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Figure 1: A non-manifold self-intersecting animated dragon falls violently on a pool of water generating violent splashes with
high detail. This is an example of a badly-conditioned model, though common in visual effects (VFX) and 3D animation studios,
which our solver handles robustly.

Abstract
Designing a fluid simulator with VFX production pipelines in mind is a difficult task where goals like efficiency, ro-
bustness and scalability compromise each other. Many impressive fluid simulation methods have been presented in
research papers before, but often they do not meet the production and flexibility demands of artists working on ac-
tual VFX production pipelines. In this paper we present a particle-based fluid simulation framework, based on the
well known Position-Based Fluids (PBF) method, designed to address VFX production demands. Our framework
puts special care on data structure design and implementation details. It highlights cache-efficient GPU-friendly
data structures, an improved Z-index sort spatial voxelization technique, tuned-up simulation algorithms, and col-
lision treatment based on VDB fields. Altogether, they empower the artist with a very efficient fluid solver, but also
with the robustness and versatility needed for simulating very diverse scenes and effects.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

Research on fluid simulation has a long history in computer
graphics, yet animation artists keep demanding methods that
enable larger and richer simulations. Even though all new
methods contribute to the improvement and evolution of the
field, their adoption within the artist community is subject to
other practical factors imposed by production requirements.

Computational efficiency is one of those factors. Better
simulation times give artists the ability to iterate quickly over
a shot and reach faster the desired look. But efficiency of-
ten competes with other practical factors such as constraints

on the simulation domain, memory consumption, resolution
settings, or controllability.

Constraints on simulation domains, such as the use
of fixed domains, are factors that compromise versatil-
ity. Artists seek simulation methods that support arbitrary
scenes, such as open domains with complicated boundaries.

High memory consumption and resolution constraints
are factors that compromise scalability. Artists seek scal-
able methods that support high-resolution simulations with
highly detailed effects under practical memory costs.

Finally, controllability limitations are the factors that

c© The Eurographics Association 2015.

DOI: 10.2312/ceig.20151202

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ceig.20151202


I. Alduán, A. Tena & M.A. Otaduy / Efficient and Robust Position-Based Fluids for VFX

Figure 2: With our robust XSPH viscosity algorithm, we are able to produce a large range of viscous behaviors. In the
snapshots, a sphere of fluid falls over a bullet-shaped object, with behaviors that range from inviscid on the left to toothpaste-
like viscous on the right.

compromise the artists’ ability to express their creativity.
Artists seek user-oriented methods that allow them to ex-
plore in an intuitive manner a diverse set of fluid behaviors.

In practice, artists will even take simulation methods be-
yond the limits that they were designed for, and expect them
to work under diverse and stressful conditions. One typical
example is to interact the fluid with solid objects represented
using non-manifold meshes, degenerated geometry, and/or
self-intersecting geometry. Artists seek robust methods that
reach reasonable results even in worst-case scenarios.

This paper presents a particle-based fluid simulator de-
signed to address VFX production demands. The simulator
builds on the PBF method by Macklin et al. [MM13]. We
propose a combination of fluid model extensions, data struc-
tures, and collision handling methods that produce an effi-
cient yet robust and versatile fluid simulation method, suit-
able for simulating very diverse scenes and effects.

Section 2 reviews previous work on particle-based fluid
simulation. Next, Section 3 describes our extension of the
PBF method, focusing on the robust coupling of particles
of different resolutions, and models for viscosity and sur-
face tension. We incorporate constraint stiffness regulariza-
tion into PBF, as well as intermediate solver steps to en-
able high-viscosity fluids. Section 4 describes the treatment
of fluid-solid collisions with complex geometry using VDB
sparse fields. Section 5 describes our approach to accelerate
neighbor searches with a modified Z-index sort algorithm.
And Section 6 discusses our data structures for efficient par-
ticle management on a highly parallel implementation. Fi-
nally, Section 7 and Section 8 show our results and discuss
avenues for future work.

