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Abstract. This paper describes a system for real-time simulation of linear elastic deformations of volumetric objects in Virtual
Environments, implemented in Avango VE Framework 1. The approach makes use of the methods of Finite and Boundary Ele-
ments and precomputed Green’s functions, and supports real-time interactive deformations of large elastic models, containing
more than 10,000 volumetric nodes, at the graphics update rate 85fps.

1. Introduction

Simulation of an object’s elastic deformation is an important
feature in applications where three-dimensional object be-
havior is explored. In addition, the benefits of user-object
interactions are best realized in interactive environments
which require the rapid computation of deformations. The
accurate physically-based methods for simulation of elas-
tic deformations are required especially in engineering and
medical applications. Pioneering work in this area has been
done by Bro-Nielsen and Cotin 2 using the Methods of Fi-
nite Elements to simulate elastic deformations. The survey
paper3 describes much of the previous work on the mod-
eling of deformable objects. Recent advances are the ap-
plication of the Boundary Element Method and fast update
Sherman-Morrison-Woodbury algorithm for the simulation
of linearly elastic homogeneous objects4, and implementa-
tion of St. Venant-Kirchhoff materials6 and modified nested
dissection7 for the simulation of non-linear elasticity. The
existing approaches to simulation of elastic deformations
differ by implementation of the following key issues.

Linear vs non-linear. Most of the approaches2, 4, 8, 9 use lin-
earized elastic equations (so called theory of small deforma-
tions), due to their relative simplicity and accelerated com-
putational performance comparing with the non-linear case.
There are two types of non-linearity, which can complicate
the simulation: material and geometrical ones10. The ma-
terial non-linearity, caused by violation of stress-strain lin-
ear relation (Hooke’s law), in engineering applications usu-
ally occurs only under extremal conditions when the mate-
rial looses the elastic properties, while in bio-mechanics the
material non-linearity is often encountered11. The geomet-
rical non-linearity occurs at large displacements of points
in the body relative to each other and is associated with a
non-linear term of purely geometrical nature, appearing in
the strain tensor. The contribution of this term depends on
the geometrical shape of the object. For objects that have
approximately equal length in all three dimensions (such as
sphere or cube), the large relative displacements can appear
only as a result of unrealistically large stress. For practical
cases the geometrical non-linearities are negligible, and the

theory of small deformations can be applied for this kind of
bodies10. In the contrast, for the deformations of long tubes
and cylindric bending of thin plates the large displacements
are possible without creation of much stress. The theory of
small deformations is still applicable for this kind of bodies
if the displacements are artificially restricted to small val-
ues. Beyond these limits one needs to apply either general
non-linear methods6, 7, 12 or specialized approximations10 for
tubes and plates.

Precomputation vs on-line solution. For linear problems,
there is the possibility to solve the equations of elasticity
on-line and simultaneously perform the graphical rendering,
or to perform some of these computations off-line. Linear
problems in theory of elasticity require a solution of large
linear systems of the form Ku = f with constant matrix K
and variable right hand side f . Using on-line methods, one
can achieve the real-time performance for moderately large
models, typical figures are given in6: 1,400 nodes at 45 fps
for PC Pentium III 500 MHz. The elements of inverse ma-
trix: (K−1)i j describe how the influence of the unit force ap-
plied to node j propagates through the body to node i. In con-
tinuous limit it coincides with the Green’s function G(x,y)
which describes the propagation of the influence from point
x to point y. Using off-line inversion of matrix K and rep-
resentation of solution as u = K−1 f , a better performance
can be obtained14: 10,000 nodes at 85 fps for PC Athlon 1.3
GHz. The advantage of on-line approach is a possibility to
solve non-linear problems, according to6, this can be done
at nearly real-time speed: 1,400 nodes at 8 fps. One more
property, which is usually considered as an advantage of on-
line approach, is a possibility to perform interactive change
of system matrix K, including those associated with varia-
tion of boundary conditions and change of topology (cuts) of
the model. However, in recent works4, 13 these features have
been implemented for precomputed models as well, using a
fast update algorithm for evaluation of K−1.

