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Abstract
Multiple Importance Sampling (MIS) can combine several sampling techniques preserving their advantages. For example, we
can consider different Monte Carlo rendering methods generating light path samples proportionally only to certain factors
of the integrand. MIS then becomes equivalent to the application of the mixture of individual sampling densities, thus can
simultaneously mimic the densities of all considered techniques. The weights of the mixture sampling depends on how many
samples are generated with each particular method. This paper examines the optimal determination of this parameter. The
proposed method is demonstrated with the combination of BRDF sampling and Light source sampling, and we show that it not
only outperforms the application of the two individual methods, but is superior to other recent combination strategies and is
close to the theoretical optimum.
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1. Introduction

Multiple Importance Sampling (MIS) [VG95,Vea97] has been used
and proven efficient in many Monte Carlo rendering algorithms. It
is able to preserve the advantages of the combined techniques and
requires only the calculation of the probability density (pdf) of all
methods when a sample is generated with one particular method.
The weighting scheme applied in MIS depends on the pdfs of the
individual techniques and also on the number of samples generated
with each of them. Traditionally, these sample numbers are equal
[Vea97] or are set with some manual experimentation.

This paper proposes a simple adaptive technique to automati-
cally determine the sampling budget based on the statistics of pre-
vious samples. Adaptively determining the sampling strategy may
be dangerous because it can result in a biased sampling method.
However, in our case, MIS offers unbiasedness if the domain of
nonzero integrand is sampled with positive pdf and only the weight-
ing scheme is modified.

In this paper we present two variants of adaptive MIS sampling
scheme for combining two strategies and demonstrate advantages
of the new method with the classical scene of Veach [VG95].

2. Previous work

MIS has been applied in a huge number of rendering algorithms,
but their review is beyond the scope of this paper. We concentrate

on papers aiming at the allocation of the sample budget. It has been
proven that it is worth deciding on the number of samples determin-
istically rather than randomly selecting from the techniques using
the weight as the selection probability [SHSK16]. Several estima-
tors have been proposed that are better than balance heuristics with
the equal sample budget [SHSK16, HS14, SH17], and it has been
proven [SHSK18] that the improvement can be larger than sug-
gested by [Vea97]. Sbert et al. [SHSKE18] proposed to make the
weight inversely proportional to the variance and the second mo-
ment, respectively, and also considered the cost associated with the
sampling strategies. Lu et al. [LPG13] proposed an adaptive sam-
pling algorithm for environment map illumination. Adapting be-
tween BRDF sampling and environment map sampling, they used
the Taylor series approximation of the variance around equal sam-
pling. In [EMLB15a,EMLB15b] strategies and analysis were given
assuming equal number of samples.

3. The proposed method

Suppose we wish to estimate the value of integral I =
∫

f (x)dx and
we have two proposal pdfs p1(x) and p2(x) to generate random
samples in the domain of the integral. A practical example is the
direct lighting problem where we can generate random rays with
light source sampling and BRDF sampling. If the total sampling
budget is N, we should decide on the number N1 of samples gen-
erated with p1(x), which let the other sampling technique generate
N−N1 samples with p2(x). Let us denote the fraction of samples
generated by the first method by α = N1/N. The selection of this
ratio affects the variance of the estimator, and our goal is to set it
quasi-optimally.
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MIS with balance heuristics [VG95] is equivalent to assuming
that the pdf is the random mixture of the two original proposal pdfs:

p(x) = αp1(x)+(1−α)p2(x). (1)

The primary MIS estimator is:

F =
f (X)

p(X)
=

f (X)

αp1(X)+(1−α)p2(X)
. (2)

The expected value of this estimator is

µ = Ep[F ] =
∫

f (x)dx,

i.e., it is an unbiased estimator independently of α if any x of
nonzero integrand is generated with positive probability density,
where Ep[F ] expresses that samples X should be generated with
pdf p(x).

Unlike the expected mean value, its variance does depend on
α. We use the variance of the random mixture to approximate the
smaller variance of the deterministic mixture sampling:

Vp[F ](α) =
∫

f 2(x)
αp1(x)+(1−α)p2(x)

dx−µ2.

To get a low variance estimator, the variance is minimized by con-
trolling weight α. The variance is minimal if the first derivative
V ′

p[F ](α) is zero and the second derivative V ′′
p [F ](α) is positive:

V ′
p[F ](α) =

∂Vp[F ](α)

∂α
=
∫

f 2(x)(p2(x)− p1(x))
p2(x)

dx = 0, (3)

V ′′
p [F ](α) =

∂
2Vp[F ](α)

∂2α
=2

∫
f 2(x)(p2(x)− p1(x))

2

p3(x)
dx≥ 0. (4)

Note that the second condition always holds if α is in [0,1], i.e. here
the variance is a strictly convex function of α. If the first derivative
is zero, then it is global optimum [SH17].

Fast numerical solution can be obtained with the Newton-
Raphson method. Let us approximate the derivative of the variance
V ′

p[F ](α) with the linear term of the Taylor’s series around the cur-
rent estimate αn in iteration n:

V ′
p[F ](α)≈V ′

p[F ](αn)+V ′′
p [F ](αn)(α−αn). (5)

From this, the new αn+1 should make the approximated derivative
equal to zero, thus we can compute it as

αn+1 ≈ αn−
V ′

p[F ](αn)

V ′′
p [F ](αn)

.

Weight α should be in the unit interval. Moreover, we approximate
the variance derivatives with finite number of samples, which may
require that both methods are sampled for sure. Therefore, these
issues are solved by limiting the α range to [0.1,0.9], and when-
ever Newton-Raphson iteration presents a value outside of it, we
replace it with the limit. Based on these estimates, we can adapt the
weight during the sampling process. This method is called the Root
Adaptive MIS. The condition for the first derivative to be zero can
be written into two equivalent forms of expected values. These op-
tions are considered separately, as these expectations are estimated
differently from the already taken samples.

3.1. Derivative of the variance: Version 1

From Eq. 3 the Version 1 formula is written as

V ′
p[F ](α) = Ep2

[
f 2(x)
p2(x)

]
−Ep1

[
f 2(x)
p2(x)

]
(6)

where Epi

[
f 2(x)/p2(x)

]
is the expectation of f 2(x)/p2(x) when

samples are generated by Method i, i.e. when only Method i is ap-
plied:

Epi

[
f 2(x)
p2(x)

]
≈ 1

Ni

Ni

∑
j=1

f 2(Xi, j)(
αp1(Xi, j)+(1−α)p2(Xi, j)

)2 . (7)

3.2. Derivative of the variance: Version 2

Eq. 3 can also be transformed into our Version 2 formula:

V ′
p[F ](α) = Ep

[
f 2(x)(p2(x)− p1(x))

p3(x)

]
(8)

where Ep

[
f 2(x)(p2(x)− p1(x))/p3(x)

]
is the expectation of

V ′
p[F ](α) when samples are taken by mixture sampling from p(x).

This formula leads to the following estimator of the derivative:

V ′
p[F ](α)≈ 1

N

2

∑
i=1

Ni

∑
j=1

f 2(Xi, j)(p2(Xi, j)− p1(Xi, j))(
αp1(Xi, j)+(1−α)p2(Xi, j)

)3 .

(9)

3.3. Second derivative of the variance

The second derivative of the variance contains a higher degree poly-
nomial of the individual densities, so it does not simplify to simple
forms as in the case of the first derivative. So for the estimation of
the second derivatives, we consider only Version 2, which uses MIS
also for its estimation:

V ′′
p [F ] = 2Ep

[
f 2(x)(p2(x)− p1(x))

2

p4(x)

]

≈ 1
N

2

∑
i=1

Ni

∑
j=1

f 2(Xi, j)(p2(Xi, j)− p1(Xi, j))
2(

αp1(Xi, j)+(1−α)p2(Xi, j)
)4 . (10)

3.4. Robust computation of variance derivatives from discrete
samples

The question is whether Eq. 6 or Eq. 8 can be estimated with lower
variance. The answer depends on the variance of the primary esti-
mators and the number of samples. Note that in the first method, the
two expectations are estimated with the number of samples of the
individual methods, respectively, while the second approach uses
the total number of samples. Thus, from this point of view, the sec-
ond method offers lower variance. However, the primary estimator
may lead to different preference. Assume that the MIS estimator
is good enough, i.e. f (x)/p(x) is approximately constant. In this
case, the primary estimator for Eq. 6 is close to zero, but it is not
for Eq. 8.

The control of weight α requires the approximation of the vari-
ance derivatives from discrete samples as described by Eqs. 7, 9 and
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10. The approximation error should be small. Unfortunately, the
discrete samples depend on the current weight α, which changes
in every iteration. Keeping every single sample separately to allow
the update when α changes is not an option due to the very high
number of samples. Using only the samples of the current itera-
tion, on the other hand, does not exploit all samples and ignores
relevant information, leading to numerically unstable weights. The
solution is to reuse aggregated samples from previous iterations as
well, having approximately modified them to follow the change of
α. When α is updated, we use Eq. 5 to find an approximate new
value of the first derivative. We could use a similar technique to
update the second derivative with the third, but our current imple-
mentation just keeps the second derivative estimate as it is. Note
that such an update is only an approximation, thus the update value
of the previous iteration is taken into account with less weight as
the discrete values of the current iteration. Note that if all contribu-
tions were given the same importance, a sample in iteration step n
would get 1/n weight while all previous samples would be multi-
plied by 1− 1/n. To emphasize later samples, the current samples
get weight 1/

√
n and aggregated estimate from the previous itera-

tion gets weight 1−1/
√

n.

4. Results

In order to test the proposed method, we take the classic scene of
Veach with combined light source and BRDF sampling. The four
shiny rectangles have physically plausible Phong-like BRDF with
shininess parameters 500, 1000, 5000, and 10000, respectively. The
four spherical light sources emit the same power.

We allocated 1000 samples per pixel organized in 20 iterations.
In the first iteration 25 BRDF and 25 light source samples per pixel
were used to estimate the variance, second moment and the deriva-
tives for Lu’s method, and the other iterations utilized the per-pixel
α weights computed from these values to find the optimal num-
ber of light source and BRDF samples. Fig. 1 shows the rendered
images together with the obtained α maps.

Fig. 2 depicts the RMSE values after each iteration when the α

weights are refined at the end of each iteration. Note that equal sam-
ple count MIS is better than both light source sampling and BRDF
sampling, but using sophisticated methods to find the weights α fur-
ther improves MIS. In addition to the original sampling techniques
and equal count MIS, we also compared the proposed method to
the inverse second moment approach of Sbert et al. [SHSKE18]
and Lu’s method [LPG13].

The relative efficiency values with respect to equal count MIS
are shown by Table 1. We can observe that the new methods offer
30-40% improvement in efficiency. We also examined the theoret-
ical optimum, i.e. how much improvement can be obtained at all
with the proper definition of the weight. To do so, we computed the
optimal α values in each pixel with a global optimization algorithm
before starting the rendering phase, and kept using these values dur-
ing sampling. Note that this is not a practical approach, but shows
how far on-the-fly techniques are from the theoretical optimum.
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Figure 2: RMSE plots as functions of the number of samples per
pixel.

Method Relative efficiency
BRDF sampling 0.59
Light source sampling 0.16
Equal sample MIS 1
Lu et al. [LPG13] 1.24
Sbert et al. [SHSKE18] 1.24
Root adaptive. Version 1 1.40
Root adaptive. Version 2 1.31
Theoretical optimum 1.43

Table 1: Relative efficiency with respect to equal sample count MIS.

5. Conclusions

In this paper we investigated the problem of determining the sam-
ple budget for techniques combined by Multiple Importance Sam-
pling. The proposed method calculates the weighting factors of two
combined techniques iteratively in parallel with sample generation
using more and more stable statistics. We have shown that such
adaptation is worth doing since we can gain 40% in efficiency with
respect to equal count sample distribution for the classical scene of
Veach. Note that with this number, we are close to the 43% the-
oretical optimum. In future, the technique could be extended for
different sampling costs to optimize for sampling efficiency.
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