programming guide more closely, or solutions like Numba, paired with Pyculib, which abstract most of
the implementation details for the purpose of number crunching.

15

Reims 2022

Setup and Getting Started (C++)

• C++ build environment (e.g., Microsoft Visual Studio with CUDA 11)

• CUDA Toolkit/Driver: https://developer.nvidia.com/cuda-downloads

• Nsight Systems: https://developer.nvidia.com/nsight-systems

• Nsight Compute: https://developer.nvidia.com/nsight-compute

25.04.2022 CUDA and Applications to Task-based Programming 16

However, in order to be able to closely control GPU code generation, exploit low-level features at will
and follow the most common teaching materials, we will be providing all code samples and application
scenarios in a C++ environment. In order to follow along, recreate or experiment with the examples, you
will need a C++ build environment. Setting up CUDA projects can be done for instance with CMake for
maximum portability, but it is also easy to set up Visual Studio projects with correct linked libraries set
from the project creation wizard once the CUDA toolkit and driver are installed. In addition to the toolkit,
we also strongly advise that you get Nsight Systems and Nsight Compute, or equivalent solutions for
debugging and profiling if you are using older hardware.

16

Reims 2022

Source Files and Compilation

• CUDA/C++ source files, commonly identified by .cu extension

• Source can contain code for execution on both host and device

• Separate compilation performed by NVIDIA CUDA Compiler (NVCC)

• E.g., compile CUDA source file foo.cu: nvcc foo.cu -o foo

25.04.2022 CUDA and Applications to Task-based Programming 17

In general, we will be writing CUDA code in files that are considered by the NVIDIA CUDA compiler, or
NVCC for short. The source files use, by convention, the extension .cu. Within these code files, it is
possible to mix GPU and CPU code. The proper division of the source into host and device functions is
performed by the NVCC, which compiles them separately and unites them in an executable. This
behavior can, for instance, be hidden behind an IDE like Visual Studio or a make file for convenience.
Furthermore, there many alternative workflows that the NVCC supports, such as producing CUDA
binaries or machine code for specific architectures. If you are interested in the different ways in which
compilation and linking can be performed in more complex setups, please refer to the NVCC manual for
documentation.

17

Reims 2022

Code Samples for CUDA with CMake

• Growing support for CUDA projects!

• Significant improvements since 3.17
• Important flags clearly defined

• Previously: CUDA_NVCC_FLAGS
• Error-prone, not always portable,

challenging to debug or adapt
• Convenience features

• Variables for CUDA Toolkit, targeted architectures
• E.g., CMake 3.20: automatically detects default GPU architecture that NVCC builds for

25.04.2022 CUDA and Applications to Task-based Programming 18

18

Reims 2022

Recommended Resources

• CUDA Programming Guide
• CUDA API Reference Manual
• PTX Instruction Set Architecture
• CUDA Compiler Driver NVCC
• CUDA-MEMCHECK
• Nsight Documentation
• Kernel Profiling Guide
• NVIDIA Developer Forums

25.04.2022 CUDA and Applications to Task-based Programming 19

Essential reading

Debugging & profiling

Building executables

Clarifications, explanations, intricate details

Lastly, it is vital to know where to get your information. We recommend that, if you want to obtain a
detailed understanding of not only how, but why the CUDA architecture can achieve the performance that
it does, you consider the resources provided on this slide. The programming guide, the API reference
manual and the PTX ISA are essential reading for anybody who wants a deeper understanding of the
architecture. In addition, there are detailed manuals for the most useful tools, and the information in there
often complements parts that may be missing in the essential reading documents. Lastly, if things are still
unclear after consulting all of these resources, the NVIDIA developer forums are a fantastic resource for
getting highly specific questions answered from other members of the GPU programming community or
even professionals.

19

Reims 2022

The CUDA Execution Model

Let us now take a first look at how the CUDA architecture handles the execution of code in parallel.

20

Reims 2022

Kernel Functions and Device Functions

• Kernel functions may be called directly from host
• Launch configuration, parameters (built-in types, structs, pointers)
• Indicated by __global__ qualifier for functions
• Cannot return values, must be of type void

• Device functions may only be called from kernels or device functions
• No launch configuration, parameters from kernels or device functions
• Indicated by __device__ qualifier for functions
• Support arbitrary return types, recursion

25.04.2022 CUDA and Applications to Task-based Programming 21

When we write code for the GPU with CUDA, we can distinguish __global__ and __device__
functions. The former signify so-called kernel functions, which may be invoked straight from the host
and must not have a return value other than void. The latter are functions that may only be called from
functions already running on the device, such as kernels or other __device__ functions.

21

Reims 2022

Launching Kernels

• Basic kernel, launched with distinct <<<grid,block>>>() syntax

• Kernel launches are asynchronous to host execution
• Does that mean we always need the synchronization towards the end?

25.04.2022 CUDA and Applications to Task-based Programming 22

__global__ void HelloWorldGPU()
{

printf("Hello, world, from the GPU!\n");
}

int main()
{

HelloWorldGPU<<<1,12>>>();
cudaDeviceSynchronize();
return 0;

}

With this knowledge, and the addition that CUDA supports printing to the console, it is extremely simple
to write an initial kernel that proves to us that, it is in fact, running in parallel on the GPU. Note the
characteristic syntax for calling a __global__ function from a standard C++ CPU-side function,
which defines the launch configuration, or „grid“ of threads that the compute job should use. This syntax
will later be replaced by the NVCC with explicit function calls to run GPU code with the given
parameters. Here, we launch a total of 12 threads, each of which will print a fixed message. Eventually, in
this short example we also call a CUDA function before the program terminates, called
cudaDeviceSynchronize. This may give the initial impression that, like in other APIs like Vulkan,
manual synchronization is frequently required, but this is actually not the case.

22

Reims 2022

CUDA Command Execution

• Some CUDA commands are asynchronous with regard to the host, but
not concurrent to each other (unless explicitly requested)

• By default, CUDA will implicitly assume that consecutive operations
that could have a dependency also do have a dependency, e.g.:

• Kernel A followed by kernel B A must finish before B starts
• Copy memory to device before kernel copy must finish before kernel starts
• Copy results from device after kernel Kernel must finish before copy starts

• But then why do we need a synchronizing command?

25.04.2022 CUDA and Applications to Task-based Programming 23

Some CUDA commands, like kernel calls, are asynchronous with respect to the host. However, by
default, they are not asynchronous to each other. That means that, unless specified otherwise, CUDA will
assume that any kernel calls or copy instructions are dependent on previous events, and order them
accordingly. For instance, when two kernels are launched in succession, the second will wait for the first
to end before running. On the other hand, the basic methods for memory copies will synchronize both the
GPU and the CPU. Thus, a kernel, followed by a copy from device to host will ensure that the copy
command can see and transfer the results that were written by the previously launched kernel back to the
CPU. While it seems like synchronization is mostly implicit, functions for explicit synchronization are
sometimes required, like in the previous example.

23

Reims 2022

Synchronization (Host with Device)

• cudaDeviceSynchronize() to synchronize CPU and GPU

• cudaEventSynchronize() to synchronize up to certain event

• Overuse incurs performance penalty, rarely needed! Examples:
• Wait for the implicit transfer of the printf buffer to CPU for displaying
• Measuring GPU performance with CPU code (e.g., with std::chrono)
• Synchronize access to managed memory on CPU and GPU
• Debugging (cudaDeviceSynchronize returns previous launch errors)

25.04.2022 CUDA and Applications to Task-based Programming 24

Two commonly used synchronization functions for the host side are cudaDeviceSynchronize and
cudaEventSynchronize. Both of them synchronize the GPU and GPU, with the difference that the
former synchronizes the CPU will all previously submitted asynchronous commands, while the second
takes an additional event parameter that marks a particular point in the GPU execution pipeline. While it
may not break the program to overuse synchronization functions, it will be detrimental to performance.
Hence, cudaDeviceSynchronize should be reserved for particular use cases and placed with care if
performance is key. The use cases include, for instance debugging applications, the use of unified
managed memory, which we will talk about in part 3, and in the particular case of our example, when
printf is used, to make sure that the CPU will wait for the implicitly buffered console output to be
transferred back to and processed on the CPU, without the use of an explicit copy instruction.

24

Reims 2022

Writing Architecture-Agnostic Code

• __host__ qualifier for host functions, combines with __device__

• Architecture-agnostic code can significantly simplify your code base!

• Critical sections that require architecture-specific instructions can be
implemented using the __CUDA_ARCH__ preprocessor macro

25.04.2022 CUDA and Applications to Task-based Programming 25

__host__ __device__ float squareAnywhere(float x)
{

return x * x;
}

In addition to __global__ and __device__, CUDA defines an additional decoration for functions,
named __host__. This is to signify functions that should be interpreted by the NVCC as functions that
run on the CPU. If none of the available labels is used, NVCC will by default assume that a function is a
host function. However, the addition of this label opens up a new possibility for increasing code reuse:
functions that are decorated with both __host__ and __device__ labels will be compiled to run on
both, the host and the device. If the code being used is generic enough to run on both, this means that
developers can write architecture-agnostic code once that may be executed on both architectures. We will
see that, with the introduction of recent features, the restrictions regarding what can and cannot be written
in this portable manner are continuously dwindling.

25

Reims 2022

CUDA Execution Hierarchy

• Execution occurs in a hierarchical model

• CUDA distinguishes four granularities:
• Grid (launch configuration)
• Block (cooperative threads)
• Thread (isolated execution state)

• In-between: warps
• Groups of 32 threads, enable SIMD execution
• Implicitly defined as parts of a block

25.04.2022 CUDA and Applications to Task-based Programming 26

Grid
Block

Warp

Thread

32 threads

multiple warps

multiple blocks

The execution hierarchy of code that is launched to run on the GPU provides several layers. For a CUDA
kernel launch, a definition of a grid is required, which includes the number of cooperative thread blocks
that should be started, as well as the size of each individual block. Below the threadblock granularity are
individual threads, which can hold individual information and state during execution. An additional,
hardware-governed layer lies between the two: the warp. Blocks will implicitly be split into warps, that
is, groups of 32 threads, which may execute together on the SIMD units of the GPU.

26

Reims 2022

• Grid defines total number of launched threads
• Indirectly, via the number of blocks
• Complete grid defined by grid and block dimensions

• Threads within a block can synchronize

• Up to 32 threads (a warp) execute the same
instruction on the same SIMD compute unit

25.04.2022 CUDA and Applications to Task-based Programming 27

Grids to Blocks to Threads

We can visualize this relationship more clearly. A grid may contain multiple blocks, each of which has a
configurable size that dictates the number of threads in a block. The threads within a block have special
opportunities to communicate, and may for instance synchronize at a certain point in the program.
However, each thread in a block can have its own state and memory, and therefore represents its own
entity. For the sake of exploiting SIMD hardware units, threads will always execute in groups of 32,
regardless of the block size being used.

27

Reims 2022

Logical and Physical Hierarchy Aspects

• Logical kernel hierarchy levels: grid, block, thread
• Allows developers to structure their solutions for particular problem sizes
• Leaves threads with the independence to make individual decisions

• Physical kernel hierarchy level: the warp
• Hardware SIMD-width: an arbitrary grouping that developers cannot avoid
• Also implies that at least 32 threads will run (although some may be inactive)
• Historically, CUDA has tried to make warps transparent to novice developers
• Before Volta: not understanding warps may crash your application
• After Volta: not caring about warps may make your application slower

25.04.2022 CUDA and Applications to Task-based Programming 28

28

Reims 2022

CUDA Block Execution Model

• Grid size can be chosen, regardless of GPU model
• Use grid configuration to complete a particular task
• Abstracts away hardware scheduling details
• Block queue provides processors with work
• Adapting to hardware may raise performance

• Threads in a block can share, synchronize

• Warps of one block are assigned to single streaming multiprocessor (SM)

25.04.2022 CUDA and Applications to Task-based Programming 29

Multithreaded CUDA Program

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

GPU with 2 SMs
SM 0 SM 1

SBlock 0 SBlock 1

S 0Block 2 SBlock 3

SMBlock 4 SBlock 5

SBlock 6 SBlock 7

GPU with 4 SMs
SM 0 SM 1 SM 2 SM 3

SBlock 0 S0Block 1 SBlock 2 SMBlock 3

Block 4 SBlock 5 S0Block 6 SBlock 7

When running a kernel, the blocks that make up a grid are committed to the GPU in a block queue. The
GPU will then proceed to process the blocks in parallel. The degree of parallelisms depends on the
hardware being used but is transparent to the developer: only the problem size, that is, the grid
configuration and how many threads should run, must be defined. The GPU will then process as many
blocks as it can fit on its parallel compute units and keep fetching work from the block queue until all
threads have completed execution. Each block (and the warps it is comprised of) is explicitly and fully
assigned to one of several larger processing units of the GPU, the streaming multiprocessors.

29

Reims 2022

Streaming Multiprocessors

• CUDA cores: basic integer/floating point
arithmetic – high throughput, low latency

• Load/Store (LD/ST): issues memory accesses to
appropriate controller – possibly high latency

• Special Function Unit (SFU): trigonometric
math functions, etc – reduced throughput

• Since Turing and Volta, also include special
tensor cores (not explicitly shown here)

25.04.2022 CUDA and Applications to Task-based Programming 30

The streaming multiprocessor, or SM for short, is the powerhouse of the NVIDIA GPU. It contains the
relevant, specialized units that threads can use to retrieve or compute results. We can distinguish so-called
CUDA cores, which is usually a synonym for the units that perform integer or floating-point arithmetic,
the load and store units, which take of communicating with different types of memory, special function
units, which perform slower, more complex operations and, last but not least, the recently introduced
tensor cores that have specialized matrix arithmetic capabilities.

30

Reims 2022

CUDA Warp Execution Model

• When blocks are assigned to SMs, their warps are made “resident”

• In each cycle, SMs attempt to find warps to execute instruction

• If none of the resident warps are ready to run, the SM will idle

• Each warp scheduler may select a warp that is ready to proceed
• All threads in executed warp run the same instruction convergence
• Different threads are at different points in the program divergence

25.04.2022 CUDA and Applications to Task-based Programming 31

When we assign blocks to a particular SM, their warps are described as being resident on that SM. In
each cycle, the SM will then try to schedule instructions for warps that were assigned to it. Naturally, an
SM can only select warps that are ready to be executed. Hence, if a particular warp is depending on the
result of a computation or a memory transfer, it may not be scheduled. This brings back the concept of
oversubscription of the compute units of the GPU. The more warps an SM has to choose from, the higher
the chances are that it can hide latency by switching to different warps.

Since warps execute as one, the threads in them can progress simultaneously. However, every thread is
still its own entity, and may choose not to participate in a scheduled instruction. In this case, we refer to
the warp as being diverged.

31

Reims 2022

Warp
Execution

Model

Here we can see a basic illustration of the execution model in an SM, with one potential progression over
time. The SM warp schedulers will try to find ready warps, fetch instructions and dispatch them for
execution. It is unlikely that a warp can immediately continue execution, hence the warp scheduler will
try to find a different warp for the next cycle. As time progresses, warps eventually make progress until
all warps in the block have completed their tasks.

32

Reims 2022

CUDA Threads and SIMT

• Each thread may follow a different path, setting it apart from SIMD
• Threads maintain active/inactive state information during program
• Selectively executing instructions when active leads to diverging behavior

• CUDA code can be agnostic of the size and SIMD nature of warps

• New naming convention: single instruction, multiple threads (SIMT)

• Thread behavior usually governed by unique global or local launch ID

25.04.2022 CUDA and Applications to Task-based Programming 33

As stated, each thread in a warp has its own set of individually computed values, as well as an active flag
that indicates whether or not a thread will participate in the computation within its warp. This active flag
is all that is required to elicit individual behavior for threads, even when they progress as warps. By
selectively enabling and disabling this flag, every thread in a warp can theoretically explore a different
flow in the running program and arrive at a unique state. This is however a design choice in hardware,
and transparent to the programmer. Developers can, for the most part, write CUDA code as if every
individual thread was executed individually, with some exceptions. This architecture design, which
enables threads to behave like individual entities, while still enabling the exploitation of efficient SIMD
operations when threads are not diverged is described by the term “same-instruction-multiple-threads”, or
SIMT for short.

33

Reims 2022

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

25.04.2022 34

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0

0,1 1,1

0,0 1,0 2,0 3,0

0,1 1,1 2,1

3,20,2 1,2 2,2

3,1

4,0 5,0 6,0 7,0

4,1 5,1 6,1

7,24,2 5,2 6,2

7,1

0,3 1,3 2,3 3,3

0,4 1,4 2,4

3,50,5 1,5 2,5

3,4

4,3 5,3 6,3 7,3

4,4 5,4 6,4

7,54,5 5,5 6,5

7,4

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,0

0,1 1,1

0,2 1,2

0,3 1,3

0,4 1,4

0,5 1,5

0,6 1,6

0,7 1,7

0,8 1,8

0,9 1,9

0,10 1,10

0,11 1,11

• Program flow can vary depending
on threadIdx and blockIdx,
gridDim and blockDim

__global__ void PrintIDs()
{

auto tID = threadIdx;
auto bID = blockIdx;
printf("Thread Id: %d,%d\n", tID.x, tID.y);
printf("Block Id: %d,%d\n", bID.x, bID.y);

}

int main()
{

…
dim3 gridSize = { gridX, gridY, gridZ };
dim3 blockSize = { blockX, blockY, blockZ };
PrintIDs<<<gridSize, blockSize>>>();
cudaDeviceSynchronize();
…

CUDA and Applications to Task-based Programming

Distinguishing Threads and Blocks

Each thread can, for instance, adapt its behavior depending on its launch IDs. CUDA provides several
built-in variables that threads can access in order to retrieve their ID in the grid or inside a block, which
they can use to identify their target or source position in a given problem domain. Consider for instance
an image, where each thread should be assigned to a particular 2D portion to perform, e.g., a filtering
operation. In this case, the grid may be configured in a variety of ways. Grids can have up to 3
dimensions, x, y and z, and we can use 3-dimensional structs as parameters for the kernel launch. In the
case of a 2D image, it makes sense to utilize 2D block and grid dimensions, for instance. After launching
a particular kernel, each thread can retrieve the coordinates of the block in the grid, as well as the
coordinates of the threads inside each block. The image on the right illustrates this for a simple case,
where 2D block and thread IDs are illustrated for a simple block layout that uses 8 threads on its x-axis
and 1 on its y-axis. The numbers that they are labeled with correspond to the output that each thread
would create when running the code on the left, respectively.

In combination with another built-in variable, blockDim, threads may also easily find their unique global
ID in the full grid, such as the exact pixel that they should compute in an output image.

34

Reims 2022

CUDA Thread Execution Model

• In-order program execution (but compiler may reorder instructions)

• Volta and later architectures support two thread execution modes
• Legacy Thread Scheduling
• Independent Thread Scheduling (ITS)

• On current GPUs with ITS, can select either model with compiler flag

• Can significantly change performance and correctness (!) of code

25.04.2022 CUDA and Applications to Task-based Programming 35

Whenever threads run on the GPU, they will follow the compiled instruction in order. As of now, there is
no significant layer for ILP, however, the compiler may of course decide to reorder the coded operations
to boost performance at runtime. Modern NVIDIA GPUs support two separate execution modes: one is
legacy scheduling, which was the only available option until the Volta architecture arrived, and
independent thread scheduling, which was introduced with Volta. Which execution mode should be used
can be selected with a compiler flag. However, it is important to understand the fundamental implications
of choosing either mode, since using one over the other can decide whether or not a particular code
sample elicits undefined behavior or causes crashes.

35

Reims 2022

Legacy Thread Scheduling

• Only one program counter per warp, i.e., entire warp can only store a
single position for all threads in the executed program

• All threads that are inactive will not execute current instruction

• Threads may only progress to the next instruction in lockstep

• When branches occur, warp must execute first one, then the other

25.04.2022 CUDA and Applications to Task-based Programming 36

Legacy thread scheduling follows the conventional “lockstep” principle. This mode implies that there is
only a single program counter per warp. That is, all threads in a warp may only ever be at the same
instruction in the program. If program flow diverges, the SM must execute first one branch to completion
and then the other, before the warp can proceed.

36

Reims 2022

Legacy Thread Scheduling

• Diverged threads will try to reach convergence point before switching

• Cannot get past convergence point until all involved threads arrive

25.04.2022 CUDA and Applications to Task-based Programming 37

if(threadIdx.x & 0x4)
{

A();
X();

}
else
{

B();
Y();

}
C();

Di
ve

rg
e

Re
co

nv
er

ge
nc

e

A

B

CX

Y

This behavior is illustrated here. Consider for instance the branch given based on the thread ID. The
lower four threads will enter one branch, the remaining threads will enter the other. However, once a
branch has been chosen, it must be completed before the other branch can begin because the warp only
maintains a single program counter for all threads. It can, for instance, not switch to execute B directly
after A, because that would imply that half of the threads are at one point in the program, while the others
are at another instruction, hence both branches would need to maintain separate program counters.

37

Reims 2022

Legacy Thread Scheduling

• Scheduling dictates what algorithms are and aren’t possible

• Actually, quite easy to get a deadlock between threads within a warp

25.04.2022 CUDA and Applications to Task-based Programming 38

if(threadIdx.x & 0x4)
{

A();
waitOnB();

}
else
{

B();
waitOnA();

}
C();

Di
ve

rg
e

A waitOnB…

This has several implications that programmers must respect when they program for individual threads.
For instance, consider the case where half of the threads in a warp are waiting on the other half. This is
illustrated in this code sample. Because with the legacy thread scheduling model, threads cannot execute
a different branch until the first chosen branch is complete, this program will hang since either A or B
will never be executed, but each branch is waiting on an event that occurs in the other.

