
Parametric Polynomial Curves

Dr. David J Stahl, Jr.

US Naval Academy

stahl@usna.edu

Abstract: Spline curves and surface patches have an innate mathematical beauty and broad practical

application in the field of computer graphics. Yet the subject proves difficult to convey to beginning

graphics students averse to math and theory in general. The difficulty is mitigated by having students

complete an implementation of carefully prepared scaffold code. A particular code framework allows

focusing student effort on understanding the algorithm and the theory rather than the visualization details.

In this manner understanding is developed and reinforced by means of an exercise no more difficult than a

short lab assignment.

Keywords: 2D modeling, algorithm development, rendering.

1 Introduction

Few subjects in computer graphics of such practical application and visually pleasing results as spline

curves and surface patches have their innate mathematical beauty. Yet for this author, over a number of

years teaching undergraduate introductory computer graphics the subject has proven to be one of the most

difficult to convey. Blank student expressions and outright groans at the first mention of “piecewise

continuous parametric polynomial curves and surfaces” serve notice of the difficult task ahead.

The problem is multifaceted. A complete treatment of the subject could easily consume an entire

semester covering the myriad related topics, techniques and details: history and development, forms and

conversions (Hermite, Bezier, B-spline, …), derivations and representations (Bernstein, Cox-deBoor, de

Casteljau …), manipulation (knot insertion, curve elevation, hierarchical refinement), and so on. A rigorous

theoretical treatment requires students have a level of comfort with matrix algebra, summation notation,

recurrences, and so on. Careful presentation by the instructor and meticulous, close attention to detail on

the part of the student are both necessary to understand this theory - and then there’s the implementation to

deal with. Unfortunately for such a core topic in the computer graphics body of knowledge, students with a

weak foundation in math, aversion to theory and a general impatience with detail easily perceive it as

dreary and tedious. End-of-course student evaluations reveal this quite clearly!

Student dissatisfaction with this particular topic of computer graphics, although perhaps more

pronounced, fundamentally appears no different than in other areas. Surveys conducted at the beginning of

multiple offerings of an undergraduate introductory computer graphics course show that impressive,

sophisticated game and movie graphics attract them to the subject. These “instant gratification”, YouTube

video savvy consumers however are also not interested in the math and theory behind the visuals. They

seek to quickly create impressive results without the encumbrance of having to understand the algorithms

or mathematics on which they are based.

The challenge of course is to make these theoretical underpinnings of computer graphics – and in this

particular case, the mathematics of spline curves - more palatable. This paper describes one exercise in a

series that approaches the problem with active learning. The classic approach of lecture and reading

prepares students with a basic understanding of an algorithm or technique, and a carefully designed follow-

on lab exercise reinforces understanding through an implementation. Students can typically complete the

exercise during a one to two hour lab period, thus putting theory to practice in a manner that rewards effort

with immediate visual results. Moreover, the programming framework imposed on student solutions

permits focusing their effort on the algorithm rather than the API used to render it.

2 Educational Goals

The student should be able to explain the following fundamental mathematical concepts associated

with parametric polynomial curves: geometric constraints, blending functions, piecewise continuity, and

basis matrix formulation. The student will have completed a source code implementation to render 2D

curves using cubic Lagrange polynomial interpolation, as well as cubic curves of the following forms:

Hermite, Bezier, uniform B-Spline, and Cardinal. Students will have benefited from the additional practical

programming experience gained. The student should subsequently be able to extend the implementation to

3D curves and surface patches and apply it to camera motion. The exercise could serve as an introduction

to more advanced concepts such as non-uniform B-Splines, conversion between bases, degree elevation and

knot insertion.

3 Methodology

The approach described in this paper is employed in an elective first course in undergraduate computer

graphics offered to computer science and information technology majors. As prerequisites, students will

have completed courses in discrete math and programming through data structures. No prior background in

computer graphics is assumed. The course meets twice weekly in two-hour sessions, nominally scheduled

as one hour of lecture followed immediately by one hour of lab. With the lab tied closely to the lecture

topic, two-hour sessions allow the flexibility of adjusting lecture or lab time as needed.

In the lab we use OpenGL as the graphics API and GLUT3.7 as the user interaction and windowing

system interface API. GLUT was chosen for its straightforward simplicity, supporting the course design

objective of providing short lab exercises that focus student programming effort on the algorithm rather

than the API. A more capable user interface/windowing API such as fltK could be used, at the time-

consuming expense of students having to attend to more programming details not related to the algorithm.

The course has been taught using several different programming environments: a Sun SPARC

workstation lab using Solaris, g++, xemacs and make; a PC lab using Windows XP and Microsoft Visual

Studio C++ 6.0; and most recently a dual-boot Solaris/XP lab. Any platform supporting the

OpenGL/GLUT API could be used. Students more comfortable with the Mac OS or Linux, for example,

have sometimes brought personal laptops to the lab to program in those environments.

The course employs the following pedagogical approach. Preparatory material that is required to

successfully complete the lab exercise comes from assigned out-of-class reading [1] [2] followed by a

formal lecture. Students are expected to take notes during the lecture, supplementing a minimal handout

with details of the lecture topic being discussed. Work begins on the lab exercise immediately after the

lecture, with students encouraged to collaborate on developing a solution. Materials required to complete

the lab are obtained by downloading a tar or zip file from the course website. The typical assignment

archive contains a document describing the exercise, a correct solution executable, sample data if needed,

and one or more source code files that includes scaffold code.

One of the key elements of the approach is the organization of the provided code. Students are required

by course policy to adhere to a rather rigid arrangement of files, which appear in most lab exercises. A

program is organized as a separate header and source code file pair for each set of related GLUT callbacks,

as follows:

 Filename: Purpose:

main.[h, cpp] - Main program event-driven loop

init.[h, cpp] - Graphics and application setup

render[.h, cpp] - Display callback

view.[h, cpp] - View setup and window reshape callback

mouse.[h, cpp] - Mouse interaction callbacks

keyboard.[h, cpp] - Keyboard interaction callbacks

menu.[h, cpp] - Menu callbacks

An additional one or two pairs of files specifically related to the particular problem at hand are also

usually present – for example, splines.[h, cpp]. Enforcing this separation by file according to logical

purpose has several benefits. The common framework makes it easy for both student and instructor to

locate specific code according to its functionality, and additionally affords collaborative student work. As a

practical matter it makes grading assignments much easier and simplifies the Makefile when one is required

by the development environment. Most importantly however, an easily understood common code

framework obviates students having to spend time and effort in designing their own high-level code

structure, but rather allows them to focus effort on implementing the algorithm. The rigid code organization

is introduced early in the course during the discussion of event-driven programming. Students quickly

become familiar with the code structure, easily moving from file to file as needed., and in fact, have come

to expect similar structuring in follow-on advanced graphics courses.

Scaffold code provided to the students is prepared by removing key parts of the algorithm from a

thoroughly commented working solution. Students must refer to lecture notes, handouts they have filled in,

or texts to finish the implementation.

Figure 1. Spline curves assignment. Students are given scaffold code that must be completed.

Complete the given source code to draw various parametric cubic polynomial curves.

The coordinates of the 4 control points are given: 4321 ,,, PPPP .

The program should draw Hermite, Bezier, B-Spline and Cardinal splines: () ()∑
=

=
4

1i

ii PtBtQ .

 Hermite Bezier B-Spline Cardinal

It should also use Lagrange polynomials to interpolate the control points: Lagrange

 () () () ()tLPtLPtLPtQ
n

nn

nn +++= L1100

The menu structure is as shown:

You should only have to add code to splines.cpp and Lagrange.cpp.

Figure 2. Output of compiled scaffold code as given to the students. Upper left: Hermite

curve is selected. Upper right: Lagrange interpolation is selected. Bottom: Cardinal spline.

The student must complete the implementation to render cubic parametric polynomial

curves.

Figure 3. Scaffold code provided to the student for cubic Lagrange interpolation.

// Lagrange.cpp

#include "main.h"

// n

// Implements L(t) for n = 3 (interpolating 4 points)

// i

double Lin(int i, double t)

{

 // Initialize the running product

 double L; // = ?;

 // Use equally spaced parameter values

 // (cubic curve: 4 values in [0.0 1.0])

 double tj[4] = { 0.0, 0.0, 0.0, 0.0 };

 // = { ?, ?, ?, ? };

 // 3 3 t - tj

 // Loop over j to compute L(t) = PROD(-------), j != i

 // i j=0 ti – tj

 for(/* ? */; 0 /* ? */; /* ? */)

 {

 L; // ?

 }

 return L;

}

// n

// Implements Q(t) = SUM(L(t) * Pi) (a point on the Lagrange curve)

// i

void LagrangePoint(double t, double& x, double& y)

{

 x = 0; // = ?

 y = 0; // = ?

}

Figure 4. Parts of scaffold code provided to the student for drawing cubic spline curves.

// splines.cpp

#include "main.h"

// globals:

// geometric constraints: control points and Hermite

tangents

double P1[2], P2[2], P3[2], P4[2];

double R1[2], R4[2];

// Which form: Hermite, Bezier, BSpline, Catmull-Rom,

Lagrange ?

int method;

int n_tval; // # of parameter values to

evaluate

double tension, tau; // Cardinal spline tension

// Hermite basis functions

double BH0(double t) { return (0 /* ? */); }

double BH1(double t) { return (0 /* ? */); }

double BH2(double t) { return (0 /* ? */); }

double BH3(double t) { return (0 /* ? */); }

// Bezier basis functions

double BB0(double t) { return (0 /* ? */); }

double BB1(double t) { return (0 /* ? */); }

double BB2(double t) { return (0 /* ? */); }

double BB3(double t) { return (0 /* ? */); }

// ...

// Implements Q(t) = SUM(Bi * Pi)

void HermitePoint(double t, double& x, double& y)

{

 x = 0; // = ?

 y = 0; // = ?

}

void BezierPoint(double t, double& x, double& y)

{

 x = 0; // = ?

 y = 0; // = ?

}

// ...

Figure 5. Part of a handout tied to subject material presented to students in a lecture. Completing

the handout facilitates completing the associated lab assignment.

Lagrange interpolation

A set of 1+n points, nPPP ,,, 10 L , can be interpolated,

() =tQ Curve

where ()tL
n

i are Lagrange polynomials of degree n:

() =tL
n

i

() =≠ , ij

()., ij ≠
.

Example: 3
rd

 degree Lagrange polynomials (n = 3) are:

() =tLi

3

_____________ ___________________________________
()., ij ≠

.

Piecewise continuous parametric polynomial curves

__

__

__

__

Continuity at the join point between segments

C
0
, C

1
, C

2
, ... “______________” continuity.

G
0
, G

1
, G

2
, ... “______________” continuity.

Two polynomial curve segments:
()

()tQ

tQ

2

1
,

[]
[]32

21

,

,

ttt

ttt

∈

∈

C
0
, G

0
: ()21 tQ = ________ (coordinates are equal at the join point)

G
1: ()21 tQ′ = ________ (parametric 1

st
 derivatives are proportional at the join point)

___: () ()2221 tQtQ ′=′ (parametric 1
st
 derivatives (tangents) are equal at the join point)

G
2
: ________ = ()22 tQk ′′ (_____________________________________)

C
2
: ________ = ______ (_____________________________________)

 t1 t2
t3

1Q 2Q

Figure 6. More handout. Students are expected to complete the handout from the reading and the

lecture.

Cubic Bezier spline

Shape is determined by: ● two ____________________________, ___ and ___ .

● two ___________________________, ___ and ___ .

Geometry vector: ________________________ .

Endpoint tangent vectors: _______, and _______ .

A cubic Bezier curve _______________the two endpoints and __________________ the intermediate

two points:

______ ___

=

4

3

2

1

B

P

P

P

P

G

The cubic Bezier endpoint tangents are related to the cubic Hermite endpoint tangents:

=1R ____________ =4R ____________

HBM , relates _________________________ to ____________________________:

−

−
=⋅=

=

3300

0033

1000

0001

BHBH GMG

Hermite basis: () HH GMTtQ ⋅⋅= . Substitute BHB GM ⋅ for HG :

 () ()BHBH GMMTtQ ⋅⋅⋅=

() () BHBH GMMTtQ ⋅⋅⋅=

 HBH MM ⋅ ⇒ MB, the ________________________

BHBH

3300

0033

1000

0001

0001

0100

1233

1122

MMM =

=

−

−

−−−

−

=⋅

4 Assessment

The exercise described in this paper is one of a series that address a recurring curriculum-wide issue

raised in formal student end-of-course critiques. Students consistently seek more hands-on practical

programming experience yet would prefer less exposure to theory in general and math in particular. These

are conflicting goals in any creditable curriculum however. Curriculum guidelines published by the major

professional computing societies clearly emphasize connecting theory and practice and the equal

importance of an implementation and its theoretical underpinnings [3]. In the graphics curriculum, the

exercise and approach described in this paper addresses our student concerns but does not sacrifice theory

to emphasize practice.

As an informal measure of success, in all offerings of the undergraduate computer graphics course that

include the exercise described in this paper, not a single student has been unable to complete the

assignment. In refining the lab exercises over several course offerings, comments made by students in end-

of-course critiques have shifted from complaints about "too much theory", to remarks that the approach is

useful and appreciated. When asked to comment about the appropriateness of topics, where students

previously pleaded that parametric curves be dropped, they now ask that the course additionally address

parametric surfaces. As a further measure of success, it is noted that our undergraduate introductory

graphics course materials have been used at the University of Pittsburgh and DelMar College. Informal and

anecdotal evidence thus suggests the approach is effective.

5 Conclusions

With theoretical material presented first, being able to work exclusively on implementing an algorithm

and having immediate visual feedback - whether it indicates error or success in the implementation - seems

to make students more willing to absorb the underlying theory. Giving students all or most of the code not

directly related to the algorithm or technique in question avoids their frustration in having to attend to

windowing, interaction, and rendering details that are ancillary to the problem at hand. For the most part

this also results in short lab exercises that students are able to complete in the hour following presentation

of the theoretical material, providing an immediate sense of accomplishment and ownership of the material.

Developing graphics course content that effectively makes the connection between theory and practice,

using the approach described here, is no small task. It takes considerable instructor time to carefully prepare

an integrated set of lecture notes, handout materials, and scaffold code designed to allow students to

reasonably complete an algorithm implementation in one lab period. But it appears to be worth the effort:

while perhaps not enthusiastically embracing the theoretical underpinnings of key graphics techniques and

algorithms, undergraduate students are at least able to apply theoretical knowledge to create correct

implementations. These conclusions are based on informal observations however. Quantitative measures of

the effectiveness of the approach are suggested.

References

[1] Foley, J.D., Van Dam, A., Feiner, S. K., Hughes, J.F., Phillips, R.L., 1994. Introduction to Computer
Graphics, Addison-Wesley, New York, pp. 328-343.

[2] Foley, J.D., Van Dam, A., Feiner, S. K., Hughes, J.F., 1995. Computer Graphics: Principles and

Practice in C (2nd Edition), Addison-Wesley, New York, pp. 478-491.

[3] Computing Curricula 2001 Computer Science (CC2001). The Joint Task Force on Computing

Curricula: IEEE Computer Society and Association for Computing Machinery. Dec 2001,

http://acm.org/education/curric_vols.