Quasistatic vs dynamical. Quasistatic scheme4, 14 each
frame finds the exact equilibrium of the object with respect
to the given interaction. In dynamical scheme6, 7 the elastic
forces acting at the nodes of the model are found and fur-
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ther evolution governed by Newton’s laws is computed in
real-time with standard integration methods, modeling prop-
erly the masses and damping forces distributions. Although
the dynamical scheme is able to represent physically cor-
rect evolution, the simulated relaxation processes are usually
slower than in physical reality, especially for large models,
due to insufficient computational power and restrictions im-
posed on time step by stability of integration methods.

FEM vs BEM. Finite Element Method15 subdivides the
body to a finite set of primitives, using e.g. tetrahedral mesh,
with subsequent definition of a physical equilibrium for each
of these elements. Boundary Element Method4 uses analyti-
cal reformulation of original partial differential equations in
the theory of elasticity to an integral form, which includes
only the surface variables (displacements and tractions). In
BEM only the surface of the object should be meshed, prac-
tically one can take the same triangulation as used for the
rendering. In FEM the interior also should be meshed, even
in the case if it should not be visualized. The application of
BEM is restricted to the objects with homogeneous interior.
The objects with complex internal structure can be processed
only by FEM. Linear systems, generated by FEM, are large
and sparse, while the equivalent BEM systems are small and
dense. Both methods can be used in pre-computation mode
to produce the Green’s functions, which can then be passed
on to the on-line part of the simulator.

Interaction mode: positional vs force. For interaction with
deformable model the most straightforward approach2 is to
specify the force, acting at separate nodes or distributed on
the surface. The other possibility is to specify directly the
displacements for some of the nodes. This approach is used
e.g. in modeling of the contact between elastic and rigid ob-
jects, in this case more complex variable boundary condition
problem should be solved4. During this solution the posi-
tional input is internally converted to force one, by evaluat-
ing the contact force distribution in terms of displacements.
Haptic simulation 8, 9 requires also fast computation of the
output force to support high update rate necessary for haptic
devices.

Interaction scheme: low-dimensional vs high-
dimensional. In special interaction schemes, when
the interaction with the object is performed via a small set
of the control elements attached to its surface14, the object
effectively receives the same number of degrees of freedom
as contained in the control elements. In this case the
model is deformed in restricted low-dimensional interaction
space, where the data size and computational load can be
significantly reduced. For the interaction schemes, where
the user can interact with an arbitrary group of nodes in the
model, e.g. in the contact problems, complete information
about the system response is needed. In this case larger
data volumes should be processed, allowing only the partial
reduction of the problem to visible surface nodes2, 4.

This paper presents a system for real-time simulation of

elastic deformations implemented by us in Avango Virtual
Environment Framework1. The approach is based on pre-
computation of Green’s functions for the theory of elasticity
in linear quasistatic formulation. The system supports FEM-
and BEM-precomputation of large models, and their real-
time deformations using positional and force input for low-
dimensional and high-dimensional interaction schemes. The
rest of this paper is organized as follows. In the second sec-
tion we present the implementation of flexible materials in
Avango, focusing at the optimization techniques used to ac-
celerate the simulation and new features extending its capa-
bilities. In the third and fourth sections the obtained results
are summarized. More details on computational methods are
given in appendices.

2. Implementation of flexible materials in Avango VE
framework

Avango1 is a programming framework for building dis-
tributed, interactive VE applications. It is based on
OpenGL/Iris Performer 16 to achieve the maximum possi-
ble performance for an application and addresses the special
needs involved in application development for virtual envi-
ronments. Avango uses the C++ programming language to
define the objects and scripting language Scheme17 to as-
semble them in a scene graph. Avango objects contain state
information in a collection of fields. Connections between
fields form a dataflow graph, conceptually orthogonal to the
scene graph, which is used to define interaction between the
objects and to import the data from external devices into the
application.

We have implemented flexible materials simulator as a
component of Avango system. The simulation uses the fol-
lowing general scheme (fig.1). At the first step the user-
provided input data are pre-processed in off-line mode. This
is most time-consuming part of the computational process,
which can take minutes or hours dependently on complex-
ity and type of the model. During this stage pre-computation
of a complete basis of solutions (Green’s functions) of the
system is performed. The resulting data are saved to a file
and used to accelerate the interactive visualization module,
operating in Virtual Environments at real-time speeds.

2.1. Input data
FEM-based scheme requires the information about the
shape of object, its volumetric tetrahedral subdivision, rep-
resentation of the surface in the form of triangle stripsets,
data on internal composition of the object (material con-
stants: mass density ρ, Young’s module Y , Poisson’s ratio
ν) and definition of control elements for the case of low-
dimensional interaction scheme. These data are provided in
a file with the structure, shown in Table 1. For the objects
of special type, such as tubes and cables, these data can be
generated from a small set of user-defined parameters, see
Table 2.
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Table 1: input data, general case

values type [units]

numbers of nodes, integers
tetrahedrons, strips

coordinates of nodes triples of floats, [m]

indices of nodes quadruples of integers
in tetrahedrons

material constants, triples of floats
per tetrahedron: ρ,Y,ν [ kg/m3, N/m2, – ]

lengths of strips, per strip integer

indices of nodes in strips list of integers

control element membership character
flag, per node

Table 2: input data for tubes and cables

values type [units]

length of the tube float, [m]

external and internal
diameters floats, [m]

width of control element (default:
external diameter) float, [m]

predeformed curvature c, to sup-
port tubes, whose initial shape is
circular arc; inverse to the radius
of curvature c = 1/r, for initially
straight tubes c = 0

float, [1/m]

material constants floats,
ρ,Y,ν [ kg/m3, N/m2, – ]

numbers of subdivisions of volu-
metric grid in axial, azimuthal and
radial directions

integers

BEM-scheme is applicable for objects with homogeneous
interior, and requires the definition of material constants
(uniform for the whole object) and surface geometry, rep-
resented in the form of triangle stripsets, using e.g. stan-
dard Open Inventor format. Topologically the surface should
be smooth closed connected embedding (boundary of the
region). Its tessellation should not have singularities, such
as degenerate triangles, and should be waterproof: holes or
overlaps, even microscopic, are not allowed. In our simula-
tor the last property is controlled by topological “hedgehog”
theorem (total vector area of tessellation should vanish).

off−line

pre−processing
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 compression

iv−file

build K,L matrices

geometry.bem

aux.bem

data.bem

self−test:

total vector area     1e−7
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Fig.1. Simulation schemes: (a) using FEM and low-dimensional
interaction; (b) using BEM and high-dimensional interaction.

2.2. Pre-processing

Pre-processing starts from building of the linear system, de-
scribing the physical equilibrium of the model, which has a
form Ku = f , where f are external forces, acting at the nodes
of the model, u are unknown displacements of the nodes, K
is a large symmetric matrix (called stiffness matrix). In the
case of FEM this matrix is sparse, containing typically more
than 99% of zeros. For BEM analogous system can be writ-
ten: Ku = Lp, where p is surface density of external force
(also called traction), estimated at a given node of the sur-
face, u are displacements of the surface nodes, K and L are
dense matrices. The appropriate definitions of the matrix el-
ements can be found in15, 2 for FEM and in4 for BEM.

The main part of the pre-processing stage is the inver-
sion of system matrices and representation of solutions in
the form u = K−1 f or u = K−1Lp. Before that an additional
boundary condition should be imposed to the system, remov-
ing its degeneration with respect to rigid motions (transla-
tions and infinitesimal rotations). This boundary condition
fixes a part of the object in a certain coordinate frame and
remains permanently imposed during further deformations.
It is equivalent to reconfiguration of the linear system, de-
scribed in Appendix 1. This procedure makes the matrix
K non-degenerate, therefore we are able to invert it. For
dense matrices of BEM case we use LU-decomposition al-
gorithm, implemented in general purpose C++ matrix library
newmat18. For sparse FEM matrices we use preconditioned
conjugate gradient method PCG19 together with a scheme 14

for compact storage of matrix K. This scheme stores only
non-zero entries of matrix K, using data structures related to
the mesh itself: the diagonal elements Kii are stored in the

c© The Eurographics Association 2003.



Klimenko et al / Flexible Materials in VE

nodes of the mesh, while the non-diagonal elements Ki j are
stored on the edges.
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Fig.2. Storage of stiffness matrix.

In the case of positional input we use block decompo-
sition of matrix K (called also condensation technique2, 8),
writing Knnun = −Knbub + mg, where index b is used for
those nodes, whose positions are interactively specified by
user (e.g. by means of the control elements), while index
n is used for other nodes, whose positions are unknown.
The term mg represents a column (m1~g,m2~g...)T , where~g is
gravitational field and mi is effective mass of the node, equal
to the quarter-sum of masses for all tetrahedrons adjoint
to the node. Therefore the answer can be written as un =
−(K−1

nn Knb)ub + K−1
nn mg. Further simplification is possible

in usage of low-dimensional interaction scheme14, where
the displacements ub are given by affine transformations
~ub = ~T + M~ub0. Each transformation is associated with a
control element attached to the elastic object. It is described
by 12 parameters, namely 3 for the translations ~T and a 3×3
matrix of general linear transformation M (including 3 rota-
tions and 3 scalings in particular), defining a 12-dimensional

space per a control element. Let u(k)
b , k = 1..12 be a ba-

sis in this space, corresponding to the unit placed sequen-
tially to the entries of ~T and M, while other entries are filled

by zeros. Let u(k)
n be corresponding solutions of the system,

i.e. u(k)
n = −K−1

nn Knbu(k)
b . Such solutions should be found

for each of N control elements. Three additional solutions
should be also considered u(12N+i)

n = K−1
nn mgi, i = 1,2,3,

corresponding to three possible directions of gravity vector
~g. Then, due to linearity of the system, the shape of the elas-

tic body for a given interaction ub = ∑k cku(k)
b and gravity

vector ~g = ∑i c12N+i~gi will be

un =
12N+3

∑
k=1

cku(k)
n .

In the obtained solutions only the entries us, correspond-
ing to visible surface nodes should be stored. Actually, we
pre-compute solutions for elementary interactions modes,

corresponding to the basis vectors u(k)
b and three directions

of gravity, in the off-line mode using PCG. The result is
saved (only for surface nodes) to Open Inventor file, see
fig.3. Here white color marks non-deformed shape, yellow
– solutions for ~T -component of two affine transformations,
corresponding to two control elements, red – solutions for
M-component, green – gravitational modes. In visualization

module these solutions are linearly combined to find the
shape of the object for any given interaction using fast on-
line computation.

Note: similar approaches can be used to support the hap-
tic simulation8, 9. From the second part of K-matrix block
decomposition one can write Kbnun = −Kbbub + mg + fb,
where fb is an external force, acting at b-nodes. After sub-
stitution of un in terms of ub and summation f = ∑b fb one
can obtain a smaller system, whose solutions can be also
precomputed and used for haptic simulation. In the contrast
to visual system, where the solution should be evaluated in
each node of the surface, the haptic system requires the eval-
uation of a single vector of the force. Practically this allows
to compute the haptic force at much higher update rate than
solution of visual system, achieving the performance nec-
essary for haptic devices (>1kHz). In this case the haptic
simulation part should work in a separate thread9 or even as
a master application, transmitting the input data to the visu-
alization module.

Fig.3. Precomputed basis of solutions in Open Inventor file.

2.3. On-line visualization module

Interaction with virtual objects in Avango is supported by a
concept of draggers. The dragger attached to an object de-
tects on a low level the intersection of the interaction de-
vice with the object and copies the device’s matrix to the ob-
ject’s matrix. This allows easy positioning of virtual objects.
We use this feature in our simulator as follows. The drag-
gers are attached to the control elements in low-dimensional
interaction scheme and to the contacting objects in high-
dimensional one, then their matrices are submitted to the vi-
sualization module using field connections, see fig.1. When-
ever matrices are changed, the method fieldHasChanged is
activated, which extracts the necessary data from the entries
of the matrices. Actual computation is postponed to the eval-
uate method, activated only once per frame if the field has
been changed. The main functionality of the simulator is en-
capsulated to C++ classes, e.g. for low-dimensional interac-
tion scheme:

class Deform{
public:
int load(const char* filename);
int evaluate();
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pfMatrix *Mat; ushort N;
pfVec3 *Verts, *Norms, *Colors;
ulong numVerts,numStrips,

*stripLengths,*strips;
float criticalStrain,

criticalStretch, criticalAngle;
};

The method load() reads data from specified Open Inven-
tor file, returning 1 on successful loading, 0 otherwise. It (re-
)allocates and initializes the arrays Mat, Verts, Norms,
Colors, whose content is updated during the simulation,
and the arrays for tristrip data, remaining unchanged.

The method evaluate() computes for the given matrices of
control elements Mat[ ] the shape of the object’s surface, its
normals, and color representation of deformation. The main
part is evaluation of the sum ∑k cku(k) with the basis shapes
u(k) taken from the data file and the coefficients ck extracted
from the entries of the input matrices. The evaluate() returns
1, if solution satisfies a condition of small deformations (lin-
earity test), and returns 0 otherwise. In the last case the in-
teraction is blocked and the visualization arrays are left un-
changed.

Linearity test compares strain- or stress-based characteris-
tic of the deformation (described below) with the user pro-
vided threshold value, e.g. criticalStrain. Addition-
ally, for the case of thin plates and long tubes, where non-
linear deformations can appear without large strain or stress,
the user can provide threshold values for the displacements
and rotation angles of the control elements, thus prohibit-
ing large deformations. To support wider linearity region,
we have implemented the approach proposed in paper14: the
average rotation matrix of the control elements is extracted
and transferred to the rigid rotation of the whole model. This
allows to reduce the rotation angles of control elements rel-
ative to the average position, significantly decreasing non-
linear terms, proportional to the angles squared. The aver-
age rotation matrix is defined as R = GS(∑Ri/N), where Ri
are rotation matrices of control elements relative to their de-
fault positions and GS() is Gram-Schmidt orthonormaliza-
tion procedure. For large rotation angles this procedure has
singularities, particularly, in the case of two control elements
it is singular for matrices satisfying a relation R2 = RπR1,
i.e. matrices, related by a rotation by the angle π about some
axis. Such singularities do not appear in the simulation, be-
cause large relative rotation angles correspond to large defor-
mations, prohibited by the linearity test. To support correct
transformations of the model in fixed gravity field, while the
model is subjected to the extracted average rotation the ef-
fective gravity vector should be transformed by the inverse
one:~x(~g) → R~x(RT~g). Namely for this purpose the precom-
putation of three gravitational modes is necessary, even in
the case if the direction of gravity vector is fixed.
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u=u0
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Fig.4. Physical contact phenomenon: (a) – exact solution, (b,c) –
simulation.

High-dimensional interaction scheme requires to perform
a simulation of physical contact phenomenon. The task of
collision detection is the first part in this simulation. It marks
the nodes on the elastic object’s surface coming into colli-
sion with the rigid probe object, and generate the field of
displacements for these nodes shifting them to the probe’s
surface. This can be done using standard collision detection
techniques21. As a second part, we need to solve a variable
boundary condition problem for the given field of displace-
ments in the contact area. For this purpose we determine
the distribution of reaction force in the contact area, which
reproduces the obtained field of displacements by general
formula Ku = Lp, and reconstruct the shape outside of the
contact area. The details of this procedure are given in Ap-
pendix 2. The third part is elimination of edge artifacts. One
of them consists in small jumps (vibration) of the shape dur-
ing the motion of the probe along the object’s surface: when
new nodes are coming to the contact, the boundary condi-
tions are changed sharply, resulting to the instant changes of
the solution on the level of mesh discretization.

The other artifact is an effect of “adhesion” of the elas-
tic object’s surface to the probe, fig.4b. The reason is that
the forces necessary to keep the system in such state are di-
rected inward the probe on a perimeter of the contact area,
while for the exact solution fig.4a the reaction forces are al-
ways directed along outward normals to the probe’s surface.
In reality the points where the reaction forces vanish, corre-
spond to detachment of the object’s surface from the probe.
On this line the boundary condition is qualitatively changed:
from positional one u = u0 to free surface condition p = 0.
Exact determination of detachment line is a complex non-
linear problem even in the case of a contact with the rigid
sphere, see Appendix 3. We simulate this phenomenon using
the following simplified scheme, see fig.4c. We introduce a
thin layer under the probe’s surface, where for the surface
nodes of elastic object the boundary conditions u = u0 and
p = 0 are linearly interpolated: α(u− u0) + (1−α)p = 0,
where α = 0 outside the probe, α = 1 inside the probe un-
der the layer, and α is changed linearly in the layer. Here
u0 is the field of displacements generated in collision de-
tection, u is the corrected field. As a result, the detachment
phenomenon is visually reproduced. Also, during the motion
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of the probe along the object’s surface boundary conditions
are changed continuously, thus the small jumps of the sur-
face shape are removed. From the physical point of view, this
model is equivalent to an introduction of an absolutely rigid
kernel inside the probe, surrounded by a thin shell whose
stiffness coefficient is changed continuously and vanishes at
the outer surface of the probe.

Papers4, 5 use a different approach for the solution of vari-
able boundary value problem, and also consider point-like
contacts between elastic and rigid objects. Variable bound-
ary conditions lead to reconfigurations of the linear sys-
tem (Appendix 1), which in the case of the contact problem
should be performed on-line during the interactive deforma-
tions. Authors of4, 5 use for this purpose a fast update algo-
rithm, based on Sherman-Morrison-Woodbury (SMW) for-
mula, which accelerates a repeated inversion of large matri-
ces where only a small part is changed. This method is more
complex in implementation than our one (Appendix 2), and
has improved computational efficiency for the case of large
contact areas. However, the real-time deformations can be
performed only for small contact areas, where both meth-
ods have equal efficiency. Practically, we achieve update rate
85fps for 10-30 contact nodes with the model containing 800
surface nodes in total. For the elimination of the above de-
scribed edge artifacts our method is more suitable.

Characterization of deformations by color is convenient
to detect the regions of the object, subjected to strong defor-
mations, and to intensify visual force feedback. For charac-
terization of the deformations one can use the components
of strain or stress tensors, or their functions. Surface com-
ponents of strain tensor are directly computable in terms of
deformation of the object’s surface. Particularly, the trace of
surface strain tensor is equal to relative change of area for
given triangle in surface tessellation: ∆S/S = ε11 +ε22. This
characteristic is especially simple for the evaluation. Anal-
ogously, the trace of complete strain tensor is equal to the
relative change of volume for given tetrahedron: ∆V/V =
ε11 + ε22 + ε33. Here the third axis is directed along the nor-
mal to the surface. Note that volumes of tetrahedrons are
not accessible in our representation of the result, where only
the surface geometry is present. The normal components
of strain tensor contain normal derivatives, which also can-
not be expressed in terms of surface deformation. Normal
derivatives enter also to stress tensor and such characteris-
tics as distribution of elastic energy, complicating their eval-
uation. One approach, applicable for low-dimensional inter-
action scheme, is to use linearity of strain and stress tensors
in terms of interaction coefficients ck and precompute corre-
sponding basis functions. This approach requires more data
to store and more computations to perform on-line. In Ap-
pendix 4 the other approach is described, which is applicable
for high-dimensional interaction scheme and optimizes the
evaluation of elastic energy for the BEM case.

3. Results

Fig.5 presents sample flexible objects, deformed by our
simulator. Models (a-d) were pre-processed using FEM for
low-dimensional interaction scheme, while the model (e)
was computed by BEM for high-dimensional interaction
scheme with contact detection. The table below shows pa-
rameters of the models, required pre-processing time (for HP
2GHz Linux PC) and the size of compressed output file:

Table 3: parameters of the precomputed models

model tets volume surface comp. file
nodes nodes time size

(a) 55296 13968 9408 18 min 2.0Mb
(b) 57600 14472 9696 2h15m 2.3Mb
(c) 69120 14520 3096 7h11m 0.9Mb
(d) 26422 5292 3510 1h24m 1.0Mb
(e) – – 800 30 min 10Mb

a) b)

c) d)

e)

Fig.5. Interactive deformation of
flexible objects in Avango Virtual
Environment Framework.

The interactive deformations of these models are performed
in the virtual environment by on-line visualization module,
working stable at graphics update rate 85fps (on HP 2GHz
Linux PC). In the case (a) one end of a polyethylenic tube
is pulled on a rigid connector, using scaling of the corre-
sponding control element; wireframe mode is used to show
the detalization level of the model. In the case (b) a rubber
tube sags in gravity field under its own weight. The case (c)
shows a flexible cable initially curved to a circle and inter-
actively deformed to a spring shape, using two control ele-
ments attached to the ends. In the case (d) a composite ob-
ject, consisting of steel plate and rubber block, is deformed
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by two control elements. In the cases (c,d) color represents
the trace of surface strain tensor for the deformation. In the
case (e) a rigid sphere contacts the elastic object and can be
interactively moved along its surface; color represents the
distribution of elastic energy in the object.

4. Conclusion

In this paper we described our implementation of real-
time simulation of elastic deformable objects in Avango VE
Framework. The approach uses the finite and boundary ele-
ment methods to solve the equations of elasticity. The most
time consuming portions of the computations are performed
in off-line mode. The resulting data, saved to a file, allows
to accelerate significantly the on-line simulation process. We
have implemented this approach in the simulator of flexible
materials, supporting interactive deformations of large elas-
tic models in virtual environment at real-time speeds.
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Appendix 1: permanent boundary conditions

For the points outside of the permanent boundary condition region
variables u are unknown, while the parameters p (or f ) are speci-
fied; inside the permanent boundary condition region the variables
exchange their roles: force distributions in this region are unknown,
while u = 0. Therefore, imposition of permanent boundary condi-
tion is equivalent to the following reconfiguration of the linear sys-
tem (written here for BEM case):

b0

=K
u

s
s

* L
p

p
s

sLb

where we use b-index for the nodes inside the permanent boundary
condition region and s-index for the nodes outside it. Solving this
system:

us

pb

= Ks Lb

−1

Ls *
ps

0

= *
Css

Cbs

ps

0

we write the main answer as us = Css ps.

Note. For haptic simulation the force distributions inside the per-
manent boundary condition region can be evaluated as pb = Cbs ps.
For visualization purposes only the variables us, ps outside the per-
manent boundary condition region are used. Note also, that the part
of matrix K, marked by star and multiplied by zero column in the
initial formula, drops out from the answer.

Appendix 2: variable boundary conditions

Let’s use index β for the nodes in contact area. Tractions pβ are con-
centrated in the contact area and vanish outside (non-zero tractions
pb in the region of permanent boundary condition are already eval-
uated). From here we obtain the following block structure of our
system:
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=

0

0

uβ

u pC

C ββC β

pβ

s ss s

We should solve on-line a small linear system uβ = Cββ pβ for un-
known contact forces:

pβ = C−1
ββ uβ, (1)

where the displacements uβ in the contact area are known (defined
by collision detector). Then the surface shape can be found as a
matrix product us = Cβ pβ, actually representing a linear combina-
tion of a few columns Cβ with coefficients pβ. This computation
requires O(NβNs) operations, where Nβ is the number of nodes in
contact area, Ns is total number of surface nodes in the model (out-
side permanent boundary conditions region). The same computation
is most intensive part in the usage of SMW formula4 for the case of
small contact area. In our algorithm, for solution of the linear sys-
tem uβ = Cββ pβ additionally O(N3

β) operations are needed, which

for small contact area N2
β << Ns give a small addition to the time of

main computation. Usage of SMW formula requires additional com-
putations, comprising O(N3

γ ) and O(NγNs) operations, where Nγ is
the number of nodes, coming in/out of the contact area in compar-
ison with the previous frame, proportional to the perimeter of the
contact area. For small contact area this contribution is also small in
comparison with the time of main computation.

For the “hard kernel” contact model used in this paper one needs
to modify (1) as follows: p = ((1−α)/α +Cββ)−1u0.

Appendix 3: exact definition of contact area

The contact of the elastic object’s surface with a smooth sphere in
the absence of friction forces is described by the following system:

~vi =~r + ρi~ni, ~pi = λi~ni,

(~v−~v0)i = ∑
j

Ci j
ss~p j, (2)

where ~vi are the positions of surface nodes (~v0i are these positions
in the undeformed state), ~pi – tractions, ~r – position of center of
the sphere,~ni – unit norm vector, in the contact area coincident with
the normal to the sphere, Css – above defined matrix, relating the dis-
placements and tractions fields: u =Css p outside of the region where
the permanent boundary conditions are imposed, ρi,λi – scalar pa-
rameters. For each node the following 1-dimensional set of parame-
ters on the plane (ρi,λi) is used: {ρi = R,λi > 0}∪{ρi > R,λi = 0},
where R is the radius of the sphere. The first equation in (2) records
~vi in spherical coordinate system, the second one expresses the
fact that the reaction force of the sphere in the absence of friction
is directed along the normal to its surface, the third equation has
been already discussed, the relation of parameters (ρi,λi) unifies
the boundary conditions inside the contact area: ρi = R,~pi ·~ni > 0
with those outside: ρi > R,~pi = 0. At fixed R,~r,~v0i the state of the
system is described by 10Ns variables, and 10Ns equations are im-
posed on them. In the contact ares this system can be rewritten in
more compact form:

R~pi/|~pi|−∑
j

Ci j
ss~p j =~v0i −~r, (3)

comprising a closed system of 3Nβ non-linear equations for 3Nβ
variables ~pi. The condition of existence of solutions for this system
defines the contact area, and positions of nodes in this area can be
found from the relation:~vi =~r+R~pi/|~pi|. For numerical solution of
the system (3) one can use standard iterative methods, however its

real-time performance is problematic. During this process the prob-
lems of topological type are possible, related with non-trivial struc-
ture (multi-valuedness) of solutions, which can lead to ambiguous
results and lost of solution in continuous change of parameters.

Appendix 4: evaluating the distribution of elastic en-
ergy

Due to volumetric character of stress distribution, the density of en-
ergy is also volumetric, however in the considered problem it will
be estimated on the visible surface of the object.

The density of elastic energy is defined by by derivatives of dis-
placement field: ∂ui/∂x j . Because in our approach the displacement
field is known only on the surface, the normal derivatives describ-
ing in-depth variation of this field become inaccessible. We use the
following approach to overcome this difficulty. Let’s perform the vi-
sualization of energy distribution outside of the contact areas. Let’s
consider one triangle of tessellation (abc), located in this part of the
surface. For this triangle write:

(u(b)−u(a))i = ∑
j

∂ui

∂x j
(b−a) j,

(u(c)−u(a))i = ∑
j

∂ui

∂x j
(c−a) j, (4)

∑
j

n j

(

∂ui

∂x j
+

∂u j

∂xi

)

+
2ν

1−2ν
ni ∑

j

∂u j

∂x j
= 0,

where the first two equations are Taylor’s series of the displacement
field in the vicinity of point a up to the first order terms, and the third
equation corresponds to the boundary condition of free surface pi =
0, satisfied outside of the contact areas, which closes this 9×9 lin-
ear system for the derivatives ∂ui/∂x j . One needs to form symmet-
ric combinations from the solutions εi j = (∂ui/∂x j + ∂u j/∂xi)/2,
composing the strain tensor. Finally, the density of elastic energy is
defined by formula

dE

dV
= µ



∑
i j

ε2
i j +

2ν
1−2ν

(

∑
i

εii

)2


 . (5)

The optimal organization of the described computations was per-
formed as follows. Using the system of analytical computations
Mathematica20, the equations (4) are solved in symbolic form, the
solution is substituted to (5) and simplified:

dE

dV
=

µQ

8S2
,

Q = 2(q2 f1 − v2g1)
2 + 2(q1 f2 − v1g2)

2 +

+(q1 f1 −q2 f2 − v1g1 + v2g2)
2 + (6)

+T (q2 f1 −q1 f2 − v2g1 + v1g2)
2,

qi = (~b−~a) ·~ei, vi = (~c−~a) ·~ei,

fi = (~u(b)−~u(a)) ·~ei, gi = (~u(c)−~u(a)) ·~ei,

where µ = Y/(1 + ν)/2, T = 2ν(2− 3ν)/(1− ν)2, S is the area of
triangle (abc),~ei, i = 1,2 is a pair of vectors, defining the orthonor-
malized basis with the normal~n to triangle. The vector fields~ei and
coefficients qi,vi,S entering to the formula (6) are independent on
deformations and are computed once at initialization stage. In the
interactive regime simulator computes the displacements field, from
which the variables fi,gi are determined, and then using the formula
(6) the density of elastic energy is found. This scheme accelerates
the evaluation of elastic energy distribution by the factor ∼70 com-
paring with direct solution of 9×9 system (4) for each triangle in the
interactive regime. Finally, the result is used to specify the color hue
at each node, while color value and saturation are set to maximum,
providing most color intense representation of the energy distribu-
tion.
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