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Rendering 2D vector graphics on mobile GPU Devices
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Abstract

Designers and artists world-wide rely on vector graphics to design and edit 2D artwork, illustrations and typographic content.
There is a recent trend of vector graphic applications moving to mobile platforms such as iPads, iPhone and mobile phones and
with that there is new interest in optimised techniques of rendering vector graphics on these devices. These vector applications
are not read only but also requires real time vector editing experience. Our solution builds upon standard ’stencil then cover’
paradigm and develops an algorithm targeted for GPUs based on tile based deferred rendering architecture. Our technique
provides an efficient way to use signed distance based anti-aliasing techniques with 'stencil then cover’ paradigm by employing
a state machine during the fragment shader stage of graphics pipeline.

CCS Concepts

» Computing methodologies — Antialiasing; Rasterization;

1. Introduction

We present a method to render anti-aliased 2D vector objects na-
tively on mobile GPUs. Our technique builds upon [KSST] and
develops a solution for tile based deferred GPU rendering architec-
ture. Mobile GPUs (tile-based GPUs) allows reading current pixel
memory without any performance penalty (without any need of tex-
ture barriers or different draw calls). Our technique exploits this
fundamental property of mobile GPUs and builds an algorithm for
rendering 2D vector graphics (including all kind of shapes — con-
vex, concave, compound paths, overlapping paths bounded by cu-
bic Bezier splines).

Our method uses spread based anti-aliasing techniques instead
of multisampling. Our method does not require multi-sampled tex-
tures and per sample shading. Standard ‘stencil then cover’ tech-
niques rely on two GPU render passes — one render pass to write
coverage values to stencil buffer and second render pass to write
color values to render texture. Further, it requires additional draw
calls to clear the stencil buffer and since draw calls leaves sten-
cil buffer in dirty state, multiple vector objects cannot be drawn
with a single render pass, significantly limiting the overall render-
ing performance. Our technique uses a single render pass to write
coverage and color values and also clears the coverage buffer in a
single render pass. This allows to batch and render multiple vector
objects in a single render call leading to significant performance
gains. Our technique implements batching of vector objects by in-
troducing concept of interleaved coverage and color triangles.
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2. Our Solution

Following section details out our solution in two phases, Triangu-
lation and GPU Render Pass.

2.1. Triangulation
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Figure 1: 1. Input vector shape 2. Cubic Beziers approximated
by Quadratic Beziers 3. Color Triangles 4. Quadratic Bezier Con-
trol Triangles 5. Interior Polygon Triangulation 6. Total Coverage
triangles and color triangles

For any input vector shape, we first approximate cubic Bezier
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curves of shape by multiple quadratic Bezier curves . By join-
ing contiguous end points of quadratic Bezier curves, we gener-
ate an interior polygon. To triangulate this interior polygon, We
extend standard algorithm of triangulating the interior of 2D poly-
gons [Ope]. Then, we add the control triangles of quadratic Bezier
curves to output of interior polygon triangulation to complete the
set of “coverage triangles’.

Additionally, Coverage triangles are expanded [NH] to cover
pixels around the edges of the curve to avoid aliasing due to under
coverage. These triangles may overlap with each other or extend to
pixel outside the shape of input curve. GPU render pass resolves
these overlaps and ensures that a pixel is marked only once and the
pixels lying outside the shape are discarded.

In addition to coverage triangles, we generate *Color Triangles’
for each input vector shape. Color Triangles are generated by split-
ting the bounding box of input geometry along the diagonal. Irre-
spective of the input geometry, we always have two color triangles.
These are appended post coverage triangles in the output buffer.
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Figure 2: Triangulated buffer representation.

Coverage and color triangles are packaged and uploaded to the
GPU. A uniform marker is set to distinguish between two types
of triangles in GPU render pass when multiple paths are batched
together. This uniform marker is maintained in a separate buffer
which de-marks boundary of each path.

2.2. GPU Render Pass

GPU Render pass in our solution uses a framebuffer with two color
attachments, color buffer (RGBA32) and coverage buffer (R8) re-
spectively. Color buffer stores the final color value and coverage
buffer stores the transient coverage of each pixel covered by input
shape. GPU render pipeline comprises of vertex shader and frag-
ment shader. Vertex shader simply transforms the vertices and out-
puts to rasterizer. Fragments output from rasterizer are processed
by fragment shader stage where our technique introduces a state
machine shown in figure 3.

Based on - type of fragment (if the fragment is generated from
coverage triangle or color triangle), coverage value of the fragment,
coverage value is written to coverage buffer. Fragment shader reads
current values in frame buffer (pixel memory) to decide the state
changes in pixel memory due to current fragment. Clearing cover-
age values to zero is necessary to render multiple overlapping vec-
tor objects in a single draw call to fully utilize parallel computing
power of GPU.

Figure 4 shows the different states of frame buffer attachments
for a single draw call for two vector graphic objects. Note that
shown two objects are drawn in a single render pass and also leaves
the coverage buffer to clear state for reuse in next draw call.
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Figure 3: Fragment shader state machine.

Color Buffer : Color Buffer —Color Buffer , —Color Buffer

Coverage Buffer Coverage Buffer Coverage Buffer Coverage Buffer

Frame Buffer state at
eg w call

Figure 4: State machine transformations.

Single render pass facilitates the use of memoryless coverage
buffer, thereby further reducing the memory footprint.

3. Results

We achieve a performance speed up of 3-7x for first frame ren-
dering (without cache) depending upon artwork complexity. This
corresponds to editing workflow performances. We benchmark
our technique against an existing path rendering technique where
path object is tessellated into tightly bound non-overlapping tri-
angles. In this tessellation scheme, control triangles are composed
of quadratic Bézier curves (not lines), making tessellation output
resolution independent. Also, our technique is at par or better per-
forming in frame redraws (zoom in-out work-flows) when there are
no changes in geometry and cached triangle buffer can be redrawn
directly on GPU.
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