2. Review of Particle-Based Fluids

Particle systems have been used for animation since the early
days of computer graphics [Ree83]. Due to their Lagrangian
nature combined with the absence of connectivity require-
ments, smoothed particles were first used to simulate ele-
ments like fire and smoke [SF95], highly deformable bod-
ies [DG96], and viscous fluids like lava [SAC∗99]. Soon af-
ter, Smoothed Particle Hydrodynamics (SPH) has become

one of the most popular techniques for fluid animation. 3D
free-surface particle-based fluid simulation examples at in-
teractive rates were achieved first by Müller et al. [MCG03].
One of the major drawbacks of early SPH methods is the
challenge to model highly incompressible fluids. Becker et
al. proposed some modifications to achieve better incom-
pressibility [BT07] at the cost of smaller time-steps. Thanks
to the versatility of SPH, these formulations have been
adapted to support multiphase simulations [MSKG05], vis-
coelastic fluids [CBP05], or granular media [LD09].

The stiffer the system becomes, the less feasible it is
to use purely explicit formulations. Solenthaler and Pa-
jarola [SP09] introduced the PCISPH method, which iterates
pressure adjustments to project the density to acceptable val-
ues. PCISPH has also been extended to support other mate-
rials, such as granulars [AO11] or melting objects [DGP12].
As an alternative to SPH, Premoze et al. proposed the use of
the Moving-Particle Semi-Implicit method [PTB∗03].

Although PCISPH comes from a physically motivated
derivation, it largely resembles an iterative solver for con-
strained optimization too. The connection between particle
fluids and constrained optimization was introduced to graph-
ics by Bodin et al. [BLS12]. Macklin et al. [MM13] recently
realized that these constraints could be reformulated to be
solved in a position-based manner, gaining additional stabil-
ity. PBF has been extended to support different media and its
interactions [MMCK14].

In each section of the paper we will discuss additional
work related to each one of our contributions. For more in-
formation on relevant publications in the field, we refer to
the state of the art report by Ihmsen et al. [IOS∗14].

3. Extensions to Position-Based Fluids

As we have anticipated, our solver uses as baseline the PBF
method by Mackin et al. [MM13]. In this section we present
several modifications and additions. First, we show how to
couple particles of different resolutions in a robust manner.
Our current solution does not support dynamic adaptivity of
particle resolution, but in practical situations it is convenient
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Figure 3: With our method, we can control the degree of surface tension. In the snapshots, a dam breaks over Stanford’s bunny,
with growing surface tension from left to right.

to initialize different fluid regions with different resolutions,
e.g., one per fluid emitter. Then, we present contributions for
viscosity and surface tension models, which extend the types
of behaviors that can be simulated in a controllable way.

3.1. Robust Incompressibility

To enforce incompressibility, PBF defines one constraint
Ci per particle, which measures the deviation between
the current SPH-based density from the fluid’s rest den-
sity [BLS12]:

Ci =
∑ j m j W (pi−p j,h)

ρ0
−1 = 0. (1)

In this expression, pi and p j represent particle positions, m j
is the particle’s mass, W is the SPH kernel, and h is the kernel
size. Unlike standard PBF, we allow particles of different
resolutions by retaining the influence of particle mass.

The constraint gradients take the form:

∇pkCi =
1
ρ0

{
∑ j m j∇W (pi−p j,h) if k = i
−mk∇W (pi−pk,h) if k 6= i

(2)

Following the PBF approach, we aim to find a set of La-
grange multipliers {λi} which, once applied as position cor-
rections along the constraint gradient, satisfy the constraints
in Eq. (1). To compute these λi, we regularize the constraint
stiffness in a way similar to Solenthaler et al. [SP09]. For
each fluid, we compute a constraint stiffness k, using a pro-
totype filled neighborhood:

k =
1

∑k |∇pkCi|2
. (3)

Then, on each PBF iteration λi is updated as:

λi =−βkCi. (4)

The coefficient β can be 1.0 or a different positive constant
to modulate constraint relaxation.