38

Reims 2022

Independent Thread Scheduling (ITS)

• Two registers reserved, each thread gets its own program counter

• Individual threads can now be at different points in the program

• Warp scheduler can (and does) advance warps on all possible fronts
• Guaranteed progress for all resident threads
• Enables thread-safe implementation of spinlocks, starvation-free algorithms

• Threads in a warp still can only do one instruction at a time

25.04.2022 CUDA and Applications to Task-based Programming 39

With independent thread scheduling, situations like this are no longer an issue. Each thread is given its
own, individual program counter, meaning that theoretically, each thread can store its own unique
instruction that it wants to perform next. The execution of threads still happens in warps, this has not
changed. It is not possible for threads in a warp to perform different instructions in the same cycle.
However, a warp may now be scheduled to progress at any of the different program counters that the
threads within it are currently holding. Furthermore, ITS provides a “progress guarantee”: eventually,
over a number of cycles, all individual program counters that the threads in a warp maintain will be
visited. This means that if, for instance, the execution has diverged and two branches, both are guaranteed
to be executed sooner or later.

39

Reims 2022

Independent Thread Scheduling (ITS)

• Guaranteed progress, one branch can wait on another branch

• Diverged threads may not reconverge, should be explicitly requested!

25.04.2022 CUDA and Applications to Task-based Programming 40

if(threadIdx.x & 0x4)
{

A();
waitOnB();

}
else
{

B();
waitOnA();

}
C();

Di
ve

rg
e

A

B

waitOnB

waitOnA C

C

With ITS enabled, the previous code sample no longer poses a problem. A branch may be chosen as
before start waiting on the other branch. Due to the progress guarantee, sooner or later, the other branch
will be scheduled and its threads will proceed, which is possible because every thread has a program
counter to maintain its own unique position in the program code. A side effect of the new design,
however, is that program code can no longer make any assumptions about threads moving in lockstep
since they are free to stay diverged until the program finishes. The GPU will try to make threads
reconverge at opportune times, but if it is desired that threads are guaranteed to perform given
instructions in groups of 32, e.g., to exploit SIMD behavior, this must now be explicitly requested with a
synchronization command.

40

Reims 2022

Synchronization (Device only)

• __syncwarp()synchronizes active threads in a warp
• Volta and later architectures only, before that no threads with different PCs
• Additional mask parameter enables synchronizing a subset only
• May be called from different points in the program, as long as masks match

• __syncthreads() synchronizes active threads in block at a point
• All active threads must reach the same instruction in the program
• Undefined behavior if some threads in block do not reach it (likely hang!)

• this_grid().sync() can busy-wait to synchronize entire kernel
25.04.2022 CUDA and Applications to Task-based Programming 41

In addition to the host-side functions that synchronize between CPU and GPU, which we saw before,
synchronization may of course also be performed between the threads running on the device itself. The
primitive to use to force a warp or parts of a warp to reconverge is the __syncwarp function.
__syncwarp only really makes sense on systems that support ITS, because earlier models would have
warps advance in lockstep. __syncwarp takes an additional mask parameter, which can be used to
define only a subset of the threads in a warp that should synchronize. This is conveniently done via a
32bit integer, where each bit indicates whether or not a thread with the corresponding ID should
participate in the synchronization. Interestingly, __syncwarp may be called from different points in a
program, e.g., it is possible for threads in a warp to synchronize while they are executing different
branches. However, according to documentation, it is an error to have threads reach a __syncwarp
they don’t participate in. One level above is the __syncthreads, which is not so forgiving and applies
to all threads in a block.

A __syncthreads will make sure that all active threads in a block arrive at the same point in the
program where the synchronization happens. In contrast to __syncwarp, it may NOT be called from
different branches in the same block, since this may cause the program to hang. Lastly, it is also possible
to synchronize the entire kernel launch grid, that is, wait for all threads to arrive at a certain point in the
program, however, this method has several restrictions and requires a special setup, as well as the
cooperative groups programming model, which we will see only in part 3.

41

Reims 2022

Warp-Level Primitives

• Initially, CUDA programming paradigm stopped at block level
• Developers were not meant to assume specific properties about warps

• But performance benefits were too great, so they did anyway (e.g., warp voting)

• Warp-level primitives are instructions where threads in one warp
exploit the fact that they run together to quickly share information

• Most instructions available since compute capability 3.0 (Kepler)
• Since CUDA Toolkit 9.0, must include synchronization to comply with ITS

25.04.2022 CUDA and Applications to Task-based Programming 42

Now that we have a basic understanding of what grids, blocks and threads are, we should point out the
special role of warps. The fact that threads are scheduled in warps is independent of the grid-block-thread
design. Initially, developers were not meant to assume particular behavioral properties of warps and the
official programming paradigms would not include them. However, as it turns out, the benefits of
exploiting the knowledge of which threads are scheduled together for an instruction is much too
important for performance to be ignored. The CUDA programming model has since committed itself to
expose and encourage the use of knowledge about warps during execution. In particular, NVIDIA hast
started to introduce so-called warp level primitives. These include special instructions that provide a fast
lane for threads that are scheduled together for execution to exchange information with a single, fast
instruction.

These warp-level primitives have been enabled starting with architectures that have compute capability of
3.0 or higher. In order to comply with the CUDA standard in the toolkit 9.0 or newer, they have been
updated to enforce synchronization on devices with ITS. If you are not familiar with these terms,
however, you may be wondering what exactly a compute capability is, how it associates with the CUDA
version, and why those numbers are at times so dissimilar?

42

Reims 2022

Compute Capability ≠ Toolkit Version

• One ensures availability of explicit hardware capabilities, the other
the toolkit’s support for building applications that can exploit them

• Although not directly associated, restrictions do apply
• E.g., cannot use tensor core instructions on Turing card if toolkit is outdated

• Highest compute capability currently at 8.6

• Latest CUDA Toolkit currently at version 11.6

25.04.2022 CUDA and Applications to Task-based Programming 43

It is important to note that those two signify very different things, although they are related. The compute
capability of a given GPU ensures its ability to perform certain operations, expose features or adhere to
particular hardware specifications, such as the number of available CUDA cores or tensor cores per SM.
On the other hand, the CUDA toolkit version will govern whether your development environment is
capable of translating code that makes use of new hardware-accelerated instructions and features. For
instance, you cannot use an outdated CUDA toolkit to compile code that makes use of tensor cores, even
if you are running the compiled code on a Turing card.

43

Reims 2022

Architectures and Compute Capabilities

Architecture Exemplary GPU Model Compute Capability Important Features

Tesla GeForce 8800 GTX 1.0 – 1.3 Basic

Fermi GeForce GTX 480 2.0 – 2.1 Ballots, 32-bit floating point atomics, 3D grids

Kepler GeForce GTX 780 3.0 – 3.7 Shuffle, unified memory, dynamic parallelism

Maxwell GeForce GTX 980 5.0 – 5.3 Half-precision floating point operations

Pascal GeForce GTX 1080 6.0 – 6.2 64-bit floating point atomics

Volta TITAN V 7.0 – 7.2 Tensor cores

Turing GeForce RTX 2080 7.5 More concurrency, RTX cores (not compute)

Ampere GeForce RTX 3090 8.0 – 8.6 L2 Cache Residency Management

Lovelace ? 9.0 – ? ?

25.04.2022 CUDA and Applications to Task-based Programming 44

Here, we provide a rough summary for orientation of how compute capabilities map to different
architecture generations and some of the most important features that they introduced to GPU models of
that era.

44

Reims 2022

Example: Parallel Reduction

Let us now consider a concrete example where we exploit the parallel processing power of the GPU with
CUDA to accelerate a very common operation: data reduction.

45

Reims 2022

Parallel Reduction

• Common and important data-parallel primitive
• Many data elements single output (e.g., sum)
• Easy to implement in CUDA, tree-based approach

• To beat CPU, need to use multiple thread blocks
• A large grid to process large arrays
• More parallelism can better utilize the GPU

• Partition the array, map each entry to a single thread
• Where and how do we combine them to calculate the result?

25.04.2022 CUDA and Applications to Task-based Programming 46

4212 99 5…99

For parallel reduction, our aim is to exploit the parallel nature of the GPU in order to compute some sort
of reduced result from a large number of original inputs, such as their sum, the minimum value, or their
average. Reduction is a general and useful operation and is also rather effective to compute on the CPU
since it can usually be performed with a single pass over the full input length. However, we will try to
show how parallel computing on the GPU can exploit the knowledge about the different levels of the
execution hierarchy and collaborate across them can yield significantly improved performance for this
type of operation. However, before we do so, we must first find a way to receive inputs and store the final
result. Hence, let’s have a quick preview of the different memory types we have at our disposal.

46

Reims 2022

Types of Memory

• Registers
• Per-thread, fast, automatically allocated for variables

• Local Memory
• Per-thread, slow, used when registers are unavailable

• Shared Memory
• Per-block, fast, allocated by host or __shared__

• Global Memory
• Per-device, slow, allocated by host or __device__

• Constant Memory
• Per-device, fast uniform access, via __constant__

• Texture Memory
• Per-device, slow, with texture reading functionality

25.04.2022 CUDA and Applications to Task-based Programming 47

Registers are the fastest type of memory. Similar to registers on the CPU, they are allocated automatically
for basic variables in computations. However, they are only visible per-thread, hence they are not suited
for device-wide communication. Local memory, too, is memory that is only visible per-thread, and is
used when it is not possible to use the faster registers. Shared memory is somewhat slower than registers
and visible to all threads within a block. However, this is not sufficient, since we are considering a
potentially vast number of inputs, which may be much more than the maximum size of a block, that is,
1024 threads. Global memory, on the other hand, is visible to every thread in the device, but also
significantly slower, since it is not directly located on the SM. It can also be allocated and written to by
the host. Constant memory describes a limited amount of read-only global memory with a particularly
fast cache for uniform reads, and texture memory has additional capabilities that mirror those of texture
and image variables in common graphics APIs.

Since we want to read potentially large input arrays to reduce and write the result where we can later
retrieve, we will therefore choose to place both of them in global memory.

47

Reims 2022

Every Thread for Themself

• Result must be updatable from every thread use global memory
• When thousands of threads simply write to memory, results are lost
• First solution: use atomic operations to update single global variable

25.04.2022 CUDA and Applications to Task-based Programming 48

__device__ float result = 0;

__global__ void reduceAtomicGlobal(const float* input, int N)
{

int id = threadIdx.x + blockIdx.x*blockDim.x;
if (id < N)

atomicAdd(&result, input[id]);
}

For the variable in which we store the result of our reduction, we can do this by defining a __device__
variable in the CUDA source file directly. Our first attempt at a reduction kernel can then add its entry to
the result variable. In this case, we are performing a reduction with addition to compute the sum of all
entries in the input array. We first identify each thread’s unique ID, using the built-in threadIdx, blockIdx,
and blockDim variables and assuming that all of them are specified with a single dimension on the x-axis.
This is reasonable since the input is a 1D array and there is no added benefit from using more dimensions
in the grid configuration. Note however that if we were to launch our kernel with a 2D grid instead, we
would have to consider the .y coordinates in the computation as well. Each thread first checks whether its
ID is lower than the number of entries to sum up. This is because thread blocks have a fixed size, hence,
when we launch this kernel, in order to sum up all results, we need to make sure that we launch enough
blocks.

But since the number of entries in the array N may not be a multiple of the block size, some of the threads
in the last block may not want to participate in the reduction to avoid access violations. Next, we retrieve
the corresponding entry from the input array and add it to the result variable. However, we are using a
new function, atomicAdd, to access the __device__ variable instead of updating it directly. Why?

48

Reims 2022

Atomic Operations

• Updates to the same memory problematic with many threads
• Read/write may occur in arbitrary order, simultaneously, overlap, be stale?
• Atomic operations are indivisible, visible and occur in some sequential order
• Atomic operations where return value is not used are termed reductions

25.04.2022 CUDA and Applications to Task-based Programming 49

foo

foo += bar;

foo

atomicAdd(&foo, bar);

Ordered Updates ?

As in all multi-threaded applications, it is necessary to protect against data races to obtain coherent
results. If we were to simply add values to a variable, there is no guarantee that the updates will produce
the correct final result. First, each addition can be broken into two memory operations for every thread:
fetching the current value and writing the new one. Fetching and writing by threads of the global variable
may occur in any order, hence the result of performing these operations simultaneously with thousands of
threads is undefined. Atomic operations in CUDA, as most other architectures, provide us with means to
perform updates atomically, i.e., they cannot be interrupted since they are indivisible. Furthermore,
atomic operations are guaranteed to produce the same effect as if all accesses to the variable had occurred
in some strictly sequential order. Hence, with atomic operations, thousands of threads can add entries to
the same global variable and obtain the correct result.

49

Reims 2022

• Initial version is slower than CPU implementation, which is linear

• GPU version has maximal contention on slow, global memory

Performance 268M Float Reduction

25.04.2022 CUDA and Applications to Task-based Programming 50

Time
(TITAN V) Bandwidth

Step
speedup

Cumulative
Speedup

Speedup to
CPU

AtomicGlobal 635.355ms 1.520GB/s 1.000 1.000 0.3

CPU Baseline:
283.989 ms

CPU Parallel Baseline:
85.393 ms

Unfortunately, this guarantee comes at a price. Our initial implementation performs significantly poorer
on a Titan V than even a single-threaded CPU implementation, let alone a multi-threaded CPU
implementation. However, this is only where we begin to apply our knowledge of the GPU architecture.

50

Reims 2022

Blocks Share Fast Memory

• Compute block results in fast, shared memory, update global at end

25.04.2022 CUDA and Applications to Task-based Programming 51

__global__ void reduceAtomicShared(const float* input, int N)
{

int id = threadIdx.x + blockIdx.x*blockDim.x;

__shared__ float x;
if (threadIdx.x == 0) x = 0.0f;
__syncthreads();

if (id < N) atomicAdd(&x, input[id]);
__syncthreads();

if (threadIdx.x == 0) atomicAdd(&result, x);
}

As we just mentioned, there is another type of memory, which is found directly on the SM that a block
runs on, and which is supposedly much faster than global memory. Hence, we can split our reduction into
two stages: first, we perform updates atomically in faster, shared memory, and then only write the partial
results out to global memory. Consider, for instance, a setup where each block has 256 threads. In this
case, we just reduced the number of atomic updates to slow global memory by a factor of 256. The main
contention was moved from a single, global variable to multiple variables, one per block, that is held in
shared memory on each SM. Observe that both the initialization and the final addition of the shared
variable are performed only by the first thread in the block. Before and after the accumulation in shared
memory, the entire block synchronizes. This is to ensure, for one, that the first thread correctly initializes
the shared variable to zero before threads start to accumulate on it.

The second __syncthreads is to ensure that all threads in the block have finished with their accumulation
before the first thread in the block performs a single update to global memory, otherwise, it could update
it with an incomplete result.

51

Reims 2022

Performance 268M Float Reduction

25.04.2022 CUDA and Applications to Task-based Programming 52

Time
(TITAN V) Bandwidth

Step
speedup

Cumulative
Speedup

Speedup to
CPU

AtomicGlobal 635.355ms 1.520GB/s 1.000 1.000 0.3x

AtomicShared 26.911ms 35.674GB/s 23.61 23.61 3.7x

• Switching from global to shared for most atomics outperforms CPU

• Contention is still high, but must only serialize on fast shared memory

This second version already performs significantly better than our first attempt. Furthermore, it puts us
over the bar for improvement over the parallel CPU method and is now almost 4 times faster. However,
there is still room for improvement. So far, we simply ported an approach that would work well on the
CPU and reduced the amount of memory contention it causes. Let us return to the drawing board and
consider if perhaps a different, inherently parallel algorithm can give us better results.

52

Reims 2022

Sublinear Runtime

• Multiple iterations to
reduce full input data

• In each iteration, add
two values per thread

• Exclusive access, just
log 𝑁 serialized steps

25.04.2022 CUDA and Applications to Task-based Programming 53

10 -1 -2 51 3 -2 28 -3 7 110 0 0 2

8 6 9 7-2 3 -2 210 -3 7 110 0 0 2

0 21 3 4 5 6 7

8 13 9 77 3 -2 213 -3 7 110 0 0 2

0 21 3

21 13 9 720 3 -2 213 -3 7 110 0 0 2

0 1

41 13 9 720 3 -2 213 -3 7 110 0 0 2

0

Values

Thread Ids

Our best solution so far must still enforce sequential updates of a common variable, even though it occurs
in faster shared memory. However, if we are aware of the existence of shared memory, we can come up
with an elegant solution that can achieve the same result with a sublinear runtime. Consider the
illustration given above. Starting with the original input, we can run multiple iterations in which each
thread combines its current value with that of another thread, yielding a partially reduced intermediate
result. By continuously summing up these partially reduced results, due to the transitive nature of the
operation, we can eventually obtain the result of the full reduction over the inputs for all threads in the
block in log2(N) iterations.

53

Reims 2022

Sublinear Runtime

25.04.2022 CUDA and Applications to Task-based Programming 54

__global__ void reduceShared(const float* input, int N)
{

__shared__ float data[BLOCKSIZE];
int id = threadIdx.x + blockIdx.x*blockDim.x;
data[threadIdx.x] = (id < N ? input[id] : 0);

for (int s = blockDim.x/2; s > 0; s/=2)
{

__syncthreads();
if (threadIdx.x < s)

data[threadIdx.x] += data[threadIdx.x + s];
}
if (threadIdx.x == 0)

atomicAdd(&result, data[0]);
}

Changing our previous implementation to this new algorithm is not too difficult, since the majority of it
can be implemented with standard C++ instructions. Note that in this case, we have found a new way to
deal with the problem of potentially redundant threads in the last block that is started. In order to keep our
implementation simple, we implicitly pad the read data to a multiple of the block size by having threads
with an ID beyond N act as if they read a zero value. This way, they can safely participate in the
reduction without changing the final result and altering our code to handle this special case. Next, we
implement the previously described algorithm with a simple loop structure. However, we have to make
sure that each iteration is secured by a call to __syncthreads to make sure that all threads have
finished their updates before we continue with the next iteration. This is because, in each iteration, some
threads are dependent on the results that other threads produced in the last iteration.

Note that there is no __syncthreads before the update to global memory is made, due to the fact that
in the very last iteration, only thread 0 participates in the loop, and it may immediately use the result that
it computed itself without synchronizing.

54

Reims 2022

Performance 268M Float Reduction

25.04.2022 CUDA and Applications to Task-based Programming 55

Time
(TITAN V) Bandwidth

Step
Speedup

Cumulative
Speedup

Speedup to
CPU

AtomicGlobal 635.355ms 1.520GB/s 1.0 1.00 0.3x

AtomicShared 26.911ms 35.674GB/s 23.6 23.61 3.7x

ReduceShared 2.903ms 333.536GB/s 9.2 218.86 29.3x

• The improved algorithm has a significant impact on performance

• Now even significantly reduced contention on shared memory

We can easily see that choosing a more suitable algorithm has had the biggest impact on performance so
far. Exploiting both the best available memory types and inherently parallel algorithms are fundamental
principles for obtaining optimal GPU performance. But we can still go a little farther.

55

Reims 2022

Exchanging Registers

• Registers are by far the fastest type of memory to access

• Threads that run together as a warp can exploit warp-level primitives

• Exchange register data with another thread in warp: __shfl_sync
• Returns the value that another thread has in a particular register
• Must include synchronization, because threads may have diverged due to ITS
• Like __syncwarp, threads may shuffle at different points in code on Volta+

• Works like a messaging system – threads can put different registers on the line

25.04.2022 CUDA and Applications to Task-based Programming 56

Before, we mentioned that registers are the fastest type of memory available. We also mentioned that ever
since compute capability 3.0, it is advised and encouraged to exploit knowledge about warps executing
simultaneously with warp-level primitives. The shuffle instruction gives threads in a warp a fast lane to
exchange information in registers, without having to write them out to shared or global memory. This
operation which, if ITS is enabled, must of course synchronize that the desired threads are converged
before it exchanges values will be exploited by us for the final stage of the reduction.

56

Reims 2022

Exchanging Registers

25.04.2022 CUDA and Applications to Task-based Programming 57

__global__ void reduceSharedShuffle(const float* input, int N)
{

…
for (int s = blockDim.x/2; s > 16; s/=2)
…
float x = data[threadIdx.x];
if (threadIdx.x < 32)
{

x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 16);
x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 8);
x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 4);
x += __shfl_sync(0xFFFFFFFF, x, threadIdx.x + 2);
x += __shfl_sync(0xFFFFFFFF, x, 1);

}
if (threadIdx.x == 0)

atomicAdd(&result, x);
}

Here we see how this can be applied to optimize our current implementation for parallel reduction. The
reduction in shared memory stops at 32 partial results. Afterward, we only let the threads in a warp
exchange their accumulated results with each other. In the first iteration, each thread in the warp will try
to read the value of the thread with an ID that is 16 higher than its own. Note that the 16 higher threads
will not obtain meaningful results from this operation, nor do we need them to. However, they are still
participating in the shuffle, because the lower 16 need to access their registers. In the following iterations,
this procedure is repeated until finally thread 0 receives the accumulated register of thread 1. Having
obtained a completely reduced sum, it then performs the sole update per block to global memory, as
before.

57

Reims 2022

• We will stop at this point, but this could still be taken further

• Note: results can (and do) vary significantly between GPU models

Performance 268M Float Reduction

25.04.2022 CUDA and Applications to Task-based Programming 58

Time
(TITAN V) Bandwidth

Step
Speedup

Cumulative
Speedup

Speedup to
CPU

AtomicGlobal 635.355ms 1.520GB/s 1.0 1.00 0.3x

AtomicShared 26.911ms 35.674GB/s 23.6 23.61 3.7x

ReduceShared 2.903ms 333.536GB/s 9.2 218.86 29.3x

SharedShuffle 2.101ms 460.501GB/s 1.3 302.38 40.4x

Depending on the architecture you are using, the additional use of warp-level primitives can make a
significant difference, although in this case, it is comparably minor. However, the final achieved speedup
relative to our initial version of a factor larger than 300 shows how important it is to know how
collaborative processing can affect performance on the GPU.

58

Reims 2022

Parallel Programming for the GPU

• Many algorithms are embarrassingly parallel (e.g., ray tracing)
• Each thread can work completely independently, no communication
• Even a direct port to the GPU may accelerate processing out of the box

• If developers know how threads collaborate, more opportunities
• The GPU is at its most powerful when it can reuse partial results
• Cache utilization, shared memory and warp primitives play important role
• Competitive algorithms to reorder, reduce, analyze or filter large data sets

• Sorting and scanning
• Building and traversing hierarchical data structures
• Even prioritized task scheduling

25.04.2022 CUDA and Applications to Task-based Programming 59

There is a large range of algorithms that can benefit directly from being ported to a parallel processor.
These algorithms, which are usually classified as embarrassingly parallel, usually have no
interdependencies and their efficiency rises with the number of simultaneously executing threads.
However, if developers are aware of the opportunities to exploit collaboration by threads at different
levels of the execution hierarchy, it significantly increases the range of algorithms that can be run on
parallel architectures with significant performance gain compared to the CPU. As we have seen, even a
comparably well-suited algorithm with linear runtime can be executed significantly faster on the GPU if
these concepts are applied.

59

Reims 2022

Profiling and Debugging

But before you dive into the porting of highly complex algorithms and ambitious projects to see how
much faster they can run on a GPU, we would like to give an overview of the tools that will allow you to
evaluate and quantify your performance gains in a reproducible manner. It is also advisable to become
familiar with the available tools and methods for detecting and fixing errors, in short, debugging parallel
programs on the GPU.

60

Reims 2022

Measuring GPU Runtime

• Possible solution: synchronize CPU and GPU and use std::chrono

• Better: use cudaEvent_t to mark measuring points in execution
• Create events with cudaEventCreate
• Start recording events with cudaEventRecord
• Synchronize only to latest event with cudaEventSynchronize
• Find the duration between two events with cudaEventElapsedTime
• Eventually, clean up with cudaEventDestroy

• Events yield elapsed time in milliseconds, as measured by GPU clock
25.04.2022 CUDA and Applications to Task-based Programming 61

Initially, you may try to measure time the way it is commonly done, by using libraries like std::chrono
that access the system clock. However, a cleaner method is provided by the CUDA toolkit, which can
measure the GPU clock time elapsed between two events that are submitted to the stream of CUDA
commands. Events can be created and recorded at arbitrary points during your program. For instance, to
measure the runtime of a kernel with events, you can create two events and record the first just before and
the other just after the kernel launch. You may synchronize on the second event to make sure that it has
passed. After synchronization, the elapsed time between the two can be computed via
cudaEventElapsedTime, which gives the elapsed time in milliseconds as measured by the GPU
with microsecond resolution.

61

Reims 2022

Profiling with Nsight Systems

• Timeline breakdown of application, identifies provoking architectures

• Allows to analyze the application‘s performance bottleneck
• Identify specific routines, kernels or memory transfer that cause latency
• Detect if execution is GPU bound, find opportunities for improvement

• Example: executing an expensive kernel 5 times in a row
• Capture timeline with Nsight Systems and focus on GPU activity

25.04.2022 CUDA and Applications to Task-based Programming 62

Beyond simple timing measurements, a complete suite for profiling CUDA applications is given by the
various tools in the Nsight family. With Nsight Systems, you can get a high-level overview of the events
that occur in your application to identify, for instance, whether your application is CPU or GPU bound
and which kernels are taking a particularly long time during execution. In the following, we will look at a
short example that launches 5 consecutive, particularly slow kernels.

62

Reims 2022

Launching Multiple Kernels Sequentially

• Dependency assumed, kernels
run one after another in-order

25.04.2022 CUDA and Applications to Task-based Programming 63

__global__ void busy()
{

int start = clock();
while ((clock() - start) < 100'000'000);
printf("I'm awake!\n");

}

int main()
{

for (int i = 0; i < 5; i++)
busy<<<1, 1>>>();

cudaDeviceSynchronize();
}

The complete code for this setup is provided on the right-hand side. The kernel will simply sleep for a
given number of cycles before printing a single message. After sampling the application execution with
Nsight Systems, we can use it to analyze the timeline for the program execution. Clearly, we can see that
the five kernels that were launched in a loop execute one after another. We know that this is the case by
default since CUDA will assume that kernels depend on each other unless indicated otherwise. However,
in this example, it is evident there is no implicit dependency between kernels and they may just as well
execute simultaneously. We can demonstrate how this can be achieved and confirm the change in the
application timeline by introducing the concept of streams.

63

Reims 2022

CUDA Streams

• A single, small kernel may not be enough to occupy the entire GPU

• CUDA is capable of running multiple jobs simultaneously

• Implicit dependencies apply, but we can separate them into streams
• Streams are created at runtime and operations are associated with them
• Developer uses streams to separate operations that have no dependency
• Stream that a kernel should be launched in is 4th parameter (we skipped 3rd)
• If no stream specified, default “Null” stream is used

25.04.2022 CUDA and Applications to Task-based Programming 64

CUDA enables developers to define independent streams of commands, where it is assumed that
commands in different streams do not depend on each other. This becomes relevant in cases where, for
instance, multiple smaller kernels should be launched to properly occupy the available processing units of
the GPU, which may not be achieved by a single simple kernel. The stream can be passed to
corresponding CUDA runtime API calls, such as cudaMemcpyAsync, or can be defined for kernel
launches as the fourth parameter in the <<<>>> syntax.

64

Reims 2022

Streams to Run Kernels Simultaneously

• No dependencies assumed, parallel

25.04.2022 CUDA and Applications to Task-based Programming 65

int main()
{

cudaStream_t streams[5];
for (int i = 0; i < 5; i++)
{

cudaStreamCreate(&streams[i]);
busy<<<1, 1, 0, streams[i]>>>();

}
cudaDeviceSynchronize();
for (int i = 0; i < 5; i++)

cudaStreamDestroy(streams[i]);
}

In our example, our five waiting kernels are small and simple enough to run simultaneously. The example
on the right shows how this can be realized with streams. First, we create a stream for each kernel and
then submit it to the corresponding stream. After the GPU has finished execution, we eventually take care
of destroying the created streams. The analysis by Nsight Systems proves to us that, in fact, the execution
flow of the program has changed: the five kernels no longer execute one after another, but instead, run
concurrently on the same GPU.

65

Reims 2022

Profiling Kernels with Nsight Compute

• Nsight launches target application, injects itself in API calls

• Will automatically replay kernels and applications to collect results

• Complete performance report including suggestions for improvement

• Lets users inspect and compare extensive set of performance metrics
• Provides readouts and stats from hardware counters
• Periodically samples and keeps track of code lines that cause stalls

25.04.2022 CUDA and Applications to Task-based Programming 66

Beyond the high-level overview and timeline for an application, we can also obtain a much more detailed
performance report for individual kernels that we launch with Nsight Compute. Nsight Compute will
produce reliable measurements by injecting itself into the program during its launch and replaying kernel
calls multiple times to obtain readouts for different performance metrics. The result of this analysis can
be a complete report, including suggestions for performance optimization by avoiding common issues
and bottlenecks. By collecting samples during kernels of the program state when execution is stalled, it
can even indicate individual lines of code that most likely hurt your performance and should be revised.

66

Reims 2022

Profiling Kernels with Nsight Compute

• Each report section contains brief description of analyzed metrics

• Identifies apparent issues and suggests possible solutions

25.04.2022 CUDA and Applications to Task-based Programming 67

The report that is produced by Nsight contains multiple sections, each of which is concerned with a
particular performance aspect. Nsight will provide a short explanation for what a particular metric is
trying to measure and, in case there are apparent issues, will suggest further resources or steps to resolve
bottlenecks and alleviate performance penalties.

67

Reims 2022

Catching Errors

• For synchronous CUDA functions (not kernel calls), check return value
• Return value should always equal cudaSuccess
• If not, use cudaGetErrorString for comprehensive description

• For asynchronous functions and kernels, synchronize to retrieve error
• After kernel, call cudaDeviceSynchronize and check its return value
• Can always get and clear last reported error via cudaGetLastError

25.04.2022 CUDA and Applications to Task-based Programming 68

kernel<<<gridDim, blockDim>>>();
cudaError_t err = cudaDeviceSynchronize();
if (err != cudaSuccess)
{

const char* errorMessage = cudaGetErrorString(err); /*Handle error*/
}

While it is important to know whether or not programs are efficient, it is more important still to ensure
that they are correct. Most functions that the CUDA runtime API provides return an error code that either
reports errors of the called function itself if it executes synchronously or errors of asynchronous,
previously executed functions. This makes reacting to a particular error slightly tricky if asynchronous
functions, like kernel launches, are involved. However, when an application is known to have errors, they
can be easily pinpointed by securing suspicious sections with synchronization commands, which will
always return errors caused by previous asynchronous commands. Alternatively, at any point during the
program, the functions cudaGetLastError or cudaPeekLastError may be used to check
whether or not an error has previously occurred.

68

Reims 2022

Debugging Kernels with Nsight

• Edition for Eclipse + CUDA GDB, or Microsoft Visual Studio debugging

• Supports (conditional) breakpoints, code stepping, variable watch

• When stepping, a focus warp is chosen manually or automatically
• If execution is paused, can inspect states of all resident warps and threads
• Can choose to advance only one warp or block at a time
• Warps that, e.g., cause a memory access violation may grab focus

25.04.2022 CUDA and Applications to Task-based Programming 69

However, a much more convenient way of debugging CUDA applications is by using Visual Studio
Nsight or Eclipse edition. These plug-ins provide mechanisms for detailed debugging of host and device
code. With Nsight, developers may use many of the tools that they already utilize for debugging on the
CPU, such as breakpoints, memory watches, and local variable view for all running threads. Nsight
enables code stepping as well. To do this, a focus warp must be selected, and the stepping occurs either at
warp or block level, one instruction at a time. When errors or exceptions occur, other warps may
automatically grab the focus to draw attention to this event.

69

Reims 2022

Debugging Kernels with Nsight

• Overview reveals warps, active and valid masks of individual threads

• Focus warp and current thread (red = error) indicated by yellow arrow

25.04.2022 CUDA and Applications to Task-based Programming 70

The overview of the active threads can list them all, warp by warp, and indicate which thread is currently
the focus thread. Developers are free to switch between threads and warps and inspect the local results for
any of them. As shown here, threads are color-coded to indicate their state, e.g., in this case, the entire
warp is an exceptional state due to a read from an illegal address. Selecting the respective warp and
analyzing the content of its threads’ variables should enable developers to identify what caused this error.

70

Reims 2022

Sanitizing with CUDA-Memcheck Suite

• Run as cuda-memcheck –-tool <tool> <application>

• memcheck: memory errors (access violations, leaks, API errors)

• synccheck: misuse of synchronization (invalid masks, conditions)

• racecheck: data races (read-after-write, write-after-read hazards)

• initcheck: evaluation of uninitialized values (global memory only)
25.04.2022 CUDA and Applications to Task-based Programming 71

Lastly, developers may use the memcheck suite to sanitize their kernels. These command-line-based
tools are capable of identifying fundamental issues that may lead to faulty results, such as memory access
errors, invalid use of synchronization primitives, race conditions, and failure to initialize memory.

71

Reims 2022

Helpful Libraries and Tools

Finally, we want to provide the aspiring CUDA developer with a short, exemplary list of libraries and
tools that may be helpful for the creation of larger projects.

72

Reims 2022

Examples of Commonly used Libraries

• CUB/Thrust: additional primitives and functions similar to standard library
• Algorithms: e.g., prefix sum, scan, sort
• Data structures and containers: e.g., vectors

• cuBLAS: basic linear algebra subprograms (BLAS) on top of CUDA

• cuFFT: efficient implementation of discrete fourier transform on the GPU

• cuSparse: algorithms and optimizations for working with sparse matrices

• TensorRT: interface to learning and inference capabilities with tensor cores

• CUTLASS: provides a range of templates for tensor core matrix computations
25.04.2022 CUDA and Applications to Task-based Programming 73

73

Reims 2022

Compiler Explorer

• Online compiler and assembly viewer: https://godbolt.org

• Currently runs several versions of NVCC 9 through 11

• Allows for inspection of PTX and SASS machine code from C++ input

• Useful for exploring, sharing and discussing the resulting low-level
instructions and effectiveness of given C++ code snippets

• We used it a lot during the preparation of this tutorial!

25.04.2022 CUDA and Applications to Task-based Programming 74

74

Reims 2022

References

[1] Sutter, H. (2005). "The free lunch is over: A fundamental turn toward concurrency in software".

Dr. Dobb's Journal. Vol. 30 no. 3.

[2] Difference between CUDA and OpenCL 2010

[3] NVIDIA, CUDA Programming Guide

[4] NVIDIA, Kernel Profiling Guide

[5] NVIDIA, PTX ISA

[6] NVIDIA, Nsight Systems Documentation

[7] NVIDIA, Nsight Compute Documentation

[8] NVIDIA, Developer Forums

25.04.2022 CUDA and Applications to Task-based Programming 75

75

Reims 2022

More?

• More on Better Performance with CPUs and GPUs (Talk)
• More on Independent Thread Scheduling (Volta Architecture, Blog)
• More on Streams (Blog)
• More on Nsight Visual Studio (Code) Edition (Demo)
• More on Nsight Systems (Talk)
• More on Nsight Compute (Talk)
• More Code!

25.04.2022 CUDA and Applications to Task-based Programming 76

76

https://cuda-tutorial.github.io

25.04.2022 CUDA and Applications to Task-based Programming 77

77

