
EUROGRAPHICS 2003 STAR – State of The Art Report

Realtime Ray Tracing
and its use for

Interactive Global Illumination

Ingo Wald† Timothy J.Purcell‡ Jörg Schmittler† Carsten Benthin† Philipp Slusallek†

{wald,schmittler,benthin,slusallek}@graphics.cs.uni-sb.de tpurcell@graphics.stanford.edu
†Computer Graphics Group ‡Computer Graphics Group

Saarland University Stanford University

Abstract
Research on realtime ray tracing has recently made tremendous advances. Algorithmic improvements together
with optimized software implementations already allow for interactive frame rates even on a single desktop PC.
Furthermore, recent research has demonstrated several options for realizing realtime ray tracing on different
hardware platforms, e.g. via streaming computation on modern graphics processors (GPUs) or via the use of
dedicated ray tracing chips. Together, these developments indicate that realtime ray tracing might indeed become
a reality and widely available in the near future.
As most of todays global illumination algorithms heavily rely on ray tracing, this availability of fast ray tracing
technology creates the potential to finally compute even global illumination – the physically correct simulation of
light transport – at interactive rates.
In this STAR, we will first cover the different research activities for realizing realtime ray tracing on different
hardware architectures – ranging from shared memory systems, over PC clusters, programmable GPUs, to custom
ray tracing hardware. Based on this overview, we discuss some of the advanced issues, such as support for dynamic
scenes and designs for a suitable ray tracing API. The third part of this STAR then builds on top of these techniques
by presenting algorithms for interactive global illumination in complex and dynamic scenes that may contain large
numbers of light sources. We believe that the improved quality and the increased realism that global illumination
adds to interactive environments makes it a potential “killer application” for future 3D graphics.

1. Introduction

The ray tracing algorithm is well-known for its ability to
generate high-quality images, making it the de-facto stan-
dard for high-quality rendering and for almost all lighting
simulation systems. On the other hand, ray tracing is well-
known for its long rendering times, often taking minutes to
hours for a single frame. Therefore, ray tracing is usually
only applied in an offline context.

Recently, however, algorithmic, implementation, and
hardware improvements have made it possible to speed up

ray tracing for interactive use, at least for moderate reso-
lutions and frame rates. These recent developments suggest
that realtime ray tracing might indeed be ubiquitously avail-
able in the near future.

The availability of realtime ray tracing would offer a num-
ber of interesting benefits for computer graphics in general:
Among others, ray tracing offers physical correctness, ease-
of-use for users and developers, efficient handling of com-
plex models, and support for advanced algorithms like global
illumination (Figure 1).

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

Figure 1: Several application demonstrating the benefits of realtime ray tracing: a.) Physical correctness: accurate simulation
of reflection and refraction in a car headlight. b.) Ease of use: easily combining different shaders. Shown is an office scene with
textures, procedural shaders, shadows, reflections, and with volume and lightfield objects. c.) Massively complex geometry: the
Sunflowers scene consists of roughly onebillion triangles and is rendered with shadows and semi-transparent leaves. d.) Support
for advances lighting algorithms: interactively simulating global illumination effects. All these applications run interactively
today and will be discussed in more detail later in this report.

Image quality and physical correctness:Ray tracing
closely models the physical process of light propagation (in
reverse) and thus is able to accurately compute global and
advanced lighting and shading effects. It exactly simulates
shadows, reflection, and refraction on arbitrary surfaces even
in complex environments (see Figure 1a).

Ease of use:Ray tracing automatically combines shading
effects from multiple objects in the correct order. This al-
lows for building the individual objects and their shaders in-
dependently and have the ray tracer take care of correctly
rendering the resulting combinations of shading effects (see
Figure 1b). This feature is essential for robust industrial ap-
plications.

Efficient handling of complex geometries:Ray tracing ef-
ficiently supports huge models with billions of polygons
showing a logarithmic time complexity with respect to
scene size. Additionally, ray tracing features inherent pixel-
accurate occlusion culling and demand-driven and output-
sensitive processing that computes only visible results. For
example, shadows and reflections are only calculated for ac-
tually visible points. Taken together, this allows ray tracing
to be highly efficient even for massively complex environ-
ments (see Figure 1c).

Support for advanced lighting algorithms: The ability to
quickly trace millions of rays from arbitrary positions into
arbitrary directions is a prerequisite for many advanced ren-
dering effects including interactive global illumination (see
Figure 1d). The flexibility of tracing such arbitrary rays is a
unique advantage of ray tracing.

For a more in-depth discussion of these advantages and
disadvantages of ray tracing, also see the 2001 STAR on in-
teractive ray tracing92. Figure 1 shows some example appli-
cations that run interactively on todays realtime ray tracing
engines. These applications will be discussed in more detail
below.

1.1. Outline

This report is organized into three parts. Part 1 first discusses
the different approaches to realizing realtime ray tracing:
Section 2 summarizes purely software-based approaches. As
this topic has already been addressed in a previous STAR on
interactive ray tracing92, we will concentrate on the most
interesting and most recent improvements since then. Sec-
tion 3 reports on the use of programmable graphics hard-
ware for ray tracing. Finally, Section 4 discusses the option
of designing specialized hardware for realtime ray tracing.

Part 2 discusses advanced topics of realtime ray tracing,
such as support for dynamic scenes (Section 6), issues for
future realtime ray tracing APIs (Section 7), and potential
and implications for future applications (Sections 8 and 9).

Finally, Part 3 covers the question how realtime ray trac-
ing can best be used for achieving interactive global illumi-
nation. We briefly summarize approaches that are not based
on realtime ray tracing, but focus on the specific impact of
realtime ray tracing on interactive global illumination.

PART ONE

Realizing Realtime Ray Tracing

Today, there are three different hardware platforms on which
realtime ray tracing can be realized:

CPUs run highly optimized and parallelized software im-
plementations of the classical ray tracing algorithm.

Programmable GPUs are used as massively parallel, pow-
erful streaming processors, that run a specialized software
ray tracer.

Special-purpose hardware architecturesare explicitly
designed VLSI chips to achieve maximum performance
for realtime ray tracing.

Software-based systems essentially run fast implementa-
tions of the traditional ray tracing algorithm. However, they

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

have specifically been optimized for speed rather than for
quality and flexibility. Additionally, they often use parallel
or distributed processing to achieve interactive frame rates.
This parallelization can be realized on both shared memory
multiprocessor-machines54, 55, 64, 62, 63, as well as on loosely-
coupled clusters of commodity PCs90, 93, 13.

Recently, Purcell et al.69 have shown that ray tracing can
also be realized on programmable graphics hardware. In his
work, Purcell has exploited the programmability of todays
GPUs by using the graphics card as a massively parallel,
highly efficient streaming processor. Here, the recursive ray
tracing algorithm is first reformulated as a stream process-
ing task by expressing the core algorithms of ray tracing –
i.e. traversal, intersection, and shading – as small “kernels”
that operate on a stream of pixels and textures, where each
pixel corresponds to exactly one ray. The different kernels
can then be implemented using pixels shaders, and can be
executed by applying the respective pixel shader to a screen-
aligned quad.

Finally, the third alternative to realizing ray tracing is the
design of custom hardware that is specialized for ray tracing.
In that approach, the whole ray tracing algorithm is embed-
ded in hardware. Given todays hardware resources, Schmit-
tler et al.75 have recently shown that this approach is fea-
sible. In fact, it apparently can be realized using less hard-
ware resources than used in a modern GPU, and promises
to achieve full-screen ray-traced images at interactive rates
even on a single graphics chip.

Today, all of these three options are being actively pur-
sued, and will be briefly described in the following sections.

2. Realtime Ray Tracing in Software

In order to reach realtime ray traced frame rates with a soft-
ware system, one has to focus on two different aspects: First,
the system has to be built on a highly optimized ray trac-
ing kernel that optimally uses the CPU. Second, as even the
fastest CPUs today cannot deliver the performance needed
for practical applications using a software based system also
requires to combine the resources of multiple CPUs by using
parallel or distributed ray tracing.

Interactive Ray Tracing on Shared Memory Systems

Though ray tracing itself trivially lends itself to paralleliza-
tion, special care has to be taken in an interactive setting
where only a minimum amount of time can be spent on
communication and synchronization. Generally, these issues
– fast inter-processor-communication and synchronization –
can best be handled on shared memory computers.

Thus, it is not surprising that interactive ray tracing has
first been realized on massively parallel shared memory su-
percomputers. These systems provided the required floating

Figure 2: Two examples from the Utah Interactive Ray Trac-
ing System. Left: A typical ray-traced scenes with paramet-
ric patches, shadows and reflections. Right: Complex volume
rendering. (Image courtesy of Steve Parker)

point power and memory bandwidth, and combined the per-
formance of many CPUs with relatively little effort.

The first to achieve interactive frame rates on such plat-
forms were Muuss et al.54, 55 who used interactive ray trac-
ing to simulate radar systems in highly complex CSG (Con-
structive Solid Geometry) environments that would other-
wise have been impossible to be rendered interactively.

On a similar hardware platform, Parker et al.64, 62, 63 were
the first to show a full-featured ray tracer with shadows, re-
flections, textures, etc (see Figure 2a). Additionally, their
system allows for high-quality volume rendering62 and iso-
surface visualization63 (see Figure 2b).

Interactive Ray Tracing on PC clusters

Today, a more cost-effective approach to obtain high com-
pute power is the use of a clusters of commodity PCs. Such
systems are already widely available and usually cost only a
fraction of a shared memory machine while providing equiv-
alent performance. However, PC clusters do have certain
drawbacks as compared to a shared memory supercomputer,
i.e. they do not offer hardware-supported inter-processor
communication, and they have less memory, less commu-
nication bandwidth, and higher latencies.

The Saarland RTRT/OpenRT Engine

In 2001, Wald et al.90, 93 showed that interactive ray tracing
can also be realized on such low-cost hardware. Their sys-
tem – the Saarland University’s RTRT/OpenRT ray tracing
engine† – combines a fast ray tracing core with sophisticated
parallelization on a cluster of commodity PCs. In the mean-
time, this system has been extended to a complete rendering
engine featuring a fast ray tracing core, efficient paralleliza-
tion, support for dynamic scenes, and a flexible and powerful
API.

† Note: “RTRT” refers to the “RealTime Ray Tracing” core of the
engine, while “OpenRT” refers to the API through which this engine
is driven (see Section 7)

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

The Utah “Star-Ray” Architecture

Just recently, the above-mentioned “Utah-system”64, 62, 63

(now called “Star-Ray”) has also been ported to run on a PC
clusters13. It too consists of a sophisticated parallelization
framework around a highly optimized ray tracing core. In
its core, the new system uses the same algorithms as on the
original system on the Onyx63: Highly efficient traversal of
the volume data set that quickly skips uninteresting regions,
efficient data layout using bricking to improve caching (re-
ported to bring up to a tenfold performance improvement on
certain architectures76), optimized algorithms for analytic
ray-isosurface intersection computation, and efficient paral-
lelization in the image plane.

While certain of the systems aspects – i.e. the distribu-
tion framework and optimization for memory accesses – are
similar to the RTRT/OpenRT engine, the system has been
optimized mainly for the interactive visualization of vol-
umes and isosurfaces, and does not primarily target polyg-
onal scenes and lighting simulation.

Due to the above-mentioned drawbacks of using PC clus-
ters – less memory, less communication bandwidth, and
higher latencies – the parallelization and communication
layer of the PC-based Star-Ray system had to be adapted13.
Similar to the Saarland System, they now use a client-server
approach, in which the server controls the clients via TCP/IP
by sending them image tiles to be computed. Using the
same number of nodes, their cluster-based system achieves
roughly the same performance as the original, shared mem-
ory based system on the Onyx (see Figure 3).

The new Star-Ray system is also able to handle massively
complex volume data sets by implementing a software layer
offering a distributed shared memory architecture: Volume
data is separated into disjoint regions that are kept distributed
among the different machines. If a client needs access to
remote data, this software layer transparently fetches and
caches the required data. Additionally, they perform several
optimization to reduce the bandwidth for transferring these
tiles. Their system for handling massive volume data is sim-
ilar to the approach that Wald et al. have taken for render-
ing massive polygonal data sets93, but uses a better, dis-
tributed scheme of storing the data. While this distributed
data storage costs roughly half the performance of their sys-
tem, it allows them to render an eight gigabyte dataset (of
a Richtmyer-Meshkov instability) at interactive rates with
high-quality analytic isosurfaces, as shown in Figure 3.

As can be seen, both the Saarland Engine as well as the
new Utah engine have concentrated on similar issues: First,
a highly optimized kernel that especially considers mem-
ory effects. Second, sophisticated parallelization with spe-
cial emphasis on handling the bandwidth and latency issues
of a PC cluster.

While volume rendering obviously requires different al-
gorithms and optimizations than ray tracing in polygonal

Figure 3: Left: One frame from an eight gigabyte volume
data set rendered interactively with analytic isosurfacing.
Right: Performance comparison of their new, cluster based
system is comparison to the Onyx. Using the same number of
nodes, their cluster based system provides roughly the same
performance as the Onyx system.

scenes, many of the concepts are still similar. As the scope
of this STAR is more on polygonal rendering, we will in the
following concentrate on the Saarland engine. Before dis-
cussing the actual parallelization aspects in Section 2.2 we
briefly summarize the most recent developments in realtime
ray tracing.

2.1. The RTRT Realtime Ray Tracing Kernel

The RTRT “RealTime Ray Tracing” kernel concentrates
mostly on efficient data layout to minimize memory access,
and on optimally exploiting processor caches. These tech-
niques are essential for good performance on todays CPUs,
which often waste most of their time waiting for data from
memory. Additionally, the RTRT system leverages the SIMD
extensions of modern CPUs that perform several floating
point operations in a single operation. This is only possible
due to algorithmic changes that expose the coherence of the
ray tracing algorithm. These algorithmic changes concen-
trate around rearranging the ray tracing algorithm to trace,
intersect, and shadepacketsof rays instead of recursively
tracing individual rays. This amortizes memory access over
several rays and enables the use of SSE instructions32 by
performing operations on four rays in parallel.

Both general design and algorithmic aspects of the RTRT
kernel have already been covered in depth in the original
STAR on interactive ray tracing92. Since then, however, this
kernel has been gradually improved, including both signif-
icant performance improvements in ray traversal and inter-
section, as well as improvements in shading and flexibility.

2.1.1. Ray Traversal and Intersection

The RTRT software ray tracing kernel still builds on “Coher-
ent Ray Tracing”90, but has been completely reimplemented
to gain even higher performance. Additionally, the new ker-
nel employs algorithmic improvements on BSP construction
using advanced cost prediction functions31 to achieve even
higher performance. Even when traversing single, incoher-
ent rays (i.e.withoutusing the SSE instruction set) the new

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

kernel is slightly faster than the originally published system
tracing packets of rays. Exploiting the full performance of
the SIMD code then achieves an additional performance im-
provement of 2–3 when shooting coherent rays. It is impor-
tant to note that the RTRT kernel does not use any approxi-
mations to achieve this speedup. It still performs at least the
operations of a traditional ray tracer.

The improvements have also been supported by better
compilers. Even though experiments with automatic SIMD
code generation by the compiler have been disappointing,
modern compilers offer increasingly powerful tools for writ-
ing optimized software. For example, the recent GNU gcc
and the Intel C/C++ compilers now support “intrinsics” that
allow for writing easily maintainable low-level SIMD code
in a C-style manner that can then be tightly integrated with
standard C/C++ code33. Using intrinsics also allows the
compiler to perform automatic low-level optimizations such
as loop unrolling, instruction reordering, constant propaga-
tion, register allocation, etc., which a compiler can do much
better than a programmer.

Figure 4: The “ERW6” and “soda” scenes (800 and 2.5
million triangles, respectively) rendered at1024×1024pix-
els on a single Pentium-IV 2.5GHz CPU using the RTRT
kernel. Including shading, these scenes run at 2.3 and 1.8
frames per second, respectively. Only tracing the rays – i.e.
without shading – RTRT achieves 7.1 respectively 4.1 frames
per second, see Table 1.

These recent improvements - better implementation, com-
pilers, and BSPs – allow the new kernel to achieve significant
improvements over earlier data90 by roughly a factor of 2.5
to 3 even when normalized by the speed of the processors
(see Figure 4).

Additionally, CPU speed has increased by roughly a fac-
tor of 4 since the original publication – from the 800MHz
Pentium-IIIs used in90 to almost 3 GHz Pentium-IVs avail-
able today. This combination of algorithmic improvements
with higher CPU speed now allows for tracing several mil-
lion rays per second even on a single CPU, as can be seen in
Table 1.

RT & shading SSE SSE non-SSE
CPU/scene none simple simple

Pentium-IV 2.5 GHz

ERW6 (static) 7.1 2.3 1.37
ERW6 (dynamic) 4.8 1.97 1.06
conf (static) 4.55 1.93 1.2
conf (dynamic) 2.94 1.6 0.82
soda hall 4.12 1.8 1.055

AthlonMP 1700+ (1.5GHz)

ERW6 (static) 3.7 1.55 0.9
ERW6 (dynamic) 2.54 1.29 0.7
conf (static) 2.5 1.25 0.77
conf (dynamic) 1.7 1.0 0.58
soda hall 2.11 1.14 0.67

Table 1: Ray casting performance in million rays per sec-
ond on asingleCPU at a resolution of1024×1024pixels
using a 2.5 GHz Intel Pentium-4 notebook (top) and on an
AMD AthlonMP 1700+ (1.5 GHz, bottom). Though ray trac-
ing scales nicely with scene complexity, even simple shading
can already cost more than a factor of two given our cur-
rent ray tracing performance! The above numbers directly
correspond to the achievable frame rate on asingle CPU
at full-screen resolution (1024× 1024pixels) . The ERW6,
soda hall, and conference scenes can be seen in Figures 4a,
4b, and 26b, respectively.

2.1.2. Shading

Compared to the original system presented in90, the new en-
gine also offers shader plug-ins to support arbitrary shading
computations — generating initial camera rays, computing
the scattering of light at surfaces, sampling light sources, and
processing pixel data.

As shading has traditionally been cheap compared to cast-
ing rays, most optimizations in the RTRT engine so far have
focussed on the core ray tracing computations, i.e. on BSP
traversal and triangle intersection. With the recent improve-
ments in ray tracing performance, however, shading is now
becoming the bottleneck. In contrast to other ray tracers
most of the time is now spent in shading calculations, and
tracing rays usually takes significantly less than 50% of total
rendering time even for complex scenes and simple shading.
This is mainly due to the need to split up coherent packets of
rays and to feed them to shaders, which can currently only
operate on single rays. Even though this is still faster than
tracing all rays individually (see Table 1), the overhead can
cut performance in half !

However, the flexibility of shader plug-ins is essential
for making a ray tracing engine a general tool that enables
the unique applications discussed in later sections, so this
penalty is currently unavoidable. Still, these results indicate
that in the future, more effort should be concentrated on fast

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

and efficient shading computations and in particular on an
efficient interface between ray tracing and shading. The ef-
ficient shading of packets of coherent rays in a streaming
manner requires closer investigation. This has been shown to
work well for fixed lighting models8, but has to be adapted
to general shading operations.

2.2. Distribution Issues of the RTRT Engine

Even though the performance of the RTRT kernel allows
some limited amount of interactive ray tracing on a sin-
gle processor, one CPU alone still cannot (yet) deliver the
performance required for practical applications, which re-
quire complex shading, shadows, and reflections. Achiev-
ing sufficient performance on todays hardware requires to
combine the computational resources of multiple CPUs. In
the medium term, it is likely that small-scale multiproces-
sor shared-memory systems will become available for the
PC market. Until then however the most cost-effective ap-
proach to compute power is the use of a distributed-memory
PC cluster.

2.2.1. General System Design

In the following we briefly discuss the main issues of high-
performance parallelization in a distributed cluster environ-
ment, by taking a closer look at the distribution framework
of the RTRT/OpenRT interactive ray tracing engine.

Screen Space Task Subdivision:Effective parallel pro-
cessing requires breaking the task of ray tracing into a set of
preferably independent subtasks. For predefined animations
(e.g. in the movie industry), the usual way of paralleliza-
tion is to assign different frames to different clients in huge
render farms. Though this approach successfully optimizes
throughput, it is not applicable to a realtime setting, where
only a single frame is to be computed at any given time.

For realtime ray tracing, there are basically two ap-
proaches:object spaceand screen spacesubdivision70, 11.
Object space approaches store the scene database distributed
across a number of machines, usually based on an initial spa-
tial partitioning scheme. Rays are then forwarded between
clients depending on the next spatial partition pierced by the
ray. However, the resulting network bandwidth would be too
large for our commodity environment.

Instead, we will follow the screen-based approach by hav-
ing the clients compute disjunct regions of the same image.
The main disadvantage of screen-based parallelization is that
it usually requires a local copy of the whole scene to reside
on each client, whereas splitting the model over several ma-
chines allows us to render models that are larger than the
individual clients’ memories. Usually, we do not consider
this special problem, and rather assume that all clients can
store the whole scene. In a related publication however, it
has been shown how this problem can be solved efficiently

by caching parts of the model on the clients (see93, 74). Using
this approach, models larger than each client’s memory can
be rendered, as long as the combined memories of all clients
are large enough to hold the working set of the model.

Load Balancing: In screen space parallelization, one com-
mon approach is to have each client compute every n-th pixel
(so-called pixel-interleaving), or every n-th row or scanline.
This usually results in good load balancing, as all clients get
roughly the same amount of work. However, it also leads to
a severe loss ofray coherence, which is a key factor for fast
ray tracing. Similarly, it translates to bad cache performance
resulting from equally reducedmemory coherence.

An alternative approach is to subdivide the image into
rectangular “tiles” and assign those to the clients. Thus,
clients work on neighboring pixels that expose a high degree
of coherence. The drawback is that the cost for computing
different tiles can significantly vary if a highly complex ob-
ject projects onto only a few tiles, while other tiles are empty.
For static task assignments– where all tiles are distributed
among the clientsbeforeany actual computations – this vari-
ation in the cost of tasks would lead to bad client utilization
and would result in low scalability.

Therefore, RTRT combines the tile-based approach with
a dynamic load balancing scheme: Instead of assigning all
tiles in advance, the clients follow a demand-driven strategy
and ask for work: As soon as a client has finished a tile,
it sends its results back to the master, which automatically
requests the next unassigned tile.

2.2.2. Performance Issues on PC Clusters

Screen space parallelization and dynamic load balancing are
both well-known and are applied in similar form in many
different parallel ray tracing systems (for an overview, see
e.g.11). However, the need for communication with the dif-
ferent client machines – together with the high network la-
tencies of commodity PC hardware – require very careful
optimizations and several additional techniques to achieve
realtime performance and good scalability.

Efficient communication: Most standardized libraries
such as MPI19 or PVM 21 cannot provide the required level
of flexibility and performance that we are faced with in an in-
teractive environment. Therefore, all communication in the
RTRT/OpenRT engine has been implemented from scratch
with standard UNIX TCP/IP calls. This ensures a minimum
of communication latency, and extracts the maximum per-
formance out of the network.

Task prefetching: Upon completion of a task, a client sends
its results to the server, and – in dynamic load balancing –
has to wait for a new task to arrive. This delay (the network
round-trip time) is usually the worst problem in dynamic
load balancing, as it may result in the clients running idle
waiting for work.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

To cope with this problem, we have each client “prefetch”
several tiles in advance. Thus, several tiles are ’in flight’ to-
wards each client at any time. Ideally, a new tile is just ar-
riving every time a previous one is sent back to the server.
Currently, each client is usually prefetching about 4 tiles.
This however depends on the ratio of compute performance
and tile cost to network latency and might differ for other
configurations.

Frame interleaving: Another source of latency is the in-
terval between two successive frames, in which the appli-
cation usually changes the scene settings before starting the
next frame. During this time, all clients would run idle. To
avoid this problem, rendering is performed asynchronously
to the application: While the application specifies frameN,
the clients are still rendering frameN−1. Note, that this is
similar to usualdouble buffering73, but with one additional
frame of latency.

Differential updates: For realistic scenes the network
bandwidth obviously is not high enough for sending the en-
tire scene to each client for every frame. Thus, only differen-
tial updates are sent between subsequent frames: Only those
settings that have actually changed from the previous frame
(e.g. the camera position, or a transformation of an object)
will be sent to the clients. These updates are sent to the
clients asynchronously: The server already streams partial
updates of frameN while the application continues specify-
ing the differences and while the clients are still working on
frameN−1. Of course, this requires careful synchronization
via multiple threads on both clients and server.

Multithreading: Due to a better cost/performance ratio,
each client is a dual-processor machine. Using multithread-
ing on each client then allows sharing of most data between
these threads, amortizing the communication cost for scene
updates over two CPUs.

2.2.3. Results

In its standard configuration, the RTRT/OpenRT engine runs
on a cluster of up to 24 dual processor AMD AthlonMP
1800+ PCs with 512 MB RAM each (48 CPUs total). The
nodes are interconnected by a fully switched 100 Mbit Eth-
ernet using a single Gigabit uplink to the master display and
application server to handle the large amounts of pixel data
generated in every frame. Note that this hardware setup is
not even state of the art, as much faster processors are al-
ready available. It seems reasonable to assume that the ray
tracing performance of this setup will be commonly avail-
able on the desktop only a few years from now.

The master machine is responsible for communicating
with the application (see Section 7) and centrally manages
the cluster nodes as described above. Given the ray tracing
performance shown in Section 2.1, efficient load balancing
requires having enough tasks with a high enough cost avail-
able in order to offset the high communication latency of

 0

 5

 10

 15

 20

1 8 16 24 32 40 48

fra
m

es
 p

er
 s

ec
on

d

CPUs

Office
Headlight

Power Plant
Sunflowers

Conference Room (Global Illumination)
Shirley 6 (Global Illumination)

Power Plant (Global Illumination)

CPUs 2 4 8 16 24 32 48

PP/S 1.26 2.36 5.06 9.52 13.8 18.2 22.2
PP/IGI 0.61 1.03 2.18 4.3 ∼6 ∼8 11.1
SF 0.3 0.59 1.18 2.45 3.36 4.87 7.01

Table 2: Scalability of our distributed ray tracing engine
for different scenes (PP/S: “Power Plant” scene with simple
shading, PP/IGI: power plant with instant global illumina-
tion 91, SF: Oliver Deussens “Sunflowers”). The impact of
the cost per pixel can be seen in the power plant scene: For
simpler shading we start to see load balancing problems at
24 CPUs because at a resolution of 640x480 we no longer
have enough jobs to keep all clients busy. For complex com-
putations like global illumination this problem occurs later.
For the respective scenes see Figures 18, 20, and 26.

Ethernet. For simple scenes with simple shading, it becomes
a problem to have enough tiles available to keep all clients
busy. However, using more and smaller tiles increases the
network load and decreases the available coherence within
each tasks. For a given number of clients and compute-to-
latency ratio there is a tile size that optimizes the achievable
frame rate. While this optimal tile size depends on the actual
settings, 16×16 pixels has shown to be reasonably good for
most scenes.

As seen in Table 2 load balancing works fairly well for
reasonably complex scenes and a good computation to la-
tency ratio. Fortunately, many interesting applications —
such as global illumination — require costly computations
per pixel and thus scale well to 48 processors and more (see
Table 2 and Part 3). The distribution process is completely
transparent to both applications and shaders. The application
runs only on the master machine and interacts with the ren-
dering engine only through the OpenRT API (see Section 7).
The shaders are loaded dynamically on the clients and com-
pute their pixel values independently of the application.

The achieved performance allows the RTRT/OpenRT en-
gine to be used in many practical applications already to-
day 86, including the visualization of massively complex
models, interactive lighting simulation, high-quality render-
ing, and even interactive global illumination. An overview
of these applications will be given in Section 8.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

3. Ray Tracing on Programmable GPUs

For the last several years, graphics hardware has seen a faster
rate of performance increase than CPUs. Modern CPU de-
sign is optimized for rapid execution of serial code. It is be-
coming increasingly difficult to realize performance benefits
by adding extra transistors. The GPU on the other hand, is
optimized for massively parallel vertex and fragment shad-
ing code51. Transistors spent on additional functional units
directly improve performance. As such, GPUs are able to
utilize extra transistors more efficiently than CPUs, and GPU
performance gains will continue to out pace CPU perfor-
mance gains as semiconductor fabrication technology ad-
vances.

Recently, GPUs have become programmable in an effort
to expand the range of shading effects they can produce. This
programmability has enabled several algorithms to be ported
to the GPU9, 30, 43, 46, many of which run at rates competi-
tive with or faster than a CPU-based approach. The ubiquity
and low cost of graphics processors, coupled with their per-
formance on parallel applications, makes them an attractive
architecture for implementing realtime ray tracing.

Graphics algorithms like ray tracing can benefit from a
GPU-based implementation in two other ways. First, when
an algorithm executed on the GPU finishes running, the data
meant for display is already on the graphics card. There is
no need to transfer data for display. Second, graphics algo-
rithms can work as hybrid algorithms, supplementing the ca-
pabilities of the GPU, and leveraging existing GPU render-
ing capabilities. For example, a ray tracer could be used to
add global illumination effects like shadows, reflections, or
indirect lighting to a polygon renderer.

We will examine two different approaches to using the
GPU for ray tracing. Both utilize the high computational
throughput of the GPU to obtain rendering rates compara-
ble to those obtained by the fastest software-only ray tracers.
Section 3.2 describes the work done by Carr et al.10 in con-
figuring the GPU as a ray-triangle intersection engine. Sec-
tion 3.3 then describes the work by Purcell et al.69 in map-
ping the entire ray tracing computation to a programmable
GPU. Before discussing either implementation, we review
the modern programmable graphics pipeline in Section 3.1.

3.1. Modern Graphics Pipeline

Figure 5 shows an abstraction of the graphics pipeline used
by GPUs like the ATI Radeon 9800 Pro3 or the NVIDIA
GeForce FX 5900 Ultra57. The vertex and fragment stages
are implemented with programmable engines that execute
user defined programs. Modern GPUs have support for float-
ing point computation throughout most of the pipeline, and
have floating point frame buffer and texture memory. The
two GPU-based ray tracing systems examined in this report
only use fragment programs, so we will not consider the ver-
tex engine further.

Application

Vertex Program

Rasterization

Fragment Program

Display

Figure 5: The programmable graphics pipeline. The gray
boxes show the programmable vertex and fragment engines
available on modern GPUs. Older GPUs have fixed function
vertex and fragment processing stages.

Input Registers

Output Registers

Constants

Temp Registers

Textures

Shader
Program

Figure 6: The programmable fragment processor. A shader
program can read data from input registers, constants, tex-
ture memory, and temporary registers. Temporary regis-
ters store intermediate calculations, and the output registers
store the final color values for the fragment.

The execution model for the fragment engine is shown in
Figure 6. Fragment programs are written in a 4-way SIMD
assembly language60, 58, which includes common operations
like add, multiply, dot product, and texture fetch. Fragment
programs are currently limited to 64 or 1024 instructions,
depending on the specific chip being used. These limits are
likely to increase with future generations of GPUs.

Current GPUs do not allow data dependent looping or
branching within fragment programs, though this limitation
is likely to be removed in upcoming generations. Data de-
pendent texture fetches are allowed, however. A dependent
texture fetch is simply a texture fetch at an address that has
been computed, unlike a standard texture fetch where the

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

address is determined by interpolated texture coordinates.
Modern hardware allows for at least four levels of depen-
dent texture fetches.

Finally, modern graphics hardware provides the
NV_OCCLUSION_QUERY extension59. An occlusion query
simply returns a count of the number of fragments that were
drawn to the frame buffer between the start and end of the
query. In order to hide the latency and minimize pipeline
flushes the results of a query can obtained later after more
geometry has been rendered.

The ray engine requires only floating point computation to
work correctly. The streaming ray tracer, on the other hand,
relies on all the described features of modern GPUs. While
each system takes a fairly different approach to GPU-based
ray tracing, both initiate computation in a similar fashion,
and both configure the GPU as a high performance parallel
compute engine.

3.2. The Ray Engine

The ray engine10 implements a ray-triangle intersection rou-
tine as a fragment program on programmable graphics hard-
ware. Batches of rays are sent down to the GPU from a CPU-
based rendering task. A series of triangles is then streamed
down to the GPU where they are intersected with all the
rays in the batch. Finally, the results of the intersection tests
are read back to the host to be used in subsequent rendering
stages.

The ray engine is set up to allow it to integrate into exist-
ing applications that utilize ray-triangle intersection. Monte
Carlo ray tracing, photon mapping, form factor computation,
and general visibility preprocessing all use ray-triangle inter-
section routines. The ray engine could replace the software
ray-triangle intersection routine, freeing host CPU cycles for
shading or other tasks.

3.2.1. Implementation

The ray engine is designed to accept batches of rays and tri-
angles from a host application and return the nearest triangle
intersection (hit) point for each ray. Rays are downloaded to
the GPU as two screen sized textures: one texture for the ray
origin, and one texture for the ray direction.

Triangles are distributed to each ray by drawing a screen
sized quadrilateral. The triangle data is stored as vertex inter-
polants (e.g. color and texture coordinates). Each vertex has
an identical interpolant value, meaning interpolation during
rasterization distributes an identical copy of the triangle data
to each pixel.

Ray-triangle intersection happens one triangle at a time
over all the downloaded rays. A pixel shader implements
ray-triangle intersection between the ray parameters fetched
from texture memory and the triangle data stored in inter-
polant memory. Output from the intersection test is stored in

the frame buffer. The alpha value indicates whether a given
ray found an intersection point. The color buffer stores the
triangle id of the closest hit. The z-buffer is used to store
the ray-triangle intersection distance. The built in z-test en-
sures that the nearest intersection point is always stored. The
host reads back the hit information contained in the color
and depth buffers once all triangles have been sent through
the pipeline.

Intersecting all rays against the entire scene database
would reduce the ray engine to a brute force ray-triangle
intersector. Instead, triangles and rays are batched up into
coherent batches, and these batches are downloaded to the
GPU and results are read back. Sufficiently incoherent rays
are intersected directly on the host.

3.2.2. Results

The ray engine was originally implemented on the Radeon
85001. This early programmable GPU was missing several
features found on more recent GPUs, most notably floating
point textures and floating point math operations in fragment
programs. Floating point is essential for avoiding artifacts in
a ray tracer, as evidenced by the teapot rendering shown in
Figure 7.

Figure 7: Teapot rendered by the ray engine on the Radeon
8500. Ray tracing computations require floating point frag-
ment programs and textures to eliminate precision artifacts.

Though the Radeon 8500 implementation of the ray en-
gine did not produce usable images, it served to provide an
estimate of how fast ray-triangle intersection on the GPU
could be. The ray engine could perform 114M intersection
tests per second, a number nearly three times the rate of
the fastest software ray tracer (implemented on an 800 MHz
Pentium III90).

The ray engine was also simulated on a GPU with float-
ing point capabilities. The simulated performance was be-
tween 100K and 200K rays per second. Images generated by
the simulator are shown in Figure 8. The office scene was
rendered with classic ray tracing using multiple point light
sources. The Cornell box with teapot scene was rendered
with a Monte Carlo ray tracer.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

Figure 8: Images generated by the ray engine for a simu-
lated GPU with floating point capabilities. The office scene
was rendered with classic ray tracing, and the Cornell box
with teapot scene was rendered with Monte Carlo ray trac-
ing.

The overall performance of the ray engine is determined
by the amount of hit readback to the host relative to the num-
ber of triangles intersected. For a small number of triangles,
reading back the hits can be the performance limiting factor.
For large numbers of triangles, the readback cost is amor-
tized over the increased number of intersection tests. Since
triangles are sent to the GPU in coherent batches, scenes
lacking ray-triangle coherence will not be able to take advan-
tage of the high ray-triangle intersection rates of the GPU.

3.2.3. Summary

The ray engine uses the GPU as a ray-triangle intersection
co-processor. The host rendering process downloads batches
of rays and triangles to the GPU, and the GPU returns the
nearest hit for each ray over the set of triangles. The raw
ray-triangle intersection rate achieved by the ray engine is
much faster than CPU-based ray-triangle intersection rates,
yet overall rendering performance is limited by the amount
of hit data read back by the host.

3.3. Streaming Ray Tracer

The streaming ray tracer described by Purcell et al. takes a
different approach toward GPU-based ray tracing. The ray
engine only mapped ray-triangle intersection onto the GPU.
The streaming ray tracer maps the entire ray tracing com-
putation to the GPU including ray generation, acceleration
structure traversal, triangle intersection, and shading.

A system flow diagram for the streaming ray tracer is
shown in Figure 9. Each of the boxes represents a separate
fragment program (or computation kernel), and the arrows
represent the data flow (streams) between different stages
of the execution. As with the ray engine, the computation
for each kernel is initiated by drawing a screen filling quad.
However, unlike the ray engine, triangles are stored in tex-
ture memory and are accessed through a uniform grid ac-
celeration structure and not sent to the GPU as vertex inter-
polants.

Intersect
Triangles

Shade Hit
and Generate
Shading Rays

Traverse
Acceleration

Structure

Generate
Eye Rays

Camera

Grid of
Triangle List

Offsets

Triangle List
Triangles

Normals

Materials

Figure 9: The streaming ray tracer.

3.3.1. Implementation

The streaming ray tracer is implemented as four separate
kernels: the eye ray generator, the uniform grid traverser,
the ray-triangle intersector, and the shader. These kernels
are run as a sequence of rendering passes with the host con-
trolling which kernel gets run at each pass. Each pass con-
sists of binding the appropriate fragment program and draw-
ing a screen sized quadrilateral to initiate computation. Data
is streamed between kernels via texture memory. Each ray
stores state indicating which kernel it needs to execute next.

Kernels

Eye Ray Generator The eye ray generation kernel takes
camera parameters, including viewpoint and a view direc-
tion, and computes an initial viewing ray for each screen
pixel. This kernel also tests rays against the scene bound-
ing box and terminates rays that fail the bounding box test.
Rays that pass the bounding box test are sent to the traverser.

Traverser The uniform grid traversal kernel reads rays
and steps them through the grid using a 3D-DDA algo-
rithm 20. Grid cells are loaded from static texture memory.
Rays loop through this kernel until they exit the grid (and are
terminated), or they enter a voxel containing triangle data.
The ray data and voxel address are passed along to the inter-
section kernel.

Intersector The ray-triangle intersection kernel reads
rays and voxel addresses sent by the traverser and performs
ray-triangle intersection. Triangles are fetched from static
texture memory. Rays are processed against all the triangles
in the voxel. If a ray-triangle intersection (hit) occurs, the hit
information is passed along to the shading kernel. If no hit
is found after all triangles in the voxel are tested, the ray is
passed back to the traversal kernel.

Shader The shading kernel evaluates the color contribu-
tion of a given ray at the hit point. The shading kernel is also
responsible for computing secondary rays (such as shadow

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

rays and reflection rays) and passing those back to the traver-
sal kernel. Shading data is stored in texture memory and in-
dexed by triangle id.

Memory Layout

The streaming ray tracer takes advantage of the dependent
texturing capabilities of GPUs to traverse a uniform grid ac-
celeration structure on the hardware. The memory layout for
the scene database and acceleration structure is shown in
Figure 10.

27 69 ... 7860 4 17

1 3 45 ...0 3 21

... xyzxyz xyz xyz xyz

vox1 vox2 vox3 vox4 vox5 voxmvox0

vox0 vox1

... xyzxyz xyz xyz xyz

... xyzxyz xyz xyz xyz

tri1 tri2 tri3tri0 trin

v2

v1

v0

Grid
Texture

Triangle List
Texture

Triangle
Vertex

Textures

Figure 10: Texture memory layout for the streaming ray
tracer. Each grid cell contains a pointer to the start of the
list of triangles for that grid cell, or a null pointer if the
cell is empty. The triangle lists are stored in another texture.
Each entry in the triangle list is a pointer to a set of vertex
data for the indicated triangle. Triangle vertices are stored
in a set of three separate textures.

The grid is stored as a single component floating point
texture. Each grid cell either contains a pointer to the start of
the list of triangles for that grid cell, or a null pointer. The
triangle list texture stores the triangle id for every triangle
inside a given grid cell. The triangle id is used to locate the
actual triangle data. Triangle geometry data is stored as a
set of three floating point textures, one texture per vertex.
Triangle normals are stored as another set of three floating
point textures, and triangle vertex colors are stored as yet
another set of three textures.

The streaming ray tracer was designed to render static
scenes. The uniform grid acceleration structure is built off-
line, and the scene geometry along with the grid are down-
loaded to GPU texture memory once before rendering starts.
Dynamic scenes could be implemented by downloading a
new set of triangle and grid textures every frame.

Data passed between kernels is also stored in texture
memory. These textures are generated in the same manner
as intermediate outputs during a traditional multipass ren-
dering. The frame buffer is copied to texture memory at the
end of each kernel (save). Data is retrieved in the next pass
by doing a non-dependent texture lookup at each pixel (re-
store). To avoid precision artifacts, the data saved and re-
stored each pass by the streaming ray tracer requires floating
point texture and frame buffer memory.

Flow Control

Ray tracing inherently has data dependent loops. Each ray
can access a different number of triangles and a different
number of grid cells before finding a hit point. Looping in
the streaming ray tracer is accomplished through the use of
theNV_OCCLUSION_QUERY extension.

An occlusion query is issued around the screen sized quad
rendered at each step in the streaming ray tracer. Fragment
programs are set up such that they do not write to the frame
buffer when the ray they are computing is not in the currently
executing stage. For example, if an intersection pass is being
run but a given ray is in an empty voxel and needs to be tra-
versed further, it will not update the contents of the frame
buffer. The fragment is not counted by the occlusion query,
and the value returned by the query indicates how many rays
actually performed the computation each pass. The decision
of which kernel to run next is determined by the value re-
turned by the query.

Modern hardware makes executing looping with the oc-
clusion query slightly more efficient with early-z occlusion
culling. With early-z occlusion culling, fragments with depth
values that are guaranteed to fail the depth test can be dis-
carded right after rasterization. This frees up fragment pro-
cessor resources for pixels that need it. The streaming ray
tracer takes advantage of early-z occlusion culling by setting
the depth of fragments based on which fragment program
they need to execute next. This enables the hardware to skip
over rays that are not executing the current fragment pro-
gram.

3.3.2. Results

Purcell et al. implemented the streaming ray tracer in simu-
lation for their paper. They were able to demonstrate a pro-
totype system running on a Radeon 9700 Pro2 when it was
released. Figures 11 and 12 show two scenes rendered using
the streaming ray tracer.

Figure 11 shows a Cornell box scene rendered on the GPU
with an area light source. The random sample positions for

Figure 11: Cornell box scene ray traced with soft shadows
on the GPU.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

Figure 12: “Teapotahedron” scene ray traced with shadows
and reflections on the GPU. The right image is rendered with
reflections only.

the area light are pre-computed and stored in a texture. Fig-
ure 12 shows a simplified “teapotahedron” scene23. This
scene demonstrates that the streaming ray tracer can handle
reflections and shadows together.

The streaming ray tracer also runs in a hybrid mode, com-
bining ray tracing effects with standard pipeline rendering.
Figure 13 shows a level from Quake 3 that has been ren-
dered with the standard pipeline only, and the same scene
rendered with the standard pipeline plus ray traced shadows.

All of the preceding scenes rendered interactively at 256×
256 pixels. The rendering rates for all the scenes are summa-
rized in Table 3.

Scene Frame Rate

Cornell Box (Soft Shadows) 15 fps
Teapotahedron (Refl., Shadows) 3 fps
Teapotahedron (Refl. only) 5 fps
Quake 3 (Hybrid) 5 fps

Table 3: Rendering rates for the streaming ray tracer
demonstration scenes. Scenes were rendered at256× 256
pixels.

3.3.3. Summary

The streaming ray tracer takes advantage of the capabilities
of modern graphics hardware to map the entire ray tracing
computation onto the GPU. A sequence of multiple ren-
dering passes process rays through the various stages in a
ray tracer and generate the final display image. System per-
formance is dictated by the efficiency of early-z occlusion
culling to eliminate rays from processing. Even with lim-
ited hardware functionality, the prototype system was able
to achieve high frame rates for interesting scenes.

Figure 13: Quake 3 rendered with standard feed-forward
pipeline shading (left column) and with shadows (right col-
umn) added through a ray tracing shader.

3.4. Conclusions

Each of the methods for ray tracing on GPUs still have sev-
eral limitations that need to be addressed. The ray engine
is particularly sensitive to GPU texture download and frame
buffer readback performance. The readback path on current
GPUs is not particularly fast, reducing the utility of any sys-
tem designed around reading back data from the GPU.

The streaming ray tracer achieves relatively low utiliza-
tion of the computational resources on the GPU. The GPU
can only execute a single fragment program over all the frag-
ments generated in a given pass. That means any rays that are
intersecting triangles when a traversal pass is run would ide-
ally be idle. Unfortunately, every fragment generated runs
through the shader, but the outputs are simply masked for
those rays not participating in the pass. Early-z occlusion
culling helps reduce this overhead, but is not user control-
lable.

Despite these limitations, the ray engine and the streaming
ray tracer both utilize programmable GPUs for high perfor-
mance ray tracing. The inherently parallel nature of fragment
programs, coupled with the rate of performance increase of
GPUs make them an ideal candidate for implementing real
time ray tracing. Early implementations of two different ray
tracing systems on first generation programmable hardware
is able to match performance of single CPU-based ray trac-
ing systems.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

4. Dedicated Realtime Ray Tracing Hardware

In previous sections we discussed realtime ray tracing im-
plementations utilizing general purpose mainstream PC-
processors (Section 2) or the processor on the graphics card
available in most PCs (Section 3).

As an alternative to these software solutions it is highly
interesting to also analyze special purpose chips that accel-
erate parts or even the whole ray tracing process in dedi-
cated hardware. Although the development of hardware can
be very costly and time consuming, it allows for the most
efficient use of hardware resources and thus can potentially
offer the highest performance given currently available hard-
ware technology. This efficiency makes it very interesting
for industrial applications that require highest performance
together with advanced and quantitative visualization re-
sults. Dedicated hardware is also relevant in academia for
finding a lower bound on the hardware resources required
for realtime ray tracing.

The long rendering times of former ray tracing systems
has led to many research efforts to speed up ray tracing using
special purpose hardware. At the beginning, only the ray-
triangle intersection was accelerated using several different
special purpose hardware approaches (for a detailed survey
see25). However, all approaches of accelerating only parts
of the ray tracing algorithm suffered from the same general
problem: the required bandwidth between the different parts
is far too high to be efficiently handled unless all parts of the
ray tracing system are located in the same chip.

The first full ray tracing systems built in hardware were
ray casters for the visualization of volume data sets53, 66, 65.
These ray casters used only primary rays and did not re-
cursively spawn new rays to calculate lighting or secondary
optical effects. These volume ray casters already delivered
interactive frame rates and even became available commer-
cially. For the more common application of ray tracing
polygonal geometry only a hardware system accelerating of-
fline ray tracing was ever developed80, 28.

Last year, Schmittler et al.75 published the first hardware
architecture for full featured ray tracing of polygonal geom-
etry aimed at realtime frame rates. HisSaarCORarchitec-
ture shows that it should be possible to build a PC graphics
engine for ray tracing at a hardware cost comparable to cur-
rent rasterization chips. Such a system would deliver com-
parable performance while using significantly less off-chip
bandwidth than current graphics technology.

Later, Schmittler et al.74 added virtual memory support
to their architecture that allows ray tracing-based graphics
cards to render scenes many times larger than the on-board
memory. This virtual memory support is completely trans-
parent to the ray tracing core and to the application, allow-
ing fully automatic memory management for any scene with
hardly any performance impact. This architecture overcomes

the hard restrictions of previous ray tracing systems, which
required that the entire scene is stored in local memory.

The next sections provide a more detailed overview of
the SaarCOR architecture and its use of virtual memory for
scene management. We analyze the approach, provide sim-
ulation results for the expected performance, and discuss re-
maining issues and potential research directions.

4.1. The SaarCOR Architecture

The SaarCOR hardware architecture (see Figure 14) consists
of a custom ray tracing chip connected to several standard
SDRAM chips, a separate frame-buffer, and a bridge to the
system bus all placed on a single board. The bus bridge is
used to transfer all scene data from the host memory under
the control of the virtual memory subsystem. The SDRAM
chips are used as second level caches storing the current
working set of the scene including its geometry, the spatial
index structures for fast ray traversal, material data, and tex-
tures. The image is rendered into a dedicated frame buffer
and is displayed via a standard VGA port.

The architecture is divided into three main components:
The ray-generation controller (RGC), possibly multiple ray
tracing pipelines (RTP), and the memory interface (MI).
Each RTP consists of a ray-generation and shading unit
(RGS) and the ray tracing core (RTC). The RGC tells each
RGS which primary rays to generate. These primary rays are
handed over to the RTC for computing the ray triangle inter-
sections. Within the RTC, the traversal unit traverses the ray
through the spatial index structure (a kd-tree in our case) un-
til a leaf-node is reached. Leaf-nodes store lists of triangle
addresses, which are then fetched by the list unit. The inter-
section unit then loads the data of a triangle and performs
the intersection computation. Its results are sent back to the
traversal unit, which either continues ray traversal through
the kd-tree or sends the intersection results back to the RGS.

The RGS is responsible for shading the ray, which might
recursively generate new rays. Currently only an extended
Phong reflection model has been simulated that can access
two textures: a standard image texture and a bump map. In
addition this shader implements shadows, reflection, and re-
fraction effects by spawning new rays as needed. Please note
that this fixed Phong shader is only used to approximate the
current use of shading until support for full programmable
shading has been integrated into the architecture.

All memory requests by the pipelines are handled by the
unified memory interface. This unit contains four different
first-level caches, one for each type of functional unit. Since
traversal units only read kd-tree nodes from memory, each
memory item fetched is 8 bytes wide. Therefore the cache
lines of the traversal cache (trav-cache) are also 8 bytes wide.
Similarly since triangle data fetched by the intersection units
consists of 36 bytes, cache lines of the intersection cache
(int-cache) contain exactly these 36 bytes. The RGS units

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

L−SR

I−SR

R−SR

T−SR

Intersection

List

Traversal

RTC−1

RTP−1

RGS

64,29,21

Intersection

List

Traversal

138

117

111 RTC−2

RTP−2

RGS

208

204

301112

3210

32,29,18

288,29,18

List−Cache

Int−Cache

32,29,18
RGS−Cache

32,29,18

64,29,21

64,29,18

64,29,18

64,29,18
Trav−Cache

32,29,16

64,29,16

32,29,16

288,29,16

host upload: camera settings and control

Bus−Man M−SR

Ray−Generation Controller (RGC)

PCI/AGP−BUS

64,29,21

SDRAM chips

MemCtrl

32,27,6

Memory Interface
(MI)

camera and control
upload: scene data,

frame−buffer, VGA−out

22

SaarCORSaarCOR

Figure 14: The SaarCOR architecture consists of three components: The ray-generation controller, multiple ray tracing
pipelines (RTP) and the memory interface. Each RTP consists of a ray-generation and shading unit (RGS) and the ray tracing
core (RTC). Please note the simple routing scheme used: it contains only point-to-point connections and small busses, whose
width is also shown separated into data-, address- and control-bits.

and the list units operate only on four bytes of data per mem-
ory request. But since the memory bus is 64 bits wide, the
cache lines of the RGS cache and the list cache have been
extended to eight bytes.

All functional units of the same type share their cache.
This works well since all ray tracing and shading operation
are performed on packets of rays instead of single rays. This
significantly reduces the number of memory requests from
any unit and allows to scale the performance simply by in-
creasing the number of RTPs.

In order to keep the pipelines busy all the time, memory
access latencies are hidden by using multi-threading with the
RTP simultaneously working on several independent packets
of rays. Even a small number of threads suffices to achieve
high utilization. Section 4.4 provides further details of this
technique.

4.2. The Virtual Memory Architecture

All previous approaches to build a hardware support for ray
tracing required the entire scene to be stored in local mem-
ory. This limited the complexity of the scenes that could be
rendered as they needed to fit into the local memory and

made the hardware very costly as it had to be equipped with
large amounts of on-board memory.

In order to minimize the amount of local memory and
maximize the performance, the scene database has to be ex-
plicitly managed such that only those parts needed to render
the current image are stored in on-board memory.

Traditionally, data management was done by the applica-
tion. However, this is a non-trivial task because the applica-
tion needs to find out which parts of the scene are visible
in the current view. With ray tracing this task becomes even
harder due to scene data required by secondary shadow, re-
flection, or refraction rays.

Schmittler et al.74 propose a fully automatic architecture
to manage the scene data in hardware. This architecture is
completely transparent to the ray tracing core as well as to
the application. Even though they used the SaarCOR ray
tracer for their research the design should easily transfer to
any hardware based ray tracer.

The concept utilized by the VMA is as simple as effec-
tive: The scene data is stored in host memory only and the
ray tracing card accesses this memory by DMA transfers via
the PCI or AGP bus. To minimize bandwidth requirements
on the system bus, the local memory on the graphics card

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

is used to cache the current working set. The mechanism
used to manage this second level cache is the same as is
used by the first level caches: it utilizes a standard four-way
set-associative scheme with an increased cache lines size of
128 bytes. Additionally address-hashing is used to reduce
the probability of collisions, i.e. of different addresses map-
ping to the same cache entry.

The size of these cache lines is a trade-off between larger
cache lines resulting in a coarse subdivision of the mem-
ory and smaller cache lines that require significantly more
memory to store the cache tags and additional bits for man-
agement purposes. This meta data already requires 640 KB
to manage 16 MB of on-board memory with cache lines of
128 bytes each. It is therefore desirable to store the meta
data off-chip in local memory. But because parts of this meta
data is required for every memory access, another first-level
cache is added to hold be least-recently used entries. This
TLB-like approach increases the speed while needing little
on-chip memory.

Measurements of several benchmark scenes74 show that
this two-level approach is very well suited to manage
even highly complex scenes with several millions of multi-
textured triangles with little loss in performance. Even with
a standard PCI-bus the overhead due to the virtual memory
processing is between 1% and 10% compared to a graphics
board with enough memory to hold the entire scene. This is
especially interesting as roughly 20% of all accesses to local
memory are for fetching and updating the cache’s meta data.

4.3. Algorithmic Issues

Section 2 gave a detailed description of the Saarland
RTRT/OpenRT software ray tracer. The SaarCOR hardware
ray tracer uses essentially the same algorithms as the soft-
ware version that have been modified to better suit a hard-
ware design. These modifications started by separating all
steps of the algorithms into small independent kernels or
functional units that can be efficiently implemented in hard-
ware. The small modules increase the utilization of the chip
in total, because the independent modules can be kept busy
most of the time thus maximizing hardware usage.

More fundamental modifications have been made to turn
the recursive spawning of new rays by the shader into inde-
pendent iterations. For instance during shading of a primary
ray a shader may generate two secondary rays: a shadow and
a reflection ray. Traditionally, in a ray tracing software, the
shader for the primary ray interrupts itself to first shoot the
shadow ray and after completion continues shading until it
spawns the reflection ray. This causes another interruption
to shoot the reflection ray, with possibly even more inter-
ruptions, if the reflection ray spawns more rays, e.g. shadow
rays. It is obvious that this approach is not well suited for
hardware.

In the SaarCOR hardware, a primary ray gets fully shaded
without the contribution of any secondary ray. The shader
generates all secondary rays which are fully self-contained:
Each secondary ray includes the coordinates of the pixel it
contributes to as well as the accumulated weight of its contri-
bution. In the example above, when a primary ray is shaded
a newly generated shadow ray is a assigned a weight based
on the weight of the incoming ray times the weight for light
arriving from the direction of the new ray. If the shadow ray
does reach the light source its weighted contribution is di-
rectly added to the final pixel value. Other rays spawned by
a shader are handled similarly.

4.4. Pipelining and Latencies

One big advantage of the SaarCOR architecture is that it con-
sists mainly of small independent units that allow for an easy
placement on the chip and high utilization of the functional
units. Furthermore careful optimizations have been made in
order to simplify routing schemes using narrow busses (see
Figure 14).

Pipelining and multi-threading are used extensively
throughout the architecture. Pipelining allows very high
computational density as long as the pipeline can be fed with
valid inputs and no stalls occur. Multi-threading increases
the possibility of having valid inputs for the pipeline and the
use of small pipelined functional units helps in avoiding sit-
uations where the pipeline would need to stall.

Another important issue of the SaarCOR hardware archi-
tecture is the hiding of latencies that are unavoidable, e.g.
due to memory access and in case of computational depen-
dencies. Latency is addressed by multi-threading where each
packet of rays forms a thread. Multiple independent threads
allow for keeping the functional units throughout the chip
busy. Due to its massively parallel nature, ray tracing can
be trivially parallelized and enough independent packets are
always available.

Simulations75 show that the memory access latencies of
slow SDRAM can be efficiently hidden by using only a few
threads per RTP. Sixteen threads results in 60%-80% utiliza-
tion while 32 threads increase the utilization by another 10
percent. Other simulations with the virtual memory archi-
tecture74 show that even the high latencies of accessing host
memory using a standard PCI-bus can be mostly hidden with
hardly any loss in performance.

More detailed simulations of various sources of latency in
the different stages in the RTC, the shaders, and the mem-
ory interface demonstrate that latency hiding works well for
almost any source and amount of latency if the number of
threads per pipeline can increased accordingly. However,
threads require additional on-chip memory which limits the
amount of latency that can be hidden efficiently.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

4.5. On-Chip Bandwidth Issues

In order to limit the required on-chip bandwidth from the
RTC to the caches, all operations are performed on packets
of rays instead of single rays. This is similar to the Saar-
land RTRT/OpenRT software that utilizes SSE for efficient
packet handling. In contrast to the software version, pack-
ets used in SaarCOR contain significantly more rays, which
allows for decreasing the required bandwidth75 due to data
reused with a packet. On the other hand, larger packets have
a larger working set that would decrease the hit rate of fixed
size caches. As a compromise SaarCOR uses packets of 64
individual rays organized as 8×8 pixels.

In the software version the use of SSE offers a speed-up
close to a factor of four. Unfortunately, sometimes packet
need to be split into individual rays which is very costly.
This would limit the usability of larger packets. In contrast,
SaarCOR was explicitly developed to efficiently handle even
large packets with only a minor performance drawback even
when not all rays of the packet are active. In these cases,
however, bandwidth requirements are higher because of lim-
ited data reuse. This packet handling allows SaarCOR to ef-
ficiently render even incoherent rays, which results in an al-
most constant cost per ray independent of the type of the ray,
i.e. whether it is a primary or a secondary ray for shadows,
refractions, or reflections75.

4.6. Arithmetic Complexity

Schmittler et al.75 compare the arithmetic complexity of a
SaarCOR-chip to that for standard rasterization hardware
and show that for comparable performance SaarCOR re-
quires only half the number of floating point units. What
makes this comparison difficult is that no exact architectural
details on the floating point power of commercial rasteri-
zation hardware are publicly available. Because SaarCOR
utilizes only streamlined floating point units that have been
cut down to the minimum required for ray tracing and ven-
dors of rasterization hardware claim support for full featured
single-precision IEEE floating point operations, this compar-
ison seems to be rather on the conservative side.

In fact, a floating-point multiplier of the SaarCOR-chip
has less than a third of the size of a standard single-precision
IEEE floating-point multiplier. This reduced complexity is
achieved by careful optimizing the required floating-point
precision at various stages of the pipeline. These optimiza-
tions include simulations of various floating-point formats.
Please note that the term floating point unit stands for a cir-
cuit that can perform exactly one type of operation, i.e. ad-
dition, subtraction, or multiplication. It should not be con-
fused by the term floating point ALU that consists of several
arithmetic circuits and therefore is necessarily much larger
in size.

4.7. Results

The performance of the SaarCOR-system has been analyzed
and evaluated using cycle-accurate simulations on the regis-
ter transfer level. These simulations include all parts of the
system, i.e. the RTCs, full shading, the SDRAM, and finally
the system bus with its long latencies. The configuration of
the standard SaarCOR-chip used for these measurements re-
sults in roughly half the floating-point power of a traditional
GPU in 200175.

The standard configuration consists of four pipelines with
a core frequency of 533 MHz and a 128-bit wide SDRAM
memory running at 133 MHz delivering a theoretical band-
width of 2 GB/s. The L1-caches are 4-way set-associative
and their size is 400 KB split into 64 KB for shading, 64
KB for kd-tree nodes, 64 KB for triangle addresses, 144 KB
for triangle data, and 64 KB for L2-cache meta data. The
on-board memory contains 64 MB and a standard PCI-bus
is used as the connection to the host. Sixteen threads have
been used per RTP.

The on-chip caches are rather large but this should not
be an issue: even for L1-caches high latencies can be toler-
ated due to multi-threading allowing to optimize the cache
design. In addition many of today’s CPUs already include
up to 1 MB of on-chip cache. Further indication that the
assumptions are on the conservative side are given by the
fact that current graphics cards also run at 500 MHz and are
equipped with up to 256 MB memory delivering a 10-times
higher memory bandwidth than standard SaarCOR.

Table 4 and Figure 15 provide data about some of the
scenes used to benchmark the SaarCOR architecture. This
selection of benchmark scenes is motivated by the following
results: For a fixed scene the performance of a ray tracing
system scales linearly with the number of rays used, but is
mostly independent on the type of the ray75. Thus given the
performancep of a system and a sceneSwith no light and no
reflections it is possible to estimate the performancep′ for
the same scene withn lights and wherer % of all primary
rays are reflected as

p′(S) =
p(S)

100+r
100 · (1+n)

Arguments in75 suggest and measurements on multi-
textured scenes in74 show that texturing has hardly any im-
pact on the performance of the ray tracing system.

The benchmark scenes listed in Table 4 require up to 500
MB of storage on hard-disk but can be rendered with only
64 MB on-board memory. For most scenes even as little as
8 MB are sufficient. However, in order to simplify measure-
ments, all scenes were rendered using 64 MB of local mem-
ory.

The SaarCOR architecture and the simulated configura-
tion are the same as in75, 74. However, we also applied algo-
rithmic improvements for building more efficient kd-trees.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

Although the kd-tree used in the measurements were opti-
mized for the software ray tracer, they also resulted in sig-
nificantly higher speeds on the SaarCOR hardware (up to
3-times). It should be possible to increase performance even
more by building more suitable kd-trees. The analysis in75

shows that for a given hardware architecture a kd-tree can
be built that best utilizes the resources in tree-traversal and
ray-triangle intersection.

The side effect of using kd-trees that were optimized for
a different architecture can be seen by analyzing the results
listed in Table 5. Unbalanced workloads are likely to show
higher variations in performance if architectural parameters
are changed. For instance the BQD-2 scene utilizes ten times
as many traversal than intersection operations. However, the
architecture is designed for 4:1 ratio.

The new kd-trees also reduce the working set and increase
the hit rate in the various caches — especially in more com-
plex scenes. The performance measurements on the Cruiser
scene in75, 74 showed that the working set on triangles was
too large such that a triangle-cache with 576 KB became
necessary. The new kd-tree reduce the working set such that
the scene can be efficiently rendered using only the same
small cache (144 KB) as for all other scenes.

Figure 15: Some of the scenes used for benchmarking.

#lights with reflection-
scene #triangles shadows depth textures

Cruiser 3 637 101 0 0 –
BQD-1 2 133 537 0 0 –
BQD-2 2 133 537 0 0 –
Quake 39 424 0 0 bilinear

Conference 282 000 2 0 –
Office 33 952 3 3 –

Table 4: The scenes used for benchmarking.

std. SaarCOR SaarCOR+VMA
scene fps mem fps mem PCI

Cruiser 170 6.1 121 7.7 0.14
BQD-1 137 1.9 135 2.5 0.03
BQD-2 59 26.6 42 34.1 0.91
Quake 129 9.4 126 11.4 0.01

Conference 77 8.5 68 10.8 0.09
Office 44 2.1 43 2.6 0.02

Table 5: Performance measurements of a standard Saar-
COR chip without and with VMA. Columns labeled withfps
state the performance measured in frames per second, while
columns labeled withmemlist the amount of off-chip mem-
ory transfers per frame in MB. The columnPCI shows the
memory transfer over the PCI bus in MB.

4.8. Conclusion

The SaarCOR system is the first hardware architecture show-
ing that a ray tracing system can be built with hardware re-
sources comparable to rasterization-based systems. It deliv-
ers essentially the same performance while requiring signif-
icantly less off-chip bandwidth. Of course, it also allows for
all the advanced shading effects ray tracing is known for, like
physically correct reflections, refractions, and lighting.

Using the virtual memory architecture, fully automatic
and transparent management of the scene data is achieved.
This removes the burden of explicit scene management from
the application and allows to render scenes many times
larger than the on-board memory with only a small loss in
performance even in configurations based on slow standard
SDRAM and a slow PCI bus.

Thus the SaarCOR architecture demonstrates the potential
of hardware-based ray tracing systems for realtime applica-
tions. Although this first approach is already very powerful,
it still leaves plenty of room for future work and improve-
ments. While the OpenRT API (see Section 7) should di-
rectly be usable also with this hardware architecture no sup-
port for dynamic scenes has been integrated yet.

Also, the complexity estimates given in75 take into ac-
count only the required floating point power and the amount
of memory used for caches and register files. It does not ac-
count for routing and the overhead required for pipelining.
Even though the SaarCOR-architecture uses a simple and
narrow routing scheme, these issues might still eat up large
amounts of chip area. However, a more exact analysis can
only be performed after the architecture has been fully syn-
thesized.

Currently, SaarCOR has no support for programmable
shading. Besides the issue of generating new rays, shading is
independent of the algorithm that is used to calculate visibil-
ity. Therefore programmable shading computations for ray
tracing are not more complex than for rasterization. There

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

full featured programmable shading is commonly available
even today. Further work is required on how to efficiently
parallelize generation of new rays and efficiently forming
packets for secondary rays.

The virtual memory architecture removed the necessity
to store the scene in local memory but the entire scene still
has to reside in host memory. A solution was suggested in
Schmittler et al.74: Some geometry objects would be marked
as “proxy” geometry and the hardware ray tracer would re-
port the number of rays hit with such an object to the applica-
tion. If the number of hits increases beyond a certain thresh-
old the application can use this information for instance to
replace the current proxy by more detailed geometry. This
concept is similar to a level-of-detail approach but has the
advantage that only objects need to be managed where the
visibility is already known. This strategy seems very promis-
ing but further work is needed for evaluating its practical rel-
evance.

5. Summary and Conclusion

In the previous sections, we have discussed the several dif-
ferent options for realizing realtime ray tracing, including
software ray tracing on commodity CPUs, ray tracing on
programmable graphics hardware, and the design of special
purpose ray tracing hardware.

So far, the above systems are mostly prototype systems
that are not yet widely used for practical applications. Still,
they already achieve impressive performance and enable ap-
plications that have been impossible with different technolo-
gies: Walkthroughs of massive models without the need for
approximations, interactive visualization of massively com-
plex scientific and volumetric data sets, interactive simula-
tion of complex reflection patterns, etc. As shown for exam-
ple in Section 4, this increased flexibility, quality, and per-
formance can even be realized with less resources than used
in today’s technology.

The above approaches to realtime ray tracing are funda-
mentally different and offer different advantages and disad-
vantages: Software ray tracing offers the largest flexibility
because commodity CPUs impose no restrictions on the pro-
gram they are running. On the other hand, software systems
suffer from the fact that most CPUs concentrate on accelerat-
ing single-threaded applications, and thus cannot optimally
exploit the inherent parallelism in ray tracing.

In contrast, the programmable GPUs can leverage the su-
perior performance, bandwidth, and parallelism of modern
chip design for ray tracing. Additionally, GPUs have become
cheap and are commonly available in most PCs providing a
cost-effective approach to fast ray tracing on the desktop.
However, the programming model of GPUs still imposes se-
vere restrictions on the algorithms that can be implemented
efficiently. While some of these restrictions will eventually

disappear, it seems unlikely that GPUs will ever be as flexi-
ble as CPUs.

Finally, special-purpose hardware promises optimal per-
formance given current hardware technology, but it obvi-
ously more expensive and time-consuming to realize. How-
ever, the performance of special-purpose hardware is the
yard-stick against which the other implementations will have
to judged.

The presented approaches cover a wide spectrum in terms
of flexibility (software ray tracing), cost efficiency (GPUs),
and performance (SaarCOR). While it is not yet clear which
one will be most successful, theyall have the potential of
eventually providing realtime ray tracing performance on ev-
ery desktop.

PART TWO

Realtime Ray Tracing – Advanced
Issues and Applications

In the first part of this STAR, we have argued that realtime
ray tracing for future 3D graphics is both desirable and pos-
sible. We have shown that there are several ongoing develop-
ments towards realizing realtime ray tracing, and that these
approaches all have the potential of bringing realtime ray
tracing performance to the desktop in the near future.

However, even though all these approaches bear the same
potential to be “the” future platform for realtime ray trac-
ing, it is also clear that they will eventually all face similar
problems:All the approaches discussed above have mainly
focussed on accelerating the core ray tracing algorithms, i.e.
traversing, intersecting, and shading of rays.

While concentrating on these core issues is the obvious
first step towards realtime ray tracing, there are several more
subtle – though not less important – issues that have to be
addressed as next steps in making ray tracing a practical al-
ternative for future graphical applications:

Support for dynamic scenes:Future ray tracing systems
have to support dynamic scenes, as real interaction can
only take place once the user can interactively modify the
scene.

API Issues: Ubiquitous realtime ray tracing requires a uni-
fied and simple, yet flexible and powerful API to make ray
tracing available to a wider class of users. Of course, API
issues also have implications for higher software layers,
e.g. by influencing the design of future scene graph APIs.

New Applications: The availability of a new technology
enables new applications that have not previously been
possible. We need to explore and practically analyze this
set of applications in order to better understand the real
value for the end user and future developments. While

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

Figure 16: Example screenshots from animated scenes. From left to right: a.) BART Robots, b.) BART Kitchen, c.) BART
Museum, d.) Animated VRML scene with global illumination shader. At video resolution, all these scenes can be rendered at
several frames per second. For more complex examples, also see Figure 18 that has also been computed with this technique.

lighting simulation and the visualization of massive mod-
els are obvious but very important new applications, it
seems that the potential of realtime ray tracing is much
larger than that.

In the following sections, we will discuss some of the cur-
rently ongoing work in these respective areas. While this dis-
cussion is focused on the software ray tracing side it should
apply similarly to the other architectures.

6. Ray Tracing in Dynamic Environments

Probably the biggest challenge for ray tracing is handling
dynamic environments. Before realtime ray tracing, the time
used for building an index structure such as kd-trees was in-
significant compared to the long rendering times. Thus it has
attracted only little research so far23, 71, 49.

Some methods have been proposed for the case where pre-
defined animation paths are known in advance (e.g.22, 26).
These however are not applicable to our target setting of to-
tally dynamic, unpredictable changes to the scene. Little re-
search is available for truly interactive systems.

Recently new results on ray tracing in dynamic environ-
ments have obtained by Lext et al. with the BART project50.
They provide an excellent analysis of the problems with dy-
namic scenes. Based on this analysis, they proposed a rep-
resentative set of test scenes designed to stress the different
aspects of ray tracing dynamic scenes (also see Figure 16a–
c). Thus, the BART benchmark provides an excellent tool
for evaluating and analyzing a dynamic ray tracing engine.

In their research, the behavior of dynamic scenes was
classified into two inherently different classes: One form is
hierarchical motion, where a whole group of primitives is
subject to the same affine transformation. The other class is
unstructured motion, where each triangle moves without re-
lation to all others. For a closer explanation of the different
kinds of motion, see the BART paper50.

In a first step, Parker et al.64 kept moving primitives out of
the acceleration structure and checked them individually for
every ray. This of course is only feasible for a small number
of moving primitives.

Another approach would be to efficiently update the ac-
celeration structure whenever objects move. Because objects
can occupy a large number of cells in an acceleration struc-
ture this may require costly updates to large parts of the ac-
celeration structure for each moving primitive. To overcome
this problem, Reinhard et al.71 proposed a dynamic accelera-
tion structure based on a hierarchical grid. In order to quickly
insert and delete objects independently of their size, larger
objects are kept in coarser levels of the hierarchy. As a re-
sult, objects always cover approximately a constant number
of cells, thus updating the acceleration structure in constant
time. However, their method resulted in a rather high over-
head, and also required their data structure to be rebuilt once
in a while to avoid degeneration. Furthermore, their method
mainly concentrated on unstructured motion, and is not well
suited for hierarchical animation.

Recently, Lext et al.49 proposed a way for quickly re-
constructing an acceleration structure in a hierarchically an-
imated scene by transforming the rays to the local object
coordinate systems instead of transforming the objects and
rebuilding their acceleration structures. To our knowledge,
they have never applied their method to an interactive con-
text.

At the same time, Wald et al.87 have proposed a method
that is motivated by the same observations as Lext et al.49 of
how dynamic scenes typically behave. Large parts of a scene
often remain static over long periods of time. Other parts of a
scene undergo well-structured transformations such as rigid
motion or affine transformations. Yet other parts are changed
in a totally unstructured way. This common structure within
scenes can be exploited by maintaining geometry in separate
objectsaccording to their dynamic properties, and handling
the different kinds of motion with different, specialized al-
gorithms that are then combined into a common architecture.

Each object can consist of an arbitrary number of trian-
gles. It has its own acceleration structure and can be updated
independently of the rest of the scene. Of course, an addi-
tional top level acceleration structure must then be main-
tained that accelerates ray traversal between the objects in
a scene. Each ray then first starts traversing this top level

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

structure. As soon as a voxel is found, the ray is intersected
with the objects in the leaf by simply traversing the respec-
tive object’s local acceleration structures.

For static objects, ray traversal works as before by just
traversing the ray with the usual, fast traversal algorithm.

For hierarchical animation, the ray in world-space has to
be intersected with an object that has been transformed with
an affine transformation. In this case we can more efficiently
transform the ray with the inverse transformation49. This
slightly increases the per-ray cost (e.g. for the transforma-
tion), but totally removes the reconstruction cost for hierar-
chically animated objects.

To enable this scheme, all triangles that are subject to the
same set of transformations (e.g. all the triangles forming the
head of the animated robot in Figure 17) must be grouped by
the application into the same object. Transforming such an
object then simply requires updating its transformation ma-
trix. This way, large groups of triangles can be transformed
en-blocwithout modifying their acceleration structure at all.
Only the top-level acceleration structure has to be updated to
reflect the new position of the object.

Figure 17: One frame from the BART Robots scene (left),
with color-coded objects (right). Triangles of the same color
belong to the same object.

For non-affine changes to an object (like the incoherently
moving triangles in Figure 16c), the local index structure of
the object must be rebuilt or updated. In this case only the
parent object must be notified of any changes to the bound-
ing box of an object and must in turn update its local index
structure. Thus, modifications to the scene can be localized
to only those parts of the scene that are actually affected by
it, without the need to rebuild the index for the whole scene
every frame87.

The resulting speedup significantly depends on how an
application organizes its scene data into individual objects.
In that respect the effects are similar to OpenGL where a dif-
ferent scene structure — e.g. the use of display lists or the
grouping of materials — can also result in significant perfor-
mance differences. However, the “optimal” organization of
the scene structure for OpenRT is different from the optimal
organization in OpenGL. This carries strong implications for
the design of future applications and scene graph libraries, at
least if those should efficiently support a realtime ray tracing
engine.

Figure 18: Instantiation: The “Sunflowers” scene consists
of roughly 28,000 instances of 10 different kinds of sunflow-
ers with 36,000 triangles each together with several multi-
million-triangle trees. The whole scene consists of roughly
one billion triangles. The center image shows a closeup of
the highly detailed shadows cast by the sun onto the leaves.
All leaves contain textures with transparency which increase
the number of rays needed for rendering a frame. The whole
scene renders at roughly 7 fps on 24 dual PCs at video res-
olution. All objects including the sun can be manipulated
interactively.

In their implementation87, Wald et al. use a simple flat or-
ganization of objects. Thus, their entire top-level index struc-
ture has to be rebuilt for every frame even if the bounding
box of only a single object has been changed. However, Wald
et al. have shown that rebuilding a top-level index structure
can be performed in a few milliseconds even for thousands
of instances as shown in Figure 1887. Additionally, it seems
likely that index creation can eventually be performed com-
pletely in hardware as the algorithms are rather simple.

As a side effect, the presented approach also allows for
“instantiation”, i.e. using multiple instances of the same
object: Figure 18 shows a slight modification of Oliver
Deussens “Sunflowers” scene, which consists of several
large trees with millions of triangles each plus 28,000
instances of 10 different sunflower models with roughly
36,000 triangles each. Roughly one billion triangles are po-
tentially visible, many of which are also partly transparent
due to alpha mapped textures for the leaves. The entire scene
is rendered with detailed pixel-accurate shadows that are
clearly visible on the leaves of the tree.

Every object can be manipulated interactively while the
scene renders at about 7 fps on 24 dual processor PCs at
video resolution (see Table 2). Figure 16 shows screenshots
from several animated scenes (including the BART bench-
mark scenes50) that can be rendered interactively using this
technique in the Saarland RTRT/OpenRT engine.

Of course, support for dynamic scenes does not come en-
tirely for free. While it is easy to construct cases where the
method breaks completely, in practice this overhead is in
the range of only a few percent (see Table 1): While over-
head can result in a factor of up to two for extremely sim-
ple scenes (ERW6) without shading, it reduces to roughly
20% for the conference scene with shading. This seems to

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

be a reasonable price compared to the increased flexibility
of handling dynamic scenes. The relative overhead is smaller
with more complex scenes and more costly shading. While
the technique is currently used only in the Saarland software
ray tracing engine, porting it to the SaarCOR hardware is
straight-forward.

In conclusion, the support for dynamic scenes in ray trac-
ing is still limited but already good enough for a large class
of applications (also see the applications in Section 8 and
Part 3 that all use this technique). Furthermore, support is
likely to improve as more researchers start looking at this
largely ignored problem.

7. The OpenRT Interactive Ray Tracing API

Once the ability of handling dynamic scenes is combined
with one of the mentioned fast ray tracing systems the es-
sential technical prerequisites for realtime ray tracing on
the desktop are fulfilled. However, a key issue for reach-
ing the scenario of realtime ray tracing on the desktop is
widespread application support that requires a standardized
API. OpenGL 56 is used by many graphics applications
and is well-known to developers. Ideally, one would simply
adopt it for ray tracing, in which case any OpenGL applica-
tion could transparently render its images using ray tracing.

Unfortunately, OpenGL and similar graphics APIs are too
closely related to the rasterization pipeline. Their level of ab-
straction is too low and reflects the stream of graphics com-
mands that is fed to the rasterization pipeline. In contrast
to OpenGL, RenderMan67 offers a more suitable high-level
API that also supports ray tracing. However, it does not offer
support for interactive applications.

Another option would be the use an existing high-
level scene graph library such as Performer, OpenInventor,
OpenSG, or others72, 99, 61. However, their level of abstrac-
tion is too high for a generic ray tracing API and these scene
graphs libraries are too application specific. A low-level API
in the spirit of OpenGL seems more appropriate and would
allow for layering such scene graph APIs on top of it.

Due to the above issues with existing APIs, it became nec-
essary to design a new API for realtime ray tracing. Ideally,
such an API for realtime ray tracing should be designed with
the following guidelines in mind:

• It should be as low-level as possible in order to be able to
layer higher-level scene graph APIs on top of it.

• It should be syntactically and semantically as similar to
OpenGL as possible, in order to facilitate porting of exist-
ing applications and for leveraging programmers’ experi-
ences.

• It should be as powerful and flexible as RenderMan for
writing shaders in order not to restrict the shader writers.

Based on these observations, Wald et al.88 and Dietrich
et al. 14 have recently proposed the OpenRT API. While

OpenRT has been first implemented on top of the Saarland
RTRT/OpenRT system, it has been specifically designed to
abstract from their distributed setup. It was designed for also
driving other architectures such as the SaarCOR architec-
ture75 or an implementation based on GPUs.

7.1. The OpenRT Application Programming Interface

For application programming, OpenRT has been designed to
be as close to OpenGL as possible, due to OpenGLs pop-
ularity and wide application support. As a rule of thumb,
OpenRT offers the same calls as OpenGL wherever possi-
ble (albeit using “rt” as a prefix instead of “gl” for interface
functions), and only uses different calls where a concept of
ray tracing has no meaningful match in OpenGL (or vice
versa).

In particular any calls for specifying geometry, transfor-
mations, and textures have identical syntax and semantics as
OpenGL. This simplifies porting of applications where large
parts of the OpenGL code can be reused without changes.
OpenRT only differs from OpenGL in four key areas: Sup-
port for retained objects, programmable shaders, frame se-
mantics, and handling of the resulting images.

7.1.1. Objects and Instances

The main issue with using OpenGL for ray tracing is the
fact that no information is available about the changes be-
tween successive frames. In OpenGL, even unchanged dis-
play lists can be rendered differently in successive frames
due to global state changes in between the frames. This how-
ever does not map well to a ray tracing engine, where such
information is essential for interactive performance (see Sec-
tion 6).

Instead of display lists OpenRT offersobjects. Objects
encapsulate geometry together with references to shaders
and their attributes. In contrast to display lists, objects may
not have any side effects. The appearance of objects can
only be changed by redefining shaders that are referenced
by its geometry. Objects are defined using anrtNewOb-
ject(id)/rtEndObject()pair. Each object is assigned a unique
id that is used to instantiate it later by a call tortInstan-
tiateObject(id). Note how this is similar to OpenGLs way
of handling display lists (i.e.glNewList(id),glEndList()and
glCallList(id)). An instance consists of a reference to an ob-
ject, together with a transformation matrix to place the in-
stance in the scene.

In order to support unstructured motion, each object can
be redefined any time by callingrtNewObjectwith the same
object ID. Note that this API functionality perfectly matches
the requirements of the previously proposed method to han-
dle dynamic scenes as outlined in Section 6.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

7.1.2. Shading and Shaders

In order not to be limited by the fixed reflectance model of
standard OpenGL, OpenRT supportsprogrammable shaders
similar to RenderMan67. Shaders provide a flexible “plug-
in” mechanism that allows modifying almost any functional-
ity in a ray tracer, e.g. the appearance of objects, the behav-
ior of light sources, the way that primary rays are generated,
how radiance values are mapped to pixel values, or what the
environment looks like. In its current version, OpenRT sup-
ports all these kinds of programmability by offering support
for “surface”, “light”, “camera”, “pixel” and “environment”
shaders, respectively.

In terms of the API, shaders are named objects that re-
ceive parameters and are attached to geometry. The syntax
and functionality are essentially the same as proposed in the
Stanford shader API68, 52: Shaders are loaded and instanti-
ated by calls tortShaderFile()and rtCompileShader()and
are bound to geometry viartBindShader(). Arbitrary shader
parameters can be specified by a genericrtParameter()call.
Depending on the scope in which a shader parameter is de-
fined, it is attached to an object, a primitive, or to individual
vertices. These different ways to specify parameters allow
for optimizing shaders and minimize storage requirements.

7.1.3. Semantic Differences

As mentioned before, OpenRT has been explicitly designed
to be as similar to OpenGL as possible. Still, ray tracing is
inherently different from rasterization, and therefore has dif-
ferent requirements on an API. Thus – even given the syntac-
tical similarity – there are also certain semantic differences
between OpenGL and OpenRT.

For example, OpenRT differs from the semantics of
OpenGL when binding references. OpenGL stores parame-
ters on its state stack and binds references immediately when
geometry is specified. This is natural for immediate-mode
rendering, but does not easily fit to a ray tracer. OpenRT in-
stead extends the notion of identifiable objects embedding
state, similar to OpenGL texture objects. However, it binds
them only during rendering once the frame is fully defined.

This approach significantly simplifies the reuse of objects
across frames but means that any changes to such objects
might also affect the appearance of geometry defined earlier.
For example, changing a shader parameter may automati-
cally change the appearance of all triangles that this shader
is bound to, even if those triangles have been specified be-
fore this call. These semantics are natural for a ray tracer but
require careful attention during porting of existing OpenGL
applications. More research is still required to better resolve
the contradicting requirements of rasterization and ray trac-
ing in this area.

Finally, some OpenGL functions are meaningless in the
new context and consequently are not supported in OpenRT.

For instance, fragment operations, fragment tests, and blend-
ing modes are no longer useful and can be better imple-
mented using surface and pixel shaders. Traditionally ray
tracing writes only a single “fragment” to each pixel in the
frame buffer after a complete ray tree has been evaluated.
Thus the usual ordering semantics of OpenGL and its blend-
ing operations that are based on the submission order of
primitives are no longer meaningful.

Instead of writing the pixels to a hardware frame buffer
OpenRT returns them in buffers provided by the application.
This, however, is only due to the current hardware setup that
uses a software implementation, and is likely to change for
more dedicated ray tracing hardware.

For writing shaders OpenRT currently provides a simple
C/C++ interface that is close modeled the RenderMan shader
API 67 in terms of semantics and names of functions. A sep-
arate shading language compiler for RenderMan or some
other language would help programmers already familiar
with these languages and would allow for better optimizing
the shader code.

OpenRT has been implemented as a separate but closely
related API changing the prefix of functions from “gl” to
“rt”. This allows applications to simultaneously make use
of both APIs. Eventually it should be possible to port the
changes in OpenRT to true OpenGL extensions. The main
issue in such an implementation would be the proper han-
dling of frame semantics.

The OpenRT API has been used exclusively in all exam-
ples and applications throughout this paper. That includes a
VRML-97 browser6 that has been ported from OpenGL to
the new API (see Section 7.3). Using the OpenRT API al-
lows the application to completely abstract from the under-
lying implementation. Currently, both a single-CPU version
as well as a distributed version are available and can be ex-
changed without the application even noticing it. The obvi-
ous next step consist in evaluating the practicability of using
the OpenRT API to also drive other hardware platforms such
as the SaarCOR architecture75 or a GPU-based ray tracing
engine69 (see Sections 4 and 3, respectively)

7.2. A Simple Example

After having outlined the basic concepts of the OpenRT API
here is a simple example of an OpenRT program.

Though this is but a very simple example of an OpenRT
program, it already uses most of the above discussed con-
cepts: Loading and using shaders, building objects, and mul-
tiple instantiation. Though ’real’ OpenRT programs can be
quite more complex, they all follow the same pattern.

Note that we have omitted the code for the shader, which
in this case is trivial. The shader is written in C++ (with
an API similar to RenderMan), complied to a shared library
(“libPhong.so”), and loaded from the application.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

// EightCubes.c:
// Simple OpenRT example showing
// eight rotating color cubes
#include <rtut/rtut.h>
#include <openrt/rt.h>

#define PHONG_ID 0
#define PHONG_FILE_ID 1

RTint createColorCubeObject()
{

// Create an object for our
// vertex-colored cube

// Step1: Load the shader
srtShaderFile(PHONG_FILE_ID,

"Phong","libPhong.so");
srtCreateShader(PHONG_ID);
srtBindShader(PHONG_ID);

// Step2: Define the object
RTint objId = rtGenObjects(1);
rtNewObject(objId, RT_COMPILE);

// Step3: Issue geometry
rtBegin(RT_POLYGON);

rtColor3f(0, 0, 0);
rtVertex3f(0, 0, 0);
rtColor3f(0, 1, 0);
rtVertex3f(0, 1, 0);
rtColor3f(1, 1, 0);
rtVertex3f(1, 1, 0);
rtColor3f(1, 0, 0);
rtVertex3f(1, 0, 0);

rtEnd();
// other cube sides ...

rtEndObject();
return objId;

}

int main(int argc, char *argv[]) {
// Init, open window, etc.
rtutInit(&argc, argv);
rtutInitWindowSize(640, 480);
rtutCreateWindow("Eight Cubes");

// set Camera
rtPerspective(65, 1, 1, 100000);
rtLookAt(2,4,3, 0,0,0, 0,0,1);

// generate object *once*
objId = createColorCubeObject();
for (int rot = 0; ; rot++) {

// re-instantitate object
// for every frame
// with different transformation
rtDeleteAllInstances();
for (int i=0; i<8; i++) {

int dx = (i&1)?-1:1;
int dy = (i&2)?-1:1;
int dz = (i&4)?-1:1;

// position individual objects
rtLoadIdentity();
rtTranslatef(dx,dy,dz);
rtRotatef(4*rot*dx,dz,dy,dx);
rtScalef(.5,.5,.5);
rtInstantiateObject(objId);

}
rtutSwapBuffers();

}
return 0;

}

After opening a window, the “main” function first gen-
erates a vertex-colored RGB cube with a shader that just
displays the interpolated vertex color. Afterwards, the “for”-
loop creates eight rotating instances of this cube by re-
instantiating each of the eight instances with a different
transformation in subsequent frames.

Being similar to OpenGL, this example should be easy
to understand – and extend – by any slightly experienced
OpenGL programmer. Of course, this is but a very simple
example, and real programs will be considerably more com-
plex. For example, a real program also has to load textures,
light shaders, parameterize the shaders, etc. Still, using ad-
vanced ray tracing effects in OpenRT is significantly simpler
than generating the same effect in an OpenGL program: For
example, rendering a scene once with global illumination
effects and once without only requires to load a different
shader – e.g. changing the shader name in “srtShaderFile”
from “Phong” to “InstantGlobalIllumination” (see Part 3) –
without having to touch any other code in the program.

7.3. Extended VRML Browser with Ray Traced Effects

In order to demonstrate that OpenRT can also be used for
realistically complex applications, we have ported a VRML-
97 browser6 from OpenGL to OpenRT. Using the OpenRT
API allows the browser application to completely abstract
from the underlying ray tracing implementation.

While the browser supports the full VRML97 specifica-
tion – including VRML animations and even with a script-
ing interface – the ported browser also supports typical ray

Figure 19: A VRML-97 browser with ray traced effects. Left:
A typical VR application, showing a car model with shadows
and physically-correct reflections even on curved surfaces.
Right: A VRML-97 animation with an interactive global il-
lumination shader.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

traced effects. By extending the VRML “Appearance ”
node with a “shader ” entity, any ray tracing shader can
be assigned to any of the VRML primitives. This allows the
VRML browser to also compute shadows and reflections,
and even to render standard VRML scenes with full global
illumination (see Figure 19).

In summary, OpenRT is a simple yet flexible API for re-
altime ray tracing. It is simple to use, flexible enough to
support all typical ray tracing effects, and similar enough
to OpenGL (for application programming) and RenderMan
(for writing shaders) to be easy to learn even for novice ray
tracing users.

8. Applications and Case Studies

Based on the previously outlined advances in ray tracing, the
scenario of ubiquitous realtime ray tracing draws closer. In
this section, we will briefly summarize the state-of-the-art
and thereby give an overview of some of the most obvious
future applications of realtime ray tracing.

Interactive Visualization of Complex Models

One of the most obvious applications of ray tracing is vi-
sualizing massively complex models. Since complexity of
ray tracing is logarithmic in scene size, we can efficiently
ray trace scenes with tens of millions of individual triangles.
This allows us to render complex objects such as the 12.5
million triangle UNC “PowerPlant” scene without the need

Figure 20: Complex models: a) Three power plants of 12.5
million individual triangles each, rendering interactively at
23 fps. b) A closeup on the highly detailed geometry. c) An
outdoor scene consisting of roughly 28,000 instances of 10
different kinds of sunflowers with 36,000 triangles each to-
gether with several multi-million-triangle trees. The whole
scene consists of roughly one billion triangles and is ren-
dered including shadows and transparency. d) A closeup of
the highly detailed shadows cast by the sun onto the leaves.

for geometric simplifications (see Figure 20). Note that the
technique proposed in Section 6 even allows interaction with
the power plant by moving different parts of the model.

Additionally, instantiation allows to further increase scene
complexity. For example, the “Sunflowers” scene (see Fig-
ure 20) contains 28,000 instances of several kinds of sun-
flowers, plus several highly detailed trees, totalling onebil-
lion triangles. Note that even a single tree in this scene con-
tains more than a million individual triangles.

Note, that no simplifications or level-of-detail have been
used in these scenes but that the original geometry has been
rendered directly. This eliminates costly preprocessing and
avoids any artifacts. Also, the geometric complexity does
not limit the kinds of effects that can be computed. For
example, the sunflowers scene is rendered including shad-
ows and transparency from semi-transparent plant leaves. Of
course, the objects and the sun can be moved around inter-
actively. Note that advanced effects can also be computed in
the power plant, as can be seen in Figure 26.

Plug ’n Play Shading

The second obvious advantage of ray tracing is the ability to
support plug’n play shading: Shaders for certain specialized
effects can be written independently of all other shaders, and
can still automatically and seamlessly work together with
the rest of the scene. For example, Figure 21 shows a typ-
ical office scene with several advanced shaders, like proce-
dural wood and marble shaders, procedurally bump-mapped
reflections on the mirror, reflections on the metal ball, and
even shaders performing light field48 and volume render-
ing 62.

Figure 21: Easy combination of different shading effects.
Left: A typical office scene with correct shadows and reflec-
tions, and with programmable procedural shaders. Right:
The same scene with additional volume and light field ob-
jects. Note how the volume casts transparent shadows, the
light field is visible through the bump-mapped reflections on
the mirror, etc.

Increasingly Realistic Games

The ability to support advanced shading effects is especially
interesting for game applications. Games can profit from the
ability to compute advanced visual effects that can tremen-
dously increase the realism and better immerse the player in

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

a game scene (see Figure 22). Eventually, it may be possible
to render even games with global illumination effects for the
ultimate realism is combined with detailed geometry.

Figure 22: Increased realism in games: Ray traced shadows
and reflections in two typical game environments.

Physically Correct Lighting Simulation

Of course, ray tracing not only allows shaders for nice im-
ages, but also supports for physically-correct visualization.
Benthin et al.7 have shown how interactive ray tracing can
be used for a quantitative simulation of the reflection and
refraction behavior of a car headlight (see Figure 23).

Using the Saarland RTRT/OpenRT engine together with
appropriately written shaders allowed for simulating up to 25
levels of reflection and refraction even in an 800,000 triangle
model at interactive rates.

Figure 23: Interactive Simulation of Reflection and Refrac-
tion in a car Headlight. Left: The headlight model consists
of 800,000 triangles, and renders interactively with up to 25
levels of reflection and refraction. Right: False-color image
visualization of number of reflection levels per pixel (black:
0, red: 25+).

Similarly, ray tracing could be used for interactive simu-
lation of reflections in dashboards82, 83 or in car paint (see
Figure 19). This kind of realism is especially important for
industrial applications that depend on reliable and quantifi-
able results.

Interactive Global Illumination

Finally, ray tracing allows for interactive global illumination,
i.e. the physically-correct simulation of light transport at in-
teractive rates (see Figures 19 and 26). This will be covered
more closely in Part 3.

9. Implications for Future Application

These example applications clearly demonstrate the poten-
tial of using ray tracing for practical applications. Note
that the above examples run interactively on the Saarland
RTRT/OpenRT engine even today. It seems very likely that
the technology for these applications may be commonly
available in the near future, which would offer tremendous
opportunities for future graphical applications.

For example, it may soon be common to have effects like
shadows, reflections, and refractions in many 3D applica-
tions. Even effects like global illumination might eventually
become a standard feature of applications like virtual reality,
or games. Furthermore, the potential to move from purely
“good-looking” applications to applications producing reli-
able and verifiable results opens up completely new possi-
bilities for the simulation, CAD, Virtual Reality, and design
industry.

However, even though this potential for future applica-
tions is huge, there are still several issues that have to be
solved: For example, using ray tracing for interactive appli-
cations is inherently different from the way that interactive
applications work today. This bears several implications on
the way that applications have to be designed.

One such implication is the design of scene graph li-
braries: Today, most applications are built on scene graphs
like VRML 85, 6, Performer72, OpenInventor99, OpenSG61,
etc., all of which are designed to best match the capabilities
of OpenGL. For example, most scene graphs are organized
into groups of triangles with the same material, in order to
minimize OpenGL state changes. In a ray tracer, this is not
necessary and can even be counter-productive — instead of
organizing a scene graph into groups of triangles with the
same material, triangles should better be grouped depending
on the way they are moving in a scene (see Section 6). Simi-
larly, todays scene graphs often do not care which objects are
static. Essentially, a scene graphs “cost function” is different
for ray tracing and rasterization.

Another issue is that many of the advantages of ray tracing
are simply not supported by todays applications and scene
graph. For example, scene graphs whose material descrip-
tions offer reflection coefficients or refraction indices sim-
ply have not been adopted yet. Essentially the same is true
for complex models: While the ray tracer can easily handle
millions of polygons, most applications available today are
too heavy-weight to even load such models.

In order to fully exploit the above-mentioned potential of
realtime ray tracing, future applications and scene graphs
have to be designed with these issues in mind. Though this
problem is neglected by many researchers and developers,
it is an essential prerequisite for widespread use of realtime
ray tracing.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

PART THREE

Using Realtime Ray Tracing for
Interactive Global Illumination

Even though classical ray tracing considers only direct light-
ing effects it already allows for highly realistic images that
make ray tracing the preferred rendering choice for many an-
imation packages. The next step in realism can be achieved
by including indirect lighting effects computed by global il-
lumination as a standard feature of 3D graphics.

Global illumination algorithms account for the often
subtle but important effects of indirect illumination in a
physically-correct way12, 17 by simulating the global light
transport between all mutually visible surfaces in the en-
vironment. Due to the need for highly flexible visibility
queries, virtually all algorithms today use ray tracing for this
task.

As traditional ray tracing has historically been too slow
even for interactively ray tracing images with simple shad-
ing, the full recomputation of a global illumination solution
has been practically impossible. Now, with the advent of re-
altime ray tracing, it should become possible to also compute
full global illumination solutions at interactive rates.

10. Alternative Approaches towards Interactive Global
Illumination

There are two different approaches to global illumination:
Point-sampling techniques (ray- or path-based)38, 44, 45, 84, 37,
and finite-element-based techniques29, 12, 78, 5. While point-
sampling techniques usually provide higher quality, finite el-
ement techniques have the advantage that the discretization
into polygonal patches can directly be used for display via
commonly available graphics hardware.

10.1. Radiosity Based Approaches

Thus, the first approaches to interactive global illumination
have been based on finite-element techniques using rasteri-
zation hardware to display the computed finite element so-
lution. In its most trivial form, this consisted of a simple
interactive display of a precomputed radiosity solution of
the scene. However, relying on precomputated radiosity val-
ues only allows for simple walkthroughs, as any interactive
change to the environment would require recomputing the
radiosity solution. Except for trivial scenes, recomputing the
whole solution from scratch every frame is not feasible.

Interactive Radiosity using Line Space Hierarchies

In order to avoid this full recomputation, Drettakis and Sil-
lion 16 have proposed to incrementally update a radiosity so-
lution using a line space hierarchy. This hierarchy is gen-
erated by augmenting the hierarchical radiosity links with

“shafts”, each of which represents all the lines that pass
through the two connected hierarchy elements. Traversing
this data structure then allows to easily identify the links that
are affected by a dynamic change to the scene, and thus al-
lows to quickly update the radiosity solution. Additionally,
it simultaneously allows to clean up subdivisions in the hi-
erarchical radiosity solution that are no longer required any
more after an update to the scene (e.g. a for representing a
disappearing shadow border).

However, the algorithms are quite complex. Additionally,
like all radiosity systems the proposed system is limited to
diffuse light transport, suffers from tesselation artifacts, and
does not easily scale to complex geometries.

Instant Radiosity

In 1997, Keller presented a totally different approach to in-
teractive radiosity. In “Instant Radiosity”39, a small set of
virtual point lights (VPLs) is computed using a quasi ran-
dom walk from the light sources. These VPLs are then used
to illuminate the scene using a shadow algorithm. In instant
radiosity, most computations (including the shadow gener-
ation) can be performed on the graphics card. For mod-
erately complex scenes, this allows for fully recomputing
lighted images at interactive rates. Additionally, instant ra-
diosity avoids many of the typical tesselation artifacts: In-
stead of discretizing the geometry, instant radiosity performs
discretization by using only a small number of discrete vir-
tual point light positions. However, relying on rasterization
graphics hardware, instant radiosity is limited to purely dif-
fuse scenes and lacks performance in realistically complex
scenes.

10.2. Approximating Techniques

Though radiosity based systems already interactively render
dynamic scenes with indirect lighting, they all suffer from
similar problems: First, they are rather slow and often do not
scale to reasonably complex scenes. Additionally, radiosity
based systems are inherently limited to purely diffuse light
transport, which often gives them a rather ’flat’ and unreal-
istic appearance.

To avoid these limitations, most off-line global illumi-
nation systems use ray- and path-based techniques. These,
however, usually require tracing of hundreds of rays for each
pixel, which is not affordable at interactive rates. Interactiv-
ity can still be achieved by using approximating techniques.
The basic idea behind these techniques is to approximate the
full solution (e.g. by computing only a fraction of all pixels)
and using a separate display thread for interactively recon-
structing an image from the this information.

As the display process usually runs much faster than the
sampling process (usually 10 – 100 times as fast), the display
thread has to cope with coarse approximations of the image,
which often results in artifacts.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

Render Cache

One of the first systems to use this approach was Walter et
al.’s “Render Cache”96, 95. The render cache stores a cache of
previously computed illumination samples – roughly twice
as many as pixels in the image. For each new frame, these
are reprojected to the new camera position, and stored in the
frame buffer. As this can result in artifacts (e.g. holes in the
image or disocclusion) several heuristics have to be applied
to reduce such artifacts.

The rendering thread runs asynchronously and decoupled
from the display and reconstruction thread, and simply gen-
erates new illumination samples as fast as possible. Such
generated samples are then inserted into the render cache
(thereby replacing some old samples) and can be used for
future frames. The main limitation of the render cache is
the speed with which it can reproject the old samples and
reconstruct the new frame. The high cost for these opera-
tions – which is usually linear in both frame rate and number
of pixels – has limited the original system to only moder-
ate resolutions. Though recently proposed optimizations95

allowed for significant speedups, generating full-screen im-
ages is still too costly for realtime frame rates.

The render cache becomes beneficial for rendering algo-
rithms where the cost for computing a new sample is very
high. For a fast ray tracer with a simple illumination model
it is often cheaper to simply trace a new ray than reprojecting
and filtering old samples. Similar techniques have also been
proposed in the form of Wards Holodeck47, and Simmons et
al.’s Tapestry77 system.

Shading cache

A similar approach has recently been proposed by Tole et
al 81. Instead of using an image-based technique for re-
constructing the image from previously computed samples,
they use an object-based technique that uses triangles for
representing the illumination samples. Image reconstruction
and interpolation between shading samples can then be per-
formed using graphics hardware, which allows to produce
realtime frame rates at full-screen resolutions.

However, their approach suffers from similar problems
as the render cache: Depending on old (and thus poten-
tially outdated) samples results in disturbing delays until an
change to the scene has any effect: While some geometric
object can be moved in realtime, the global effects caused
by this object – e.g. its shadow – will be computed much
slower. They will “follow” the object with an objectionable
latency of several seconds or more and show visible artifacts
during the transition phase.

This makes it hard to use the shading cache in totally dy-
namic scenes with constantly changing illumination from
dynamic lights, scenes, and materials. Finally, the shading
cache requires as least one sample per visible polygon, and
thus is not suitable for highly complex scenes4.

Edge-and-Point Images (EPIs)

The newest variant of this idea of interactively generating
high-quality images based on using sparse samples has re-
cently been proposed by Bala et al.4. The “edge and point
image” (EPI) essentially is an extension of the render cache
(Section 10.2) that uses – and preserves – analytic disconti-
nuities during reconstruction of the image.

The EPI analytically finds the most important shading dis-
continuities – in its current form these are object silhouettes
and shadow boundaries – using efficient algorithms and data
structures, and then respects these discontinuity edges dur-
ing reconstruction. This allows for high-quality reconstruc-
tion even including anti-aliasing at interactive rates.

10.3. Hybrid Techniques

To avoid the qualitative limitations of pure radiosity ap-
proaches, several approaches have been undertaken to aug-
ment radiosity solutions with specular effects such as reflec-
tions and refractions, for example by using corrective tex-
tures79 or corrective splatting27. These techniques are sim-
ilar to the above-mentioned subsampling-approaches, and
have already been covered in greater detail in the previous
STAR on interactive ray tracing, see92.

Fast Global Illumination including Specular Effects

Another interesting way of combining radiosity with specu-
lar effects has been proposed by Granier et al.24. They aug-
ment a radiosity solution with specular effects – like e.g.
caustics – using particle tracing. In its core, their system
uses hierarchical radiosity29 with clustering78 for quickly
and efficiently computing the diffuse light transport. Non-
diffuse effects are computed by integrating particle tracing
into the gather step of hierarchical radiosity. Particle trac-
ing is performed only where necessary, by shooting particles
only over links that connect to specular surfaces.

In simple scenes, their system allowed for interactive
viewing of up to 2 frames per second for global diffuse il-
lumination and caustic effects. However, interactive view-
ing required using graphics hardware, thereby limiting the
system to diffuse plus caustics only. Reflection and refrac-
tion could not be supported in interactive mode resulting in
a “dull” appearance24. Though combining their technique
with the render cache96 (cf. Section 10.2) allowed to push
frame rate and add reflections and refractions, the render
cache itself introduced other artifacts.

Selected Photon Tracing

A different way of interactively computing global illumina-
tion solutions has recently been proposed by Dmitriev et
al 15: In “selective photon tracing”, radiosity values of tri-
angular patches are computed by shooting photons from the
light sources into the scene and depositing their energy in the

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

vertices of the triangular mesh. The lighted triangles can then
be displayed interactively with graphics hardware. To hide
some of the tesselation artifacts, direct illumination from
point lights is computed separately on the graphics hardware
(see Figure 24).

Figure 24: Selected photon tracing. Left: Once some pilot
photons have detected a change in the scene geometry, sev-
eral similar photons (in blue) are selectively retraced. Right:
An example frame while interactively changing the scene.

Due to the limited speed of the photon tracer, only a cer-
tain amount of photons can be retraced every frame. There-
fore, selected photon tracing uses a clever way of determin-
ing which photon paths have probably been affected by a
scene update: A small subset of photon paths (called “pilot
photons”) is shot into the scene to determine which parts of a
scene have been updated. If a pilot photon hits an object that
it did not hit in the previous frame (or vice versa), selected
photon tracing selectively re-traces similar photons by gen-
erating only photon paths that are similar to the original path
(see Figure 24). Similar photons are generated by exploiting
correlation in the quasi random number generator used for
determining the photon paths.

Being a hybrid of radiosity and subsampling based tech-
niques combines many of the advantages of both techniques,
and allows to interactively display scenes with global illu-
mination while allowing for interactive manipulations to the
scene.

However, selected photon tracing also inherits some of
the inherent problems of radiosity and subsampling: First,
the speed decreases linearly in the number of patches, al-
lowing only a rather coarse tesselation that does not capture
high-frequency details such as caustics or indirect shadow
borders. Second, as only a subset of all photons is re-traced
every frame, drastic changes in the illumination caused by
user interaction can take several seconds to take effect.

11. Using Realtime Ray Tracing for Interactive Global
Illumination – Issues and Constraints

All the approaches discussed above had to be undertaken
because compute power and ray tracing performance did
not suffice to compute full ray tracing based global illumi-
nation solutions at interactive rates. With the recent avail-
ability of realtime ray tracing, however, it should eventually
become possible to compute such images interactively: As

most global illumination algorithms spend most of their time
tracing rays, combining such an algorithm with a realtime
ray tracer should theoretically result in interactive global il-
lumination performance.

However, global illumination algorithms are inherently
more complex than classical ray tracing and thus not all algo-
rithms will automatically benefit from a much faster ray trac-
ing engine. In order to take maximum profit from the avail-
ability of fast ray tracing, appropriate global illumination al-
gorithms have to be designed to meet several constraints:

Parallelism: Future realtime ray tracing engines will ex-
ploit the inherent parallelism of ray tracing. For classi-
cal ray tracing, parallelism can be exploited easily by
computing pixels separately and independently. Many
global illumination algorithms, however, require reading
or even updating global information, such as the radios-
ity of a patch12, entries in a photon map37, or irradiance
cache entries98. This requires costly communication and
synchronization overhead between different ray tracing
’units’, which quickly limits the achievable performance.

Efficiency: Even the ability to shoot millions of rays per
second leaves a budget of only a few rays per pixel in
order to stay interactive at non-trivial frame resolutions.
Thus, an algorithm must achieve sufficiently good images
with a minimum of samples per pixel. Given the perfor-
mance of current realtime ray tracing engines, only an av-
erage of about 50 rays per pixel is affordable. Thus, the
information computed by each ray has to be put to the
best possible use.

Realtime capabilities: For real interactivity – i.e. arbitrary
and unpredictable changes to the scene made by a user (in-
cluding changes to geometry, materials, and light sources)
– algorithms can no longer use extensive preprocessing.
Preprocessing must be limited to at most a few millisec-
onds per frame and cannot be amortized or accumulated
over more than a few frames as the increased latency of
lighting updates becomes noticeable.

Focus on Ray Tracing: The availability of a realtime ray
tracing engine can only save time previously spent on
tracing rays. Thus, performance must not be limited by
other computations, such as nearest-neighbor queries,
costly BRDF evaluations, network communication, or
even random number generation.

Independence From Geometry: In order to fully exploit
the ability of ray tracing to scale to complex geometries
(see Section 2.1), the global illumination algorithm itself
must be independent from geometry, and may not store
information on individual patches or triangles.

Within the above constraints most of todays global il-
lumination algorithms cannot be implemented interactively
on a realtime ray tracing engine: All radiosity style al-
gorithms 12, 29, 78, 16, 24 require significant preprocessing of
global data structures which seems impossible to implement
under these constraints. In principle, it should be possible to
use the ray tracer for augmenting one of the above interactive

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

a)no interleaved sampling
no discontinuity buffer

b)5×5 interleaved sampling
no discontinuity buffer

c)5×5 interleaved sampling
3×3 discontinuity buffer

d)5×5 interleaved sampling
5×5 discontinuity buffer

Figure 25: Interleaved sampling and the discontinuity buffer: All close-ups have been rendered with the same number of
rays apart from preprocessing. In a) only one set of point light sources and caustic photons is generated, while for b)-d) 25
independent such sets have been interleaved. Choosing the filter size appropriate to the interleaving factor completely removes
the structured noise artifacts.

radiosity systems with specular effects and accurate shadows
in the spirit of94. This, however, would not easily fit into the
distributed framework that the ray tracer is running on, and
would still suffer from tesselation artifacts.

Pure light-tracing or path-tracing38 based approaches
benefit most from fast ray tracing, but usually suffer from
noise artifacts in the spatial and temporal domains. The lat-
ter is particularly objectionable in animations and interactive
systems. Decent image quality would require far too many
rays per pixel at least for non-trivial lighting conditions. Fi-
nally, photon mapping35, 34, 36, 37 requires costly preprocess-
ing for photon shooting and creation of the kd-trees as well
as expensive nearest neighbor queries during rendering. It
also uses irradiance caching, which imposes similar prob-
lems.

12. Instant Global Illumination

The above discussion shows that a new, appropriately de-
signed algorithm is required to take advantage of a fast ray
tracing engine for interactive global illumination computa-
tions: Such an algorithm has recently been proposed by Wald
et al. 91: Their Monte Carlo based algorithm is explicitly
designed to run efficiently under the constraints mentioned
above.

In its core, their method – called “Instant Global Illumina-
tion” – builds on Keller’s “Instant Radiosity”39 (see above).
The illumination in a scene is approximated by a small set
of “virtual point lights” (VPLs) that are generated by a brief
preprocessing step by performing a few random walks from
the light sources. During rendering the irradiance at a sur-
face point is computed by casting shadow rays to all VPLs
and adding their contribution.

Instant Radiosity as a core algorithm perfectly fits the
above restrictions: Instant Radiosity spends most of its time
evaluating visibility from point light sources, which gener-
ates highly coherent rays (allowing the ray tracer to perform
best), and profits perfectly from increased ray tracing speed.

Additionally, it has minimal preprocessing cost (generating
only a few dozen VPLs), does not need access to global data,
is totally independent of geometry, and parallelizes trivially
per pixel.

Being implemented on top of a realtime ray tracing sys-
tem allows Instant Global Illumination to easily and cheaply
integrate important specular effects like reflections and re-
fractions, which have traditionally been a problem in fast
global illumination. Even simple caustics can be supported
by a simplified version of caustic photon mapping91, but
usually lead to scalability and performance problems due to
the higher preprocessing cost for shooting the photons.

In order to remain interactive, only a small number of
shadow rays to VPLs is affordable in each pixel. Therefore,
instant global illumination uses randomized Quasi Monte
Carlo sampling42 and a combination of Interleaved Sam-
pling 40 together with an image based filtering technique in
order to get sufficient image quality at such small sampling
rates (also see Figure 25): Instead of using the same set of
n VPLs for every pixel, the algorithm generates 3×3 such
sets (ofn VPLs each), which are interleaved between pix-
els: Neighboring pixels use different sets, and the same set
is used every 3×3 pixels. Using 3×3 different sets of VPLs
effectively increases the number of VPLs used for comput-
ing an image by a factor of 9. This improves the visual ap-
pearance of the image, at the expense of getting structured
noise in the image, as can be seen in Figure 25b.

This structured noise is then removed by “discontinuity
buffering”, a technique that removes structured noise by fil-
tering the image. It uses several heuristics to avoid filtering
across image discontinuities. If the filter size is chosen to ex-
actly match the size of the interleaving pattern the structured
noise can be entirely removed (see Figure 25b–d). However,
some structured noise can remain in areas where the heuris-
tics do not permit filtering, e.g. on highly curved surfaces.

The combination of interleaved sampling and discontinu-
ity buffering improves the performance by roughly an order

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

of magnitude and achieves interactive frame rates even if all
illumination is recomputed every frame.

12.1. Distribution Design Issues

In most aspects, implementing Instant Global Illumination
on top of a distributed ray tracing system is rather simple.
Most computations are spent on shooting highly coherent
shadow rays, which perfectly fits the underlying ray trac-
ing engine, and which can be easily implemented as a pro-
grammable shader. The most critical design decision for a
distributed implementation is to decide where the disconti-
nuity buffering is to be performed.

If this final filtering pass is performed on the final image
(i.e. on the server), it is possible to assign only pixels with
the same interleaving pattern to each client. Thus, each client
only has to generate the VPLs and photons for its respective
interleaving set. If this preprocessing phase is quite costly –
e.g. if several thousand rays have to be shot for producing
convincing caustics – this efficiently avoids replicating the
preprocessing cost on all clients, and significantly improves
scalability. Essentially, each client only has to compute one
ninth of all VPLs and photons. However, this strategy im-
plies that clients do not have access to neighboring pixel
values – as these would have to be computed by different
interleaving sets – and that therefore filtering has to be per-
formed on the server. This however can create a scalability
bottleneck, as the server can only receive and filter a quite
limited number of pixels per second.

The alternative strategy is to perform the filtering on the
clients. This effectively avoids the server bottleneck, but re-
quires clients to have access to neighboring pixels, thereby
incurring some overhead at tile boundaries, and – even worse
– requiring each client to generate all VPLs and photons for
all interleaving patterns. While generation of the VPLs is
cheap enough to be replicated on each client, generating a
sufficient number of caustic photons is no longer affordable
in this strategy.

12.2. The Original Instant Global System

Therefore – in order to be able to compute caustics – the
original IGI system91 was performing filtering on the server.
As could be expected, this created a bottleneck that limited
performance to roughly 5 frames per second at 640× 480
pixels. However, the original system still scaled very well in
image quality: Using twice as many CPUs, allows for twice
the number of VPLs maintaining the same frame rate. The
increased number of VPLs considerably improving the re-
sulting image quality.

Filtering on the server also allowed this system to gener-
ate reasonably good caustics (see Figure 27). Using a simple
hashing scheme avoided the costly construction of kd-trees
every frame, and provided fast and cheap photon queries.

Figure 27: Caustics in the original Instant Global Illumina-
tion system. Though the limited number of photons results in
some artifacts, caustics are still convincing.

Even though only a few thousand caustics have been afford-
able for interactive use, interleaved sampling and disconti-
nuity buffering also increased the quality of the caustics.

However, the original system was mainly designed as a
proof-of-concept system, and did not exploit the full perfor-
mance of the ray tracer. For example, it was explicitly de-
signed to generate coherent rays to point light sources, the
original implementation did not yet use the fast SSE packet
traversal code for tracing these rays. Thus, the performance
of the original system was quite limited, therefore allowing
only a rather small number of VPLs at interactive rates. As
this resulted in visible artifacts in the image, the IGI system
also allowed to progressive refine the quality of an image
as soon as user interaction stopped. The refinement process
then progressively increased the number of VPLs, caustic
photons, and samples per pixel, thereby eventually result-
ing in high-quality, artifact-free, and anti-aliased images af-
ter only a few seconds of convergence.

13. Advanced Instant Global Illumination

However, due to the limited performance of the original sys-
tem, this image quality could not be maintained during user
interaction. Recently, Benthin et al8 have proposed several
important improvements that now allow for improved image
quality and significantly higher performance.

13.1. Improved Performance and Programmable
Shading

First, the system has been completely rewritten to function in
a streaming manner. As all the rays shot in IGI are highly co-
herent shadow rays to point light sources, packets of coher-
ent rays can be easily maintained most of the time, thereby
allowing to trace these rays with the fast SIMD code as de-
scribed in Section 2.1.

Furthermore these packets all undergo similar shading
computations. Thus they can also be shaded with SIMD
computations without the need to break them up for sepa-
rate shaders, and thus without the penalty outlined in Sec-
tion 2.1. This is even true for complex procedural shaders

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

Figure 26: Instant Global Illumination. a.) Office scene, with soft shadows, reflections, refractions, and a caustic from the glass
ball. b.) Conference scene with 280,000 triangles and 220 light sources, c.) Global Illumination in an animated VRML scene,
and d.) Global Illumination in the 12.5 million triangle “power plant” scene. All scenes run interactively with several frames
per second at640x480pixels while allowing interactive updates to the scene. Note that a.) was rendered with the older system,
as caustics are currently not supported in the new version.

like the “wood”, “marble”, and “brickbump” shaders that
can be seen in Figure 28.

These speed improvements – together with the recent im-
provements in ray tracing performance mentioned in Sec-
tion 2.1 – now allow the new system to significantly outper-
form the old system, while simultaneously achieving much
higher image quality and higher frame rates.

However, with the much higher performance of the clients
the scalability bottleneck on the server could no longer be
tolerated. Therefore, the filtering computations have also
been moved to the clients, where they can now be computed
using fast SIMD code. This completely removes any com-
putational load from the server but does no longer allow
for caustic photon mapping. With the server bottleneck re-
moved the server can concentrate on load balancing which
allows the system to easily scale to more than 48 CPUs and
to frame rates beyond 20 frames per second (see Figure 29).
Currently, the systems performance is mainly limited by the
bandwidth of Gigabit Ethernet, which cannot transfer more
than roughly 25–30 frames per second at 640×480 pixels.

Figure 28: Freely programmable procedural shading in a
globally illuminated scene. The standard “ERW6” test scene
(left) and after applying several procedural shaders (marble,
wood, and brickbump). Even with shaders that make exten-
sive use of procedural noise the performance only drops to
3.7 fps compared to 4.5 fps with a purely diffuse BRDF.

 0

 5

 10

 15

 20

 5 10 15 20

fr
am

es
 p

er
 s

ec
on

d

clients

ERW6
Office

Conference
PowerPlant

Maple Trees

Figure 29: Scalability of the new IGI system with the num-
ber of rendering clients: Performance is essentially linear
up to 24 PCs/48 CPUs. This applies to scenes ranging from
several hundred triangles (ERW6) up to the power plant with
50 million triangles (four instances). Also note how the new
system scales in frame rate well beyond the original system,
which was limited to at most 5 frames per second.

13.2. Efficient Anti-Aliasing by Interleaved
Super-Sampling

The original system provided high-quality anti-aliasing us-
ing progressive over-sampling in static situations but suf-
fered from artifacts during interaction. This was caused by
the low image resolution and the fact that only a single pri-
mary ray was used per pixel.

Efficient anti-aliasing is still an unsolved problem in ray
tracing as the rendering time increases linearly with the
number of rays traced. Anti-aliasing by brute-force super-
sampling in each pixel is thus quite costly, in particular for an
interactive context. On the other hand, methods like adaptive
super-sampling are problematic due to possible artifacts and
the increased latency of refinement queries in a distributed
setup.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

Figure 30: Efficient anti-aliasing. Left: A single primary ray
per pixel, exhibiting strong aliasing artifacts. Right: 4 pri-
mary rays per pixel, resulting in an aliasing-reduced image.
Using interleaved super-sampling the performance of the
anti-aliased image is only slightly lower than the left image,
running at 3.2fps compared to 4.0 fps. As both images use
the same total number of shadow rays per pixel, the quality
of the lighting simulation is virtually indistinguishable.

Benthin et al.8 have also proposed an extension of instant
global illumination that achieves anti-aliasing with little per-
formance impact using a similar interleaving approach as for
sampling the VPLs. Instead of connecting each primary ray
to all M VPLs in the current set, the VPLs are grouped into
N different subsets with roughlyM/N VPLs each. We then
useN primary rays per pixel for anti-aliasing, each ray com-
puting illumination only with its own subset of VPLs.

For typical parameters (i.e.N = 4 orN = 8, andM >= 16,
the overhead of theN− 1 additional rays is usually in the
order of 20% to 30%, which is well justified by the increase
in image quality (see Figure 30).

14. Instant Global Illumination in Complex and Highly
Occluded Scenes

In the way discussed above, instant global illumination was
mainly designed for “typical” global illumination scenes,
i.e. single rooms or scenes containing only a few different
rooms. In practice , however, application often have to render
complete buildings, construction sites, ships, or airplanes.
Such kinds of scenes are usually highly complex, contain
many different light sources and show a high degree of oc-
clusion.

Such scenes, however, are hard to handle for virtually all
of todays global illumination scenes: Geometric complexity
of several million triangles alone is often an important fea-
ture for many algorithms, especially if they require storing
illumination information on the triangles themselves. Addi-
tionally, most algorithms are linear in the number of light
sources, thereby being unable to handle thousands of light
sources at interactive rates. Finally, high occlusion requires
most algorithms to waste most of their computations on
unimportant and occluded parts of a scene, e.g. by tracing
photons in rooms that are occluded anyway, or by wasting
shadow rays for sampling occluded lights while computing
direct illumination.

In its original form, instant global illumination suffers
from similar problems: Being entirely based on ray trac-
ing, the pure geometric complexity of the scene is generally
less of a problem. However, the generation of the VPLs is
purely light driven, resulting in the VPLs to be scattered all
over the model. As described above, only a rather limited set
of VPLs is affordable at interactive rates (roughly in to or-
der of 30–100). If this small number of VPLs is distributed
over dozens or hundreds of rooms, the lighting in each room
will be represented by only very few VPLs, resulting in low
image quality. In unlucky cases, it may even happen that a
room receives no VPL at all (e.g. see the Soda Hall images
in Figure 31). This, however, is not a specific limitation of
the Instant Global Illumination method, but happens in sim-
ilar form in virtually all other global illumination algorithms
used today.

Methods to handle such kinds of scenes have been pro-
posed by Ward97, Jensen et al.34, Keller et al.41 and Bala
et al. 18. However, these approaches are either applicable
only to direct illumination, or do not easily fit into a dis-
tributed interactive environment. For a more detailed discus-
sion, see89.

Recently, Wald et al. have proposed an extension of In-
stant Global Illumination that handles even such complex
and highly occluded models89. In their method, they use
a simple and crude path tracing step to estimate the con-
tribution of each light source to the image. Using a path
tracer for this step has several advantages: First, it allows
for easy integration into their ray tracing system. Second, a
path tracer samples each pixel independently, thereby allow-
ing for easy parallelization and for sampling different light
sources in different pixels. Finally, a path tracer samples only
visible objects and never touches distant and occluded geom-
etry. This feature is prerequisite for efficient ray tracing of
complex models, as incoherent sampling of the entire model
would destroy memory caches and result in very low perfor-
mance90.

While the approximation from the path tracer is rather
coarse, it already gives a good estimate of the contribution of

Figure 32: Quality of the estimate in the ERW10 scene. Left:
Estimate as results from a path tracer using a single sample
per pixel. Right: The same image rendered with 1024 sam-
ples per pixel. Though the estimate image is hardly recogniz-
able, the contributions of the light sources – over the whole
image – are estimated correctly up to a few percent.

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

Figure 31: Instant Global Illumination in Complex and Highly Occluded Scenes. Image quality of the new system (bottom row)
versus the original system (middle row) at the same frame rate in several complex scenes (top row). From left to right: “ERW10”
(80k triangles, 100 lights), “Ellipse” (19k triangles, 1,164 lights), “Soda Hall” (2.5M triangles, 23k lights), and another view
of Soda hall. Running at the same frame rate, the new system achieves visibly superior image quality due to concentrating the
VPLs on actually important light sources.

the different light sources (see Figure 32). This allows for ef-
ficient importance sampling by identifying and then ignoring
unimportant light sources. VPLs can then be concentrated on
more important light sources, allowing for enough VPLs to
be placed in the actually visible rooms. Like in the original
method, each frame is computed from scratch, and no static
precomputed values are being used. Therefore, the method
does not limit the viewer to walkthroughs of static scenes.
Instead, it allows for interactive, dynamic changes to geom-
etry, materials, and light sources.

In highly occluded models, the proposed procedure works
very well, and often results in significant savings. For ex-
ample, in the Soda Hall scene the number of contributing
light sources can be as low as 66, which is less than one per-
cent of all light sources (23,256 lights total). However, the
view importance influences the placement of the VPLs and
introduces temporal artifacts: Even simple changes of the
viewer’s pose can change the importance of different light
sources, thereby changing the placement of potentially all
VPLs in the scene. At the small number of VPLs that are
affordable in an interactive setting, this “jumping” of even
a small fraction the VPLs between subsequent frames can
introduce disturbing flickering of the illumination.

Even though the method uses several heuristics to reduce
these temporal artifacts to a tolerable level, some artifacts
still remain visible. Even so, the new method results in dra-
matically improved image quality if compared to the original
method at the same frame rate (see Figure 31): Whereas the
image quality of the original method is clearly unacceptable,
the new method can reproduce most illumination features
and often even produces effects light soft shadows that are
not present at all in the images computed without using the
proposed technique.

While much work remains for improving the method and
getting rid of the remaining temporal artifacts, the proposed
method allows for the first time interactive global illumina-
tion in such complex and highly occluded models without
restricting the user to static and precomputed environments.

15. Summary and Conclusions

As has been described in the previous sections, realtime ray
tracing can be used to compute global illumination at inter-
active rates. Instant Global Illumination can faithfully repro-
duce the most important lighting effects – smooth and hard
shadows, smooth direct and indirect diffuse lighting, color
bleeding, reflections and refractions – while still allowing

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

for interactive and dynamic changes to all scene properties
including geometry, materials, and lights.

Instant global illumination scales to massively complex
scenes of millions of polygons and even to scenes with many
light sources and high occlusion using the proposed modifi-
cations. On a PC cluster IGI scales linearly in the number
of client PCs, and achieves frame rates of up to 25 frames
per second at 640× 480 pixels, even including procedural
shaders, textures, tone mapping, and anti-aliasing.

Still, much work remains to be done: in its current form,
instant global illumination is similar to radiosity methods in
the sense that it is most efficient for mostly diffuse scenes.
While IGI does not suffer from tesselation problems and can
easily handle reflections and refractions, other specular ef-
fects – like glossiness and high-quality caustics – are still
problematic. The latter effects are often less important for
practical applications, but would nonetheless be interesting
to support.

However, caustics are especially hard to generate. While
photon mapping37, 35, 36 presents an efficient solution to
caustics in off-line computations, it is not yet clear how pho-
ton mapping could be ported to a distributed, interactive set-
ting as described above.

As instant radiosity inherently builds on tracing packets of
highly coherent shadow rays, IGI should also map easily to
other ray tracing architectures like e.g. the SaarCOR archi-
tecture75. This approach seems promising, and is currently
being evaluated. Though this has not been finally simulated,
preliminary results are promising.

Final Summary

In this STAR, we have given an overview about the state-
of-the-art and about the current research activities in real-
time ray tracing and in its use for interactive global illumi-
nation. We have first discussed the three main approaches to
realizing realtime ray tracing: software systems, GPU-based
ray tracers, and dedicated ray tracing hardware. Based on
the Saarland RTRT/OpenRT engine, Purcell et al.’s stream-
ing GPU ray tracer, and Schmittler et al.’s SaarCOR en-
gine, respectively, we have then analyzed and compared the
strengths and weaknesses of these different approaches.

We have also discussed several advanced issues of ray
tracing, like handling dynamic scenes and API issues, and
have pointed out the potential and several implications for
future applications. The results indicate that realtime ray
tracing is indeed becoming feasible in the near future, and
is likely to play a larger role in future graphical applications.

Finally, we have discussed how realtime ray tracing can
be used to achieve interactive global illumination – the
physically-correct simulation of light transport at interactive

rates. Especially the latter is likely to become a “killer appli-
cation” for realtime ray tracing and may become a manda-
tory feature of future 3D graphics similar to the introduc-
tion of realtime texture mapping a few years ago. The in-
creased realism provided by interactive global illumination
makes it highly attractive for such diverse application areas
as computer games, indoor and outdoor visualization, virtual
reality, and many more. Though the performance of current
implementations is still somewhat limited in terms of high
resolutions and frame rates, realtime ray tracing and inter-
active global illumination provide unique opportunities for
novel applications already today, some of which have been
pointed out in this report.

The research described in this report also opened up in-
teresting new areas of research that have been mostly ig-
nored in the past. For example the support of dynamic scenes
still leaves much to be desired, some global illumination ef-
fects – such as glossy reflections and caustics – are still too
costly and scale badly. It is nice to see that more and more
researchers start looking into these issues.

Acknowledgements

We would like to thank all the people who have contributed
to this report in whatever form possible. Especially Andreas
Dietrich of Saarland University, who has been deeply in-
volved in many applications of the OpenRT system.

The instant global illumination system has been designed
and developed in conjunction with Alexander Keller and
Thomas Kollig from Kaiserslautern University. Ian Buck,
Bill Mark and Pat Hanrahan have contributed to the “Ray
Tracing on Programmable GPUs” project, and James Percy,
Pradeep Sen, and Eric Chan helped with the original Radeon
9700 ray tracing demos.

Philippe Bekaert has provided his XRML library6, helped
in writing the OpenRT based VRML browser, and provided
early feedback on OpenRT. Models have been provided by
Philippe Bekaert (Soda Hall), Tim Dahmen (animated globe
scene), Anselmo Lastra (Power Plant), Hella Corp. (car
headlight) and Oliver Deussen (Sunflowers and tree models).
Images and insight into their systems have been provided by
Nathan Carr, Kirill Dmitriev, Bruce Walter, Steve Parker and
David DeMarle.

Finally, we would like to thank ATI, Intel Corp, and
NVIDIA for their support and sponsorship.

References

1. ATI. Radeon 8500LE 128 product web site, 2001.
http://mirror.ati.com/products/pc/radeon8500le128/index.html.
3.2.2

2. ATI. Radeon 9700 Pro product web site, 2002.
http://mirror.ati.com/products/pc/radeon9700pro/index.html.
3.3.2

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

3. ATI. Radeon 9800 Pro product web site, 2003.
http://mirror.ati.com/products/pc/radeon9800pro/index.html.
3.1

4. Kavita Bala, Bruce Walter, and Donald Greenberg. Combin-
ing Edges and Points for Interactive High-Quality Rendering.
ACM Transactions on Graphics, 2003. (Proceedings of ACM
SIGGRAPH 2003. 10.2

5. Philippe Bekaert.Hierarchical and Stochastic Algorithms for
Radiosity. PhD thesis, Katholieke Universitiet Leuven, Bel-
gium, 1999. 10

6. Philippe Bekaert. Extensible Scene Graph Manager, Au-
gust 2001. http://www.cs.kuleuven.ac.be/∼graphics/XRML/.
7.1.3, 7.3, 9, 15

7. Carsten Benthin, Ingo Wald, Tim Dahmen, and Philipp
Slusallek. Interactive Headlight Simulation – A Case Study
of Distributed Interactive Ray Tracing. InProceedings of Eu-
rographics Workshop on Parallel Graphics and Visualization
(PGV), pages 81–88, 2002. 8

8. Carsten Benthin, Ingo Wald, and Philipp Slusallek. A Scalable
Approach to Interactive Global Illumination. to be published
at Eurographics 2003, 2003. 2.1.2, 13, 13.2

9. Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder.
Sparse matrix solvers on the GPU: Conjugate gradients and
multigrid. ACM Transactions on Graphics, 2003. (Proceed-
ings of ACM SIGGRAPH 2003). 3

10. Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray en-
gine. InProceedings of the conference on Graphics hardware
2002, pages 37–46. Eurographics Association, 2002. 3, 3.2

11. Alan Chalmers, Timothy Davis, and Erik Reinhard, editors.
Practical Parallel Rendering. AK Peters, 2002. ISBN 1-
56881-179-9. 2.2.1, 2.2.2

12. Micheal F. Cohen and John R. Wallace.Radiosity and Real-
istic Image Synthesis. Morgan Kaufmann Publishers, 1993.
ISBN: 0121782700. 3, 10, 11

13. David E. DeMarle, Steve Parker, Mark Hartner, Christiaan
Gribble, and Charles Hansen. Distributed Interactive Ray
Tracing for Large Volume Visualization. (submitted for publi-
cation), 2003. 1, 1

14. Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp
Slusallek. The OpenRT Application Programming Interface
– Towards A Common API for Interactive Ray Tracing. In
Proceedings of the 2003 OpenSG Symposium, Darmstadt, Ger-
many, 2003. Available at http://www.openrt.de. 7

15. Kirill Dmitriev, Stefan Brabec, Karol Myszkowski, and Hans-
Peter Seidel. Interactive Global Illumination Using Selective
Photon Tracing. InProceedings of the 13th Eurographics
Workshop on Rendering, pages 21–34, 2002. 10.3

16. George Drettakis and François Sillion. Interactive Update of
Global Illumination using a Line-Space Hierarchy. InCom-
puter Graphics (Proceedings of SIGGRAPH 1997), pages 57–
64, Aug 1997. 10.1, 11

17. Philip Dutre, Kavita Bala, and Philippe Bekaert. Advanced
Global Illumination, 2001. SIGGRAPH 2001 Course Notes,
Course 20. 3

18. Sebastian Fernandez, Kavita Bala, and Donald Greenberg. Lo-
cal Illumination Environments for Direct Lighting Accelera-
tion. In Proceedings of Thirteenth Eurographics Workshop on
Rendering, pages 7–14, Pisa, Italy, June 2002. 14

19. MPI Forum. MPI – The Message Passing Interface Standard.
http://www-unix.mcs.anl.gov/mpi. 2.2.2

20. Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. ARTS:
Accelerated ray tracing system.IEEE Computer Graphics and
Applications, 6(4):16–26, 1986. 3.3.1

21. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang,
Robert Manchek, and Vaidyalingam S. Sunderam.PVM: Par-
allel Virtual Machine. A User’s Guide and Tutorial for Net-
work Parallel Computing. MIT Press, Cambridge, 1994. 2.2.2

22. Andrew Glassner. Spacetime Ray Tracing for Anima-
tion. IEEE Computer Graphics and Applications, 8(2):60–70,
1988. 6

23. Andrew Glassner."An Introduction to Raytracing". Academic
Press, 1989. 3.3.2, 6

24. Xavier Granier, George Drettakis, and Bruce Walter. Fast
Global Illumination Including Specular Effects. InProceed-
ings of the 2001 Eurographics Workshop on Rendering, pages
47–58, 2001. 10.3, 11

25. Stuart A. Green. Parallel processing for computer graphics.
MIT Press, pages 62–73, 1991. 4

26. Eduard Gröller and Werner Purgathofer. Using temporal and
spatial coherence for accelerating the calculation of animation
sequences. InProceedings of Eurographics ’91, pages 103–
113. Elsevier Science Publishers, 1991. 6

27. Jörg Haber, Karol Myszkowski, Hitoshi Yamauchi, and Hans-
Peter Seidel. Perceptually Guided Corrective Splatting.Com-
puter Graphics Forum (Proceedings of Eurographics 2001),
20(3):C142–C152, September 2001. 10.3

28. D. Hall. The AR350: Today’s ray trace rendering processor.
In Proceedings of the Eurographics/SIGGRAPH workshop on
Graphics hardware - Hot 3D Session 1, 2001. 4

29. Pat Hanrahan, David Salzman, and Larry Aupperle. A Rapid
Hierarchical Radiosity Algorithm. InComputer Graphics
(SIGGRAPH 91 Conference Proceedings), pages 197–206,
1991. 10, 10.3, 11

30. Mark J. Harris, Greg Coombe, Thorsten Scheuermann, and
Anselmo Lastra. Physically-based visual simulation on graph-
ics hardware. InProceedings of the conference on Graph-
ics hardware 2002, pages 109–118. Eurographics Association,
2002. 3

31. Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD
thesis, Czech Technical University, 2001. 2.1.1

32. Intel Corp. Intel Pentium III Streaming SIMD Extensions.
http://developer.intel.com/vtune/cbts/simd.htm. 2.1

33. Intel Corp. Intel C/C++ Compilers, 2002.
http://www.intel.com/software/products/compilers. 2.1.1

34. H. Jensen and N. Christensen. Efficiently Rendering Shad-
ows Using the Photon Map. In H. Santo, editor,Edugraph-
ics + Compugraphics Proceedings, pages 285–291. GRASP-
Graphic Science Promotions & Publications, 1995. 11, 14

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

35. Henrik Wann Jensen. Global Illumination using Photon Maps.
Rendering Techniques 1996, pages 21–30, 1996. (Proceedings
of the 7th Eurographics Workshop on Rendering). 11, 15

36. Henrik Wann Jensen. Rendering caustics on non-Lambertian
surfaces.Computer Graphics Forum, 16(1):57–64, 1997. 11,
15

37. Henrik Wann Jensen.Realistic Image Synthesis Using Photon
Mapping. AK Peters, 2001. ISBN: 1568811470. 10, 11, 15

38. James T. Kajiya. The Rendering Equation. In David C. Evans
and Russell J. Athay, editors,Computer Graphics (Proceed-
ings of SIGGRAPH 86), volume 20, pages 143–150, 1986. 10,
11

39. Alexander Keller. Instant Radiosity.Computer Graphics,
pages 49–56, 1997. (Proceedings of ACM SIGGRAPH 1997).
10.1, 12

40. Alexander Keller and Wolfgang Heidrich. Interleaved Sam-
pling. Rendering Techniques 2001, pages 269–276, 2001.
(Proceedings of the 12th Eurographics Workshop on Render-
ing). 12

41. Alexander Keller and Ingo Wald. Efficient Importance Sam-
pling Techniques for the Photon Map. InVision Modelling and
Visualization 2000, pages 271–279, November 2000. 14

42. Thomas Kollig and Alexander Keller. Efficient Multidimen-
sional Sampling.Computer Graphics Forum, 21(3):557–563,
2002. (Proceedings of Eurographics 2002). 12

43. Jens Krüger and Rüdiger Westermann. Linear algebra oper-
ators for gpu implementation of numerical algorithms.ACM
Transactions on Graphics, 2003. (To appear in Proceedings of
ACM SIGGRAPH 2003). 3

44. Eric Lafortune. Mathematical Models and Monte Carlo
Algorithms for Physically Based Rendering. PhD thesis,
Katholieke Universitiet Leuven, Belgium, 1996. 10

45. Eric Lafortune and Yves Willems. Bidirectional Path Trac-
ing. In Proc. 3rd International Conference on Computa-
tional Graphics and Visualization Techniques (Compugraph-
ics), pages 145–153, 1993. 10

46. E. Scott Larsen and David McAllister. Fast matrix multiplies
using graphics hardware. InSupercomputing 2001, page 55,
2001. 3

47. Greg Ward Larson. The Holodeck: A parallel ray-caching ren-
dering system.Proceedings Eurographics Workshop on Par-
allel Graphics and Visualization, 1998. 10.2

48. Marc Levoy and Pat Hanrahan. Light field rendering. InPro-
ceedings of the 23rd annual conference on Computer graphics
and interactive techniques, pages 31–42. ACM Press, 1996. 8

49. Jonas Lext and Tomas Akenine-Moeller. Towards Rapid Re-
construction for Animated Ray Tracing. InEurographics 2001
– Short Presentations, pages pp. 311–318, 2001. 6

50. Jonas Lext, Ulf Assarsson, and Tomas Moeller. BART: A
benchmark for animated ray tracing. Technical report, De-
partment of Computer Engineering, Chalmers University of
Technology, Goeteborg, Sweden, May 2000. Available at
http://www.ce.chalmers.se/BART/. 6, 6

51. Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A user-
programmable vertex engine. InProceedings of ACM SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Con-
ference Series, pages 149–158, August 2001. 3

52. William Mark. Shading System Immediate-Mode API, v2.1.
In SIGGRAPH 2001 Course 24 Notes – Real-Time Shading,
August 2001. 7.1.2

53. M. Meissner, U. Kanus, and W. Strasser. VIZARD II, A
PCI-Card for Real-Time Volume Rendering. InEurograph-
ics/Siggraph Workshop on Graphics Hardware, 1998. 4

54. Michael J. Muuss. Towards Real-Time Ray-Tracing of Combi-
natorial Solid Geometric Models. InProceedings of BRL-CAD
Symposium ’95, June 1995. 1, 2

55. Michael J. Muuss and Maximo Lorenzo. High-Resolution In-
teractive Multispectral Missile Sensor Simulation for ATR and
DIS. In Proceedings of BRL-CAD Symposium ’95, June 1995.
1, 2

56. Jackie Neider, Tom Davis, and Mason Woo.OpenGL Pro-
gramming Guide. Addison-Wesley, Reading, Massachusetts,
U.S.A., 1993. 7

57. NVIDIA. Geforce FX 5900 product web site, 2003.
http://nvidia.com/view.asp?PAGE=fx_5900. 3.1

58. NVIDIA. NV_fragment_program exten-
sion, 2003. http://oss.sgi.com/projects/ogl-
sample/registry/NV/fragment_program.txt. 3.1

59. NVIDIA. NV_occlusion_query exten-
sion, 2003. http://oss.sgi.com/projects/ogl-
sample/registry/NV/occlusion_query.txt. 3.1

60. OpenGL ARB. ARB_fragment_program ex-
tension, 2003. http://oss.sgi.com/projects/ogl-
sample/registry/ARB/fragment_program.txt. 3.1

61. OpenSG-Forum. http://www.opensg.org, 2001. 7, 9

62. Steven Parker, Michael Parker, Yaren Livnat, Peter Pike Sloan,
Chuck Hansen, and Peter Shirley. Interactive ray tracing
for volume visualization. IEEE Transactions on Computer
Graphics and Visualization, 5(3):238–250, July-September
1999. 1, 2, 1, 8

63. Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen,
and Peter Pike Sloan. Interactive ray tracing for isosurface
rendering. InIEEE Visualization ’98, pages 233–238, October
1998. 1, 2, 1

64. Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen,
and Peter Pike Sloan. Interactive Ray Tracing. InProceedings
of Interactive 3D Graphics (I3D), pages 119–126, April 1999.
1, 2, 1, 6

65. Hans-Peter Pfister. SIGGRAPH course on Interactive Ray
Tracing, 2001. 4

66. Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer,
and Larry Seiler. The VolumePro real-time ray-casting system.
Computer Graphics, 33, 1999. 4

67. Pixar.The RenderMan Interface. San Rafael, September 1989.
7, 7.1.2, 7.1.3

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

68. Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov, and Pat
Hanrahan. A Real-Time Procedural Shading System for Pro-
grammable Graphics Hardware. InComputer Graphics (Pro-
ceedings of SIGGRAPH 2001), pages 159–170, August 2001.
7.1.2

69. Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanra-
han. Ray Tracing on Programmable Graphics Hardware.ACM
Transactions on Graphics, 21(3):703–712, 2002. (Proceed-
ings of ACM SIGGRAPH 2002). 1, 3, 7.1.3

70. Erik Reinhard.Scheduling and Data Management for Parallel
Ray Tracing. PhD thesis, University of East Anglia, 1995.
2.2.1

71. Erik Reinhard, Brian Smits, and Chuck Hansen. Dynamic Ac-
celeration Structures for Interactive Ray Tracing. InProceed-
ings of the Eurographics Workshop on Rendering, pages 299–
306, Brno, Czech Republic, June 2000. 6

72. John Rohlf and James Helman. IRIS Performer: A high per-
formance multiprocessing toolkit for real-time 3D graphics.
Computer Graphics, 28(Annual Conference Series):381–394,
July 1994. 7, 9

73. B. Schachter.Computer Image Generation. Wiley, New York,
1983. 2.2.2

74. Jörg Schmittler, Alexander Leidinger, and Philipp Slusallek.
A Virtual Memory Architecture for Real-Time Ray Tracing
Hardware.to appear in Computer and Graphics, Volume 27,
No. 5, 2003. 2.2.1, 4, 4.2, 4.4, 4.7, 4.8

75. Jörg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR –
A Hardware Architecture for Ray Tracing. InProceedings of
Eurographics Workshop on Graphics Hardware, pages 27–36,
2002. 1, 4, 4.4, 4.5, 4.6, 4.7, 4.8, 7, 7.1.3, 15

76. Peter Shirley.Fundamentals of Computer Graphics. AK Pe-
ters, 2001. ISBN 1568811241. 1

77. Maryann Simmons and Carlo H. Sequin. Tapestry: A dynamic
mesh-based display representation for interactive rendering,
june 2000. ISBN 3-211-83535-0. 10.2

78. Brian Smits, James Arvo, and Donald Greenberg. A clustering
algorithm for radiosity in complex environments. InProceed-
ings of the 21st annual conference on Computer graphics and
interactive techniques, pages 435–442. ACM Press, 1994. 10,
10.3, 11

79. Marc Stamminger, Jörg Haber, Hartmut Schirmacher, and
Hans-Peter Seidel. Walkthroughs with Corrective Textures.
In Proceedings of the 11th Eurographics Workshop on Ren-
dering, pages 377–388, 2000. 10.3

80. Advanced Rendering Technologies. http://www.art.co.uk/,
2002. 4

81. Parag Tole, Fabio Pellacini, Bruce Walter, and Donald P.
Greenberg. Interactive Global Illumination in Dynamic
Scenes. ACM Transactions on Graphics, 21(3):537–546,
2002. (Proceedings of ACM SIGGRAPH 2002). 10.2

82. Th. Ullmann, A. Schmidt, D. Beier, and B. Bruderlin. Adap-
tive Progressive Vertex Tracing for Interactive Reflections.
Computer Graphics Forum, 20(3), September 2001. Proceed-
ings of Eurographics. 8

83. Th. Ullmann, A. Schmidt, D. Beier, and B. Bruderlin. Adap-
tive Progressive Vertex Tracing in Distributed Environments.
In Proceedings of the Ninth Pacific Conference on Computer
Graphics and Applications (Pacific Graphics 2001), pages
285–294. IEEE, October 2001. 8

84. Eric Veach.Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford University, 1997. 10

85. VRML Consortium. VRML97 – The Virtual Reality Mod-
elling Language, 1997. ISO/IEC 14772-1:1997. 9

86. Ingo Wald, Carsten Benthin, Andreas Dietrich, and Philipp
Slusallek. Interactive Ray Tracing on Commodity PC Clusters
– State of the Art and Practical Applications.Lecture notes on
Computer Science, 2003. (Proceedings of EuroPar). 2.2.3

87. Ingo Wald, Carsten Benthin, and Philipp Slusallek. A Simple
and Practical Method for Interactive Ray Tracing of Dynamic
Scenes. Submitted for publication, also available as a technical
report at http://graphics.cs.uni-sb.de/Publications, 2002. 6, 6

88. Ingo Wald, Carsten Benthin, and Philipp Slusallek. OpenRT -
A Flexible and Scalable Rendering Engine for Interactive 3D
Graphics. Technical report, Saarland University, 2002. Avail-
able at http://graphics.cs.uni-sb.de/Publications. 7

89. Ingo Wald, Carsten Benthin, and Philipp Slusallek. Interactive
Global Illumination in Complex and Highly Occluded Envi-
ronments.Proceedings of the 14th Eurographics Workshop on
Rendering, 2003. 14, 14

90. Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp
Slusallek. Interactive Rendering with Coherent Ray Tracing.
Computer Graphics Forum, 20(3):153–164, 2001. (Proceed-
ings of Eurographics 2001). 1, 2, 2.1.1, 2.1.1, 2.1.2, 3.2.2,
14

91. Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander
Keller, and Philipp Slusallek. Interactive Global Illumination
using Fast Ray Tracing.Rendering Techniques 2002, pages
15–24, 2002. (Proceedings of the 13th Eurographics Work-
shop on Rendering). 2, 12, 12.2

92. Ingo Wald and Philipp Slusallek. State-of-the-Art in Interac-
tive Ray-Tracing. InState of the Art Reports, Eurographics
2001, pages 21–42, 2001. 1, 1.1, 2.1, 10.3

93. Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive
Distributed Ray Tracing of Highly Complex Models.Render-
ing Techniques 2001, pages 274–285, 2001. (Proceedings of
the 12th Eurographics Workshop on Rendering). 1, 2, 1, 2.2.1

94. John R. Wallace, Michael F. Cohen, and Donald P. Greenberg.
A Two-pass Solution to the Rendering Equation: A Synthesis
of Ray Tracing and Radiosity Methods.Computer Graphics,
21(4):311–320, 1987. 11

95. Bruce Walter, George Drettakis, and Donald P. Greenberg.
Enhancing and Optimizing the Render Cache. InRendering
Techniques 2002 (Proceedings of Eurographics Workshop on
Rendering), 2002. 10.2

96. Bruce Walter, George Drettakis, and Steven Parker. Interactive
Rendering using the Render Cache. InRendering Techniques
1999 (Proceedings of Eurographics Workshop on Rendering),
1999. 10.2, 10.3

c© The Eurographics Association 2003.

Wald, Purcell, Schmittler, Benthin, Slusallek / Realtime Ray Tracing and Interactive Global Illumination

97. G. Ward. Adaptive Shadow Testing for Ray Tracing. In2nd
Eurographics Workshop on Rendering, 1991. 14

98. Gregory J. Ward and Paul Heckbert. Irradiance Gradients.
In Third Eurographics Workshop on Rendering, pages 85–98,
Bristol, UK, 1992. 11

99. Josie Wernecke.The Inventor Mentor. Addison-Wesley, Read-
ing, Massachusetts, U.S.A., 1994. 7, 9

c© The Eurographics Association 2003.

	Introduction
	Outline

	Part 1: Realizing Realtime Ray Tracing
	Realtime Ray Tracing in Software
	The RTRT Realtime Ray Tracing Kernel
	Distribution Issues of the RTRT Engine

	Ray Tracing on Programmable GPUs
	Modern Graphics Pipeline
	The Ray Engine
	Streaming Ray Tracer
	Conclusions

	Dedicated Realtime Ray Tracing Hardware
	The SaarCOR Architecture
	The Virtual Memory Architecture
	Algorithmic Issues
	Pipelining and Latencies
	On-Chip Bandwidth Issues
	Arithmetic Complexity
	Results
	Conclusion

	Summary and Conclusion

	Part 2: Realtime Ray Tracing -- Advanced Issues and Applications
	Ray Tracing in Dynamic Environments
	The OpenRT Interactive Ray Tracing API
	The OpenRT Application Programming Interface
	A Simple Example
	Extended VRML Browser with Ray Traced Effects

	Applications and Case Studies
	Implications for Future Application

	Part 3: Using Realtime Ray Tracing for Interactive Global Illumination
	Alternative Approaches towards Interactive Global Illumination
	Radiosity Based Approaches
	Approximating Techniques
	Hybrid Techniques

	Using Realtime Ray Tracing for Interactive Global Illumination -- Issues and Constraints
	Instant Global Illumination
	Distribution Design Issues
	The Original Instant Global System

	Advanced Instant Global Illumination
	Improved Performance and Programmable Shading
	Efficient Anti-Aliasing by Interleaved Super-Sampling

	Instant Global Illumination in Complex and Highly Occluded Scenes
	Summary and Conclusions
	References