Particle positions can be corrected pi+= ∆pi with:

∆pi =
1
ρ0

∑
j

m j (λi +λ j)∇W (pi−p j,h). (5)

Our regularization of the constraint stiffness yields sim-
ulations that are computationally less expensive, while the
overall fluid behavior is very similar to more accurate PBF
models. The regularization is particularly inaccurate for sur-
face particles, i.e., particles with few neighbors, but this is
not a major problem in practice, as the behavior of such par-
ticles is dominated by surface tension.

3.2. Viscosity

Macklin et al. [MM13] used XSPH [SB12] to maintain co-
herent motion in their simulations. Beyond this goal, we
wish to accommodate robust handling of controllable vis-
cosity, and thus support a wider range of fluid effects. Then,
the fluid simulator must be able to support large viscosity
values. Unfortunately, we have found that the XSPH veloc-
ity smoothing technique easily makes the fluid unstable and
gains momentum if the damping coefficient c is larger than
0.5. Mixing explicit forces for viscosity with PBF also re-
sults in stability issues.

To model viscosity robustly, we propose to apply the
resolution-independent XSPH model [Mon94] in an itera-
tive manner. For damping values c larger than 0.5, we divide
the application of the full viscosity into N stable XSPH iter-
ations until they add up to the full desired viscosity behavior.
Each of these N iterations is computed as:

vn+1
i = vn

i +
c
N ∑

j

m j

ρ j
(vn

j −vn
i ) ·W (pi−p j,h). (6)

With our easily modified XSPH algorithm, the fluid remains
stable even under extreme viscosity without the need to de-
crease the time step, as shown in Fig. 2.

3.3. Surface Tension

Particle-based fluid simulators are often used for the anima-
tion of small-scale liquid shots scenarios, such as the glass-
filling example in Fig. 4. At such small scales, surface ten-
sion becomes a very important factor among fluid forces,
hence it becomes compulsory in order to achieve realistic
behavior.

In PBF, the major source of attractive forces is the correc-
tion imposed by the bilateral incompressibility constraint at
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Figure 4: Filling some glasses with wine shows the abil-
ity of our solver to produce realistic small-scale scenes with
emerging surface-tension details, but it also showcases the
efficient support for unbounded simulation domains.

low-density regions. Indeed, this attraction may be so large
that Macklin et al. [MM13] added a tensile instability repul-
sion force to improve results. For small-scale effects, where
one expects surface tension to be dominant and hence the at-
tractive behavior should be apparent, their repulsion forces
are sufficient. For large-scale effects, however, surface ten-
sion should not be apparent, and the attractive behavior in
PBF is excessive despite the addition of repulsive forces. A
valid alternative for reducing attractive behavior is to con-
vert the incompressibility constraint into an inequality con-
straint [AO11, MMCK14].

Inspired by the work of Alduán and Otaduy [AO11] on
friction simulation, we achieve a controllable surface ten-
sion behavior (see Fig. 3) through the combination of two
elements: (i) limits over the range of valid incompressibility
attractive forces, and (ii) a configurable stiffness for the ten-
sile instability force. But the key to artist-friendly control-
lability is to expose only one parameter, a surface-tension
coefficient κ, and based on this we set the maximum attrac-
tive force f (κ), and the tensile stiffness g(κ). We have used
linear functions for both f (κ) and g(κ).

Limits on the attractive forces are simply implemented as
a constraint λi ≤ f (κ), which is applied after the computa-
tion of the Lagrange multiplier in Eq. (4). The tensile in-
stability force is a correction scorr that is subtracted from
the Lagrange multipliers in the position correction in Eq. (5)
(See [MM13] for details). By making the tensile stiffness de-
pendent on the surface-tension coefficient, the correction is
computed as:

scorr =−g(κ)
(

W (pi−p j,h)
W (∆q,h)

)
. (7)

4. Collision Detection Using VDB

Many attractive fluid phenomena emerge as the result of col-
lisions with objects. For this reason, the ability to collide

with any kind of geometry robustly and efficiