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Abstract

Describing the light intensity over the hemisphere using a goniometric diagram is a common practice in the
lighting industry and is prescribed for instance by IESNA (Illuminating Engineering Society of North America)
standards. Goniometric diagram specifies the spatial distribution of the emitted power via a hemispherical surface
subdivided by meridians and parallels. Similar tabulated representations are extensively used for complex bidi-
rectional reflectance distribution functions (BRDF) that are difficult to approximate with analytical models. We
present an approximative bicontinuous mapping from the unit square to a goniometric diagram on the hemisphere.
This mapping has low distortion and the error of the approximation is low. The proposed mapping algorithm is
obtained as a composition of four mappings. We outline its use for importance sampling of light sources described
by goniometric diagrams and for the representation of BRDF.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: goniometric diagram,
bidirectional reflectance distribution function.

1. Introduction

Surface parameterization hence inverse mapping from 3D to
2D and forward mapping from 2D to 3D is one of the key
concepts in computer graphics. Mapping from an initial 2D
rectangular domain u,v∈ 〈0,1〉2 to a sphere or hemisphere is
used at least in two computer graphics applications: descrip-
tion of light scattering intensity for point light sources and
simple area light sources and for description of bidirectional
reflectance distribution functions (BRDF).

Let us recall traditional spherical mapping from 2D to 3D
unit sphere surface that was used in computer graphics al-
ready in sixties and seventies:

x = r · sinθ · cosφ (1)

y = r · sinθ · sinφ
z = r · cosθ

(r = const = 1).

The meaning of angles is depicted for the hemisphere in Fig-
ure1 (a). We further assume that the spherical mapping is an-
chored at center point O and oriented by normal ~N. The map-
ping described by the formulas above is highly non-linear,
i.e. the ratio of the fractional surface area in 2D domain
and of the corresponding fractional surface area in 3D varies

significantly. This property can be described mathematically
using the determinant of the Jacobian matrix of the mapping
function. However, further on we will use a less formal and
more intuitive formulation of this property. Let us assume
that the samples are uniformly distributed over a 2D domain,
as it is common for 2D texture texels in the raster image or
for a uniform random number generator over the 2D unit
square. Further on we stick with the terminology used in
probability and sampling: we write that the probability den-
sity of samples in a 2D domain is constant when the distri-
bution of samples in 2D is uniform. After mapping from 2D
to 3D using the formulas above, the density of samples on
the 3D sphere surface is the highest at the poles (θ = 0 and
θ = π), and the lowest along the equator (θ = π/2).

A simple spherical mapping from 2D to 3D can be ex-
tended in order to prescribe the probability density at some
key-points located on the sphere surface. Goniometric dia-
grams (also called photometric web diagrams1, 2 in the pho-
tometry literature) were introduced in computer graphics by
Verbeck and Greenberg12. The sphere surface is subdivided
by M meridians (φ = const) and N parallels (θ = const),
see Figure 1 (b). At the key-points given by intersections of
parallels and meridians the luminous intensity [candela =
lm/sr] of a luminaire or lamp (simplified as a point) is mea-
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sured. The specification of the goniometric diagram then as-
sumes that the luminous flux is bilinearly interpolated with
respect to the θ and φ angles between the adjacent key-points
on the goniometric diagram. Surface regions of the gonio-
metric diagram given by the closest four key-points in both
angle directions are called goniometric patches. The lumi-
nous intensity integrated over the sphere surface, i.e. over
all goniometric patches, gives the total power emitted by the
light source. The probability density used above is given by
the normalized luminous intensity. We further use for sake of
clarity only the term probability density or simply density.

Another common use of goniometric diagrams is for bidi-
rectional reflectance distribution function (BRDF) defined
over the hemisphere. The BRDF specifies for each incoming
angle of an incident light ray direction the transfer probabil-
ity density for all outgoing directions divided by the cosine
of the incoming angle direction. The use of the BRDF in the
rendering equation actually corresponds to the computation
of the transfer probability density from BRDF. In practice,
measured BRDF of real materials are represented by a set
of goniometric diagram at several key-points. Thus we can
represent by goniometric diagrams either BRDFs or directly
transfer probability densities. Usually, the BRDF data mea-
sured on goniometric diagrams is approximated by some an-
alytical formula or compressed/approximated using different
schemes, for example wavelets6.

