

Illumination-driven Light Probe Placement

K. Vardis[†] and A. A. Vasilakis[†] and G. Papaioannou

Department	t of Informatics, Athens University of Economics an	d Business [†] These authors contributed equally to this work
Light Probes	Our Method	Results
 Light probes help encode and represent global illumination for real-time rendering. Placement is typically performed as either an automatically laid-out grid or manually ⁽²⁾ 	Goal Lighting-driven probe placement A simple and generic method Two-step algorithm	Initial Light Probes Evaluation Points
Observations	Setup: Generate dense reference probes and supply light field evaluation points	
 Placement should depend on the lighting distribution itself! Colour bleeding dominated by chrominance Indirect shadows translate to mostly luminance transitions 	 Simplification: Iteratively remove least important probes using mean absolute percentage error Illumination criteria Transform radiance to YCoCg and Guide simplification according to weighted YCoCg components for chrominance/luminance-based preference 	Lighting setup A: Similar light source colors
Place N Light Probes Place M Evaluation Points Place M Evaluation Reference	Select Light Probe Candidate Discard Least Important Light Probe iterate until goal reached n-1 configurations	Luminance-driven: 53% probes left, 3% error Lighting setup B: Contrasting light source colors

This research is co-financed by Greece and the European Union(European Social Fund-ESF) through the Operational Programme "Human Resources Development, Education

and Lifelong Learning 2014-2020" in the context of the project "Modular Light Transport for Photorealistic Rendering on Low-power Graphics Processors" (5049904). This

work was also partially funded by the Athens University of Economics and Business Research Centre.

Chrominance-driven: 45% probes left, 3% error

Source code: github.com/cgaueb/light_probe_placement AUEB CGG: graphics.cs.aueb.gr