Figure 1: (a) Hemisphere parameterization by two angles
θ and φ. (b) Goniometric diagram - values d3

1 , d4
1 , d3

2 , and
d4

2 specify a probability density at corners of goniometric
patch. Symbols i, l, and M are used in relation to φ, symbols
j,k, and N are used in relation to θ in the paper.

In this paper, we present an approximative mapping from
the 2D unit square to the 3D unit hemisphere. The density
of the proposed mapping in the 2D domain is naturally de-
scribed in the 3D domain by a goniometric diagram over the
hemisphere. This is advantageous since the description of
the density is given in the application domain. This mapping
is bijective (unique), bicontinuous (preserving adjacency),
and with a low distortion controlled by the goniometric dia-
gram. The theoretical maximum error of the approximation
at the worst case is 4.2%, but for typical goniometric dia-
grams less than 0.5%.

The mapping is given as a composition of four mappings.
In brief, for the forward mapping we use a mapping from the
unit square to a 2D disk originally described by Shirley and
Chiu10, advocated for ray tracing by Shirley8. In the next
step we perform two algorithmic mappings on 2D disk to
achieve the density prescribed by the goniometric diagram
(the diagram is mapped from the hemisphere to a 2D disk
as a preprocess). Finally, we map samples from the 2D disk
to the 3D hemisphere using a mapping that preserves the
density of samples.

An important property of our mapping algorithm is that
it does not use numerical iteration; in other words, the com-
putation of forward and inverse mapping is analytical and
hence computed using a constant number of arithmetic op-
erations. However, we have to apply binary search to lo-
cate the corresponding goniometric patch for a given in-
put. In the worst case, the time complexity of search is
O(logM + logN).

This article is structured as follows. In Section 2 we
briefly overview the mapping algorithm from composed of
four different mappings. In Section 3 we describe the four
mappings in detail. In Section 4 we discuss the properties
of the inverse mapping. In Section 5 we discuss briefly the
inverse mapping, memory requirements, and real execution
speed of the mapping algorithm. In Section 6 we outline the
application of the proposed mapping algorithm to BRDF
and sampling light sources described by goniometric dia-
gram. Section 7 concludes the paper with prospects for fu-
ture work.

2. Hemisphere Algorithm Overview

In this section we describe the forward mapping from a unit
square to the surface of a hemisphere.The mapping is com-
posed of four mappings, see Figure 2 for the mapping algo-
rithm overview.

In a first step, the MB mapping maps point (u,v) from the
2D unit square to the 2D unit disk using the method of con-
centric maps (Shirley and Chiu10). In a second step, the MC
mapping changes the angle φB to φC and radius rB to rC in
order to ’stretch’ the uniform density on the disk to the den-
sity prescribed by the goniometric diagram when projected
to a disk. In a third step, MD changes the radius rC to rD in
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Figure 2: Mapping Algorithm Overview.

order to match the density to the value prescribed by bilinear
interpolation in every goniometric patch projected from the
hemisphere to the disk. In the last step, ME maps the point
coordinates from the 2D disk to the 3D hemisphere so that
the density is preserved on the 3D hemisphere surface.

3. Mappings Description

In this section, we describe the mappings MB, MC, MD, and
ME in the order that seems to us the most logical for un-
derstanding the whole mapping algorithm. We discuss the
necessary properties of mapping, but formal and strict math-
ematical proofs are omitted in order to keep the paper easily
readable.

Our mapping algorithm works in two stages. In prepro-
cessing, the auxiliary arrays and variables are precomputed
from the probability densities of the goniometric diagram.
During execution, we use the precomputed values to com-
pute the required forward and inverse mappings as fast as
possible.

3.1. Mapping MB

The first mapping from a unit square (u,v ∈ 〈0,1〉2) to a unit
disk (radius r and angle φ) is the easiest to describe. It has
previously been published in detail by Shirley and Chiu10, 11.
The authors have proved that it preserves adjacency and frac-
tional area unlike the traditional polar mapping (r = u and
φ = 2 ·π · v). MB also exhibits low distortion when mapping
a shape from a unit square to a disk. Briefly, the principle
of MB mapping is outlined in Figure 2, left. The unit square
is subdivided into four triangles and these triangles are sep-
arately mapped to the four adjacent sectors of a circle cov-
ering the unit disk. The density on a square is scaled by a
factor of 1/π for the density on a disk that exactly corre-
sponds to the ratio of the surface areas of unit square and
unit disk. We have modified this algorithm in order to pro-
vide mapping to the range of φ ∈ 〈0,2 ·π〉 unlike the origi-
nal algorithm formulation given in paper10 that maps to the
range phi ∈ 〈−π/4,7/4 ·π〉.

3.2. Mapping ME

This mapping is performed at the last stage. It maps the point
from 2D unit disk to the surface of the hemisphere in 3D.
This mapping has been described also by Shirley and Chiu10

and originally by Shirley9. The mapping is as follows:

φE = φD (2)

θE = arccos(1− r2
D) (3)

It is relatively easy to prove that this mapping also keeps
fractional area from 2D disk to 3D surface hemisphere with a
factor of 1/2.0. Unfortunately, this mapping cannot provide
at the same time the linearity of θE with respect to the radius
rD. This linearity would be desirable when using goniomet-
ric diagram since the probability density on the sphere sur-
face is linearly interpolated with respect to φE and θE angles.
Our algorithm actually computes, during preprocessing, the
radius rD for prescribed θ angles during preprocessing using
mapping M−1

E . For these key θ-angles the density from 2D
to 3D is mapped exactly. Given the angle θ (θ ∈ 〈θ1,θ2〉),
the correct density dC(θ) on surface of hemisphere is:

dC(θ) = d1 +(θ−θ1)/(θ2 −θ1) · (d2 −d1) (4)

However, mapping of θ to the radius r by Eq.3 gives us the
density dR(θ) that is linearly interpolated on the 2D disk:

θ1 7→ r1 =
√

1− cosθ1

θ2 7→ r2 =
√

1− cosθ2

dR(θ) = d1 +(d2 −d1) · (
√

1− cosθ)/(r2 − r1) (5)

The absolute error of density is then eA(θ) = (dR(θ)−
dC(θ))/Max(d1,d2), and the relative error is eR(θ) =
eA(θ)/dC(θ). The maximum absolute error is eA(θ =
0.895354) = 4.2% and the maximum relative error is eR(θ =
π/2) = 21.5% for N = 2 parallels (pole and equator). For
these errors the corresponding input is θ1 = 0, d1 = 1.0,
θ2 = π/2, and d2 = 0.0.

The error of density mapping for ME is due to the fact that
the fractional area is kept unmodified from 2D to 3D. This is
a required property for other stages of the mapping. For N =
2 the error of mapping is depicted in Figure 3. Such crude
goniometric diagrams are not used in practice and typical
errors for N > 2 are much lower.
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Figure 3: Mapping ME . (a) The correct and real density
function with respect to angle θ. (b) The absolute and rel-
ative error [%] of density with respect to θ.

In practice, the error due to ME does not represent any
problem for most applications: for a typical number N = 10
of equally placed parallels on the hemisphere, the maximum
error of angle mapping is eA = 0.9% and eR = 3.6% which
is negligible for most applications. Moreover the error can
be easily compensated using a correction factor for the value
of samples corresponding to the relative error eR.

3.3. Mapping MD

The mapping MD changes only the radius on 2D disk in or-
der to obtain the density prescribed by the goniometric dia-
gram. For the φ angle, the mapping is trivial: φD = φC. For
the radius, the forward mapping MD requires a binary search
and solving an integral equation on the fly.

In preprocessing, the θ angles describing parallels of the
hemisphere are mapped (nearly projected) to the 2D disk,
using the inverse mapping M−1

E :

rD =
√

1−θ2
E (6)

We keep the density from the 3D hemisphere surface to
the 2D disk thanks to the property of the mapping ME , cre-
ating concentric circles on the disk for parallels on the hemi-
sphere surface. Let us call a region on the hemisphere sur-
face for which holds θ ∈ 〈0,π/2〉 and φ ∈ 〈φi,φi+1〉 an hemi-
spherical digon. This hemi-spherical digon is mapped to the
2D disk as a sector of the disk.

MD for prescribed φi

First, we show the mapping MD for the discrete values φi
prescribed by the goniometric diagram along the meridian i.
An illustration of this mapping is given in Figure 4. Let us
assume that for a given φi the result of the mapping MC gives
us the constant density s. The mapping MD must preserve
the integral of probability density s on the disk before MD
so that it is equal to the integral of the prescribed probabil-
ity density d j on the disk after MD. For sake of clarity let
us denote radii y j (corresponding to rC in Figure 2) for the
constant density s for given parallel j. Further, let us denote
prescribed radii x j (corresponding to rD in Figure 2) for the
prescribed density d j . Let us note that d j corresponds to di

j

Figure 4: Mapping MD. (a) Constant density given as result
of MC. (b) Required density given by translation from the
hemisphere to 2D disk.

on the i-th meridian at the key-point (i, j) of the goniometric
diagram. The density is linearly interpolated between two
key-radii corresponding to two adjacent key-points on the
goniometric diagram with respect to the radius:

d(x) = (d j+1 −d j) ·
x− x j

x j+1 − x j
+d j, x ∈ 〈x j,x j+1〉 (7)

Then the mapping MD from x j+1 to y j+1 for a particular
y j+1 (thus θ j+1 on the boundary of a sector of the disk) ver-
ifies the following integral equation:

∫ x j+1

x=x j

d(x) · (2 ·π · x) ·dx =
∫ y j+1

y=y j

s · (2 ·π · y) ·dy (8)

Let us assume that x j , x j+1, and y j are known. Solving the
integral equation 8 gives us the formula for y j+1:

(y j+1)
2 =

d j+1

s
· (x2

j+1 − x2
j)+ (9)

d j −d j+1

s · (x j+1 − x j)
· (1

3
x3

j+1 − x j+1 · x2
j +

2
3
· x3

j )+ y2
j

We use Eq. 9 in preprocessing to precompute the values of
y j for each j, j ∈ 〈0,N〉, where N is the number of θ-angles
for the hemisphere (number of polars). The initial condition
is given at the center of the disk (pole of the hemisphere):
y0 = x0 = 0.

For the forward mapping MD the problem is similar.
We want to get such X (X ∈ 〈x j,x j+1〉) for input Y (Y ∈
〈y j,y j+1〉) for which holds the integral equation:

∫ X

x=x j

d(x) · (2 ·π · x) ·dx =
∫ Y

y=y j

s · (2 ·π · y) ·dy (10)

We derive that for linear interpolation of density d(x) be-
tween two positions x j and x j+1, the problem is reformulated
as a cubic equation:

X3 +B j.X
2 + CJ(Y ) = 0 (11)

B j = −3
2
· (d j+1 ·

x j+1 − x j

d j −d j+1
+ x j+1)

CJ(Y ) =
3
2
· [(s · (Y 2 − y2

j)+(d j+1 · x2
j )) ·

x j+1 − x j

d j −d j+1

+x j+1 · x2
j −

2
3
· x3

j ]

This cubic equation is solved analytically using the Cardan
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formulas. In general the cubic equation has three roots. How-
ever, based on the knowledge of mutual relation between d j
and d j+1, we can quickly compute one of the two real roots
for which holds: X ∈ 〈x j,x j+1〉.

A particular case d j = d j+1 must be solved separately by
the following equation:

X =

√

s
d j

· (Y 2 − y2
j)+ x2

j . (12)

During the forward mapping MD given an input Y = rc,
we first locate such index j for which holds Y ∈ 〈y j,y j+1〉.
We use binary search which leads to a time complexity of
O(logN). A faster searching technique called interpolation-
binary search7, that achieves expected time complexity
O(log logN) and worst time complexity O(logN), can be
used for higher values of N.

MD for arbitrary φ

We have shown above the MD mapping for some prescribed
φi, i∈ 〈0,M−1〉, where M is the number of meridians on the
hemisphere surface. Hence M corresponds to the number of
hemispherical digons and to the number of sectors of a disk.
Below, we detail the mapping MD for φi(α) ∈ 〈φi,φi+1〉,
where φ(α) = φi · (1−α)+φi+1 ·α and α ∈ 〈0,1〉.

Assuming x0 = y0 = 0 we rewrite formula 9 in a non-
recursive way:

(y j)
2 =

1
s

j−1

∑
k=0

(dk+1) · (x2
k+1 − x2

k)+ (13)

dk −dk+1
(xk+1 − xk)

· (1
3

x3
k+1 − xk+1 · x2

k +
2
3
· x3

k)

For the left boundary of a sector of the disk i (thus φi) the
formula can be rewritten to:

(yi
j)

2 =
1
si

j−1

∑
k=0

(di
k+1) ·Fk +(di

k −di
k+1) ·Gk, (14)

where density di
k is prescribed by the goniometric diagram

(see Figure 1 (b)) and

Fk = (x2
k+1 − x2

k) (15)

Gk =
1

(xk+1 − xk)
· (1

3
x3

k+1 − xk+1 · x2
k +

2
3
· x3

k) (16)

For angle φi(α) we can therefore derive the following for-
mula using linear interpolation between the left boundary i
and the right boundary i+1 of the disk sector:

(yi
j(α))2 =

j−1

∑
k=0

Fk· (di
k+1 ·

1−α
si +di+1

k+1 ·
α

si+1 ) + (17)

Gk· ((di
k −di

k+1) ·
1−α

si +(di+1
k −di+1

k+1) ·
α

si+1 )

We can rewrite the formula above as:

(y j(α))2 = (1−α) · 1
si ·U(i, j)+α · 1

si+1 ·U(i+1, j),(18)

where

U(i, j) =
j−1

∑
k=0

Fk ·di
k+1 +(di

k −di
k+1) ·Gk. (19)

In the preprocessing we precompute values 1
si ·U(i, j) in an

auxiliary array of size (M×N). Given Y i(α) and φi(α), and
thus α and i, as a result of the MC mapping described below,
we perform a binary search for a given input value (Y i(α))2

to get the index j for which holds:

(1−α).
1
si ·U(i, j)+α · 1

si+1 ·U(i+1, j) ≤ (Y i(α))2 and

(Y i(α))2 ≤ (1−α) · 1
si ·U(i, j +1)+α · 1

si+1 ·U(i+1, j +1)

The binary search also takes O(logN) steps in the worst case
and always succeeds to find out the corresponding index j.

3.4. Mapping MC

The mapping MC also works exclusively on the disk and
it computes both radius rC from rB and angle φC from φB.
The input for MC is the constant density for all points on
the disk as the result of the mapping MB. The need for the
mapping MC follows from description of MD mapping. The
probability density integrated over the boundary of a sec-
tor of the disk for a given φi can be different for each i.
This integral corresponds to

√

U(i,N −1) using the termi-
nology above. Informally speaking, on the input of MC we
have the constant density sconst and by changing the φ an-
gle we want to get the precomputed density si for a given i.
There is one index imax for which holds: U(imax,N − 1) ≥
U(l,N − 1), l ∈ 〈0,M − 1〉, l 6= imax. For this particular
angle φimax we want to keep the differential of the angle φ
around φimax . For any other angle φ, we want to stretch φ in
a non-linear way to get the prescribed density si for φ that is
used as the input of MD. The mapping MC is schematically
depicted in Figure 5.

Figure 5: Mapping MC.

Mathematically, we can formulate MC for a whole sec-
tor of the disk i for the unknown variable γi and input
βi = φi+1 −φi as follows:

∫ βi

φ=0

∫ ru

r=0
r ·dφ ·dr =

∫ γi

φ=0

∫

√

1
simax ·U(imax,N−1)

r=0
r ·dφ ·dr,

where (20)

ru =

√

(1− φ
βi ) ·

1
si ·U(i,N −1)+

φ
βi ·

1
si+1 ·U(i+1,N −1).
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Note that on the left side of equation in the double integral
we integrate over φ which is used at the same time as the
upper boundary of the inner integral. Solving this integral
equation we get:

γi =
βi · simax

U(imax,N −1)
· (21)

[
U(i,N −1)

si +
1
2
· (U(i+1,N −1)

si+1 − U(i,N −1)

si )]

Based on the known values βi we precompute during the
preprocessing M values γi. For the binary search we need to
store in a δ-array the cumulative sum of γi, so δi = ∑i−1

l=0 γl .
Obviously, δ0 = 0.

During execution stage for forward mapping MC, we get
φB within the range 〈0,2 · π〉 as result of MB. We compute
φ′B = φB · δM−1/(2 · π). Then we perform binary search in
the δ array to locate the index i for which holds:

δi ≤ φ′B and φ′B ≤ δi+1 (22)

After finding the index i and the values δi and δi+1, we
compute γi = δi+1 − δi and γ(φB) = φ′B −δi. Our mapping
problem is very similar to the Eq. 20 used in the preprocess-
ing above, but we want to get the angle βi.ε, where ε ∈ 〈0,1〉
is the only unknown variable:

∫ βi·ε
φ=0

∫ ru

r=0
r ·dφ ·dr =

∫ γ(φB)

φ=0

∫

√

1
simax

·U(imax,N−1)

r=0
·r ·dφ ·dr

(23)

Solving the integral equation leads to the following
quadratic equation:

(ε)2
· [

βi

2
· (

1
si+1

·U(i + 1,N −1)−
1
si
·U(i,N −1))]+

ε · [
βi

si
·U(i,N −1)]− γ(φB) ·

1
simax

·U(imax,N −1) = 0 (24)

A solution always exists such that ε∈ 〈0,1〉. So the mapping
of angle φB to φC is then finalized:

φC = φi + ε · (φi+1 −φi) (25)

Since we change the angle φ in a non-linear way, we com-
pensate for this by changing the radius. We introduce an ef-
fective density si(ε) as:

si(ε) =
U(imax,N −1) · simax

(1− ε) ·U(i,N −1)+ ε ·U(i+1,N −1)
(26)

The mapping MC for radius is finally:

rC =
rB

√

si(ε)
(27)

Notice that the whole mapping MC is required to avoid “re-
jection of samples” in the “radius direction”. After map-
ping MC in MD we use for all formulas si = sconst = 1
for all i ∈ 〈0,M〉. Note that it holds: rC ≥ rB and γi ≤ βi

(δM−1 ≤ 2 ·π).

4. Inverse Mapping

The inverse mapping from the 3D hemisphere surface to the
2D unit square is nearly the inverse algorithm of the forward
mapping described above. Mapping M−1

B and M−1
E are given

by inverse algorithms. However in a chain of mappings for
the hemisphere, mapping M−1

C is performed directly after
mapping M−1

E and then is followed by mapping M−1
D . This

is necessary since the hemi-spherical digon i must be located
first for both forward and inverse mapping. The formulae
used in the integral equations for MC and MD are greatly
simplified in the inverse mapping case: there is neither cubic
nor quadratic equation. We need to compute two √ opera-
tions, otherwise we need only operations +, −, ×, /, and
i f .

5. Results

In this section we discuss memory requirements, verification
of the implementation, and actual speed of mapping.

5.1. Memory Cost

In order to perform forward and inverse mapping we need
to store the original densities d i

j and auxiliary array U(i, j),
both arrays of size M×N. Further we need an array of radii
after mapping from the hemisphere to the 2D disk of size
M + 1 and the array γ of size M + 1 for mapping MC. We
also need to store the array φ of size M that keeps the origi-
nal φ angles for meridians. The original values of θ j are not
required. In total, for an hemisphere having M meridians and
N parallels we need to store 2.M.N +3.M +2 floating-point
values.

5.2. Implementation Verification

We have implemented proposed forward and inverse map-
ping algorithm in ANSI C++. We have verified the correct-
ness of forward mapping by comparison for application in
global illumination for a goniometric light source for a few
goniometric diagrams. The reference solution for forward
mapping was provided by rejection sampling.

Note that the rejection sampling method generates the re-
quired probability distribution, but in general cannot be con-
sidered as unique forward mapping from 2D to 3D space
since many generated samples are rejected. The second and
major problem of rejection sampling is that it does not pre-
serve adjacency of samples from 2D domain to 3D domain.
The bicontinuity of mapping is a desirable property, partic-
ularly in ray tracing and global illumination algorithms. The
samples taken after reflection can form coherent groups of
rays that increases the performance of rendering algorithms.
It is even required by some particular rendering algorithms4.

The correctness of the inverse mapping has been checked
with respect to the forward mapping algorithm. The error
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of our method on the intensity has been always below our
theoretical expectations of 4.2%, and typically less than 1%.

5.3. Algorithm Speed

On our rather non-optimized source code we have measured
the speed of the mapping algorithm for N = 8, M = 11.
The time complexity of the mapping algorithm depends only
weakly on N + M since the binary search is of logarithmic
nature. Most of the computation time is thus spent in compu-
tations of formulas. We have measured the mapping speed of
6.7× 106 samples. The forward mapping allows us to map
332× 103 samples per second. The inverse mapping is ac-
cording to our expectations faster and it maps 1,702× 103

samples per second. The timings include also the time to
generate sample using a 2D QMC Halton generation with
base 2 and 3. For measurement we have used a PC with CPU
Intel Pentium 4 at 2.6 GHz.

5.4. Mapping Visualization

We have performed a few visualizations of our mapping for
different goniometric diagrams. The visualization for a 2D
disk from hemisphere is shown in Figure 6 (before mapping
ME ), where one patch intentionally has zero power.

6. Applications

In this section we discuss a couple of native applications of
the new mapping described by goniometric diagram map-
ping for the hemisphere.

6.1. Description of Light Sources

Description of light emittance restricted to a hemisphere is
a native application of goniometric diagram1. Using forward
goniometric diagram mapping, we can easily perform im-
portance sampling from a light source described by gonio-
metric diagram without rejection sampling. The bicontinu-
ous nature of our mapping is important if we want to keep
the adjacency of samples from 2D to 3D. The samples in 2D
can be generated by some MC or QMC random generator.
The global illumination method where the use of proposed
mapping is highly advantageous, was published by Dmitriev
et al.4. Although goniometric diagram is in general described
for a full sphere, many light sources in practice are described
only by goniometric diagrams over hemisphere. Often, a go-
niometric diagram is assigned to linear or area light sources
where each point on the surface of the light source has the
same spatial distribution of emitted power. For such light
sources the goniometric diagram described by hemisphere
only is natural.

The error caused by non-linearity of angle with respect
to radius is not perceivable for typical goniometric diagram.
In case we want to obtain the exact solution, we correct the

non-linearity by changing the photons energy by a correction
factor so that the luminous energy corresponds completely to
bilinear interpolation.

6.2. Representation of BRDF

The BRDF representation has been addressed in the past by
many papers, most of them try to approximate the measured
data by some analytical model. However, the most natural
and exact is to use the original measured data obtained for
the goniometric diagram. For details of BRDF measurement,
see paper by Dana et al.3. For simplicity, let us assume an
isotropic BRDF; value of BRDF is the same when rotating
material along normal at given point of a surface. For ev-
ery incident light direction described by angle with respect
to surface normal we measure reflected light on goniomet-
ric diagram. For importance sampling of BRDF we compute
the input angle θI , we search for two neighboring goniomet-
ric diagrams given by index n for angles θI [n] and θI [n+1].
It holds θI [n] < θI < θI [n + 1]. The coefficient of linear in-
terpolation is then α =

θI−θI [n]
θI [n+1]−θI [n]

. Given a random value
(u,v) on a unit square we simply generate two outgoing di-
rections for the two goniometric diagrams and we interpolate
the resulting outgoing direction using α.

7. Conclusions and Future Work

In this paper we have presented a new fast forward and in-
verse mapping algorithm for goniometric diagrams over the
hemisphere with a time complexity O(logM + logN) for M
meridians and N parallels. To our knowledge, it is the first al-
gorithm of this kind. The mapping algorithm is numerically
robust and all formulas in the algorithm are computed ana-
lytically, and as a consequence requires a constant number
of arithmetic operations. We believe the proposed mapping
algorithm is applicable to a wide range of problems in com-
puter graphics, including rendering and modeling.

In our outgoing work we want to extend the mapping pre-
sented in this paper for a hemisphere to the whole sphere.
This extension would allow its use in interesting applications
such as texture mapping over weakly convex objects5, spec-
ification of bidirectional scattering distribution function, and
several other applications in global illumination and image
based rendering.
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Figure 6: Visualization for goniometric diagram from 2D unit square to a circle as a result of mapping MD for N = 6 and M = 7.
(a) The samples in the 2D square with the underlying grid for visualization purposes. (b) Result of MD for the goniometric
diagram with constant density. (c) Result of MD for the goniometric diagram with density generated randomly. (d) Result for
MD for input density similar to (c), where one goniometric patch is redefined by four key points with zero density.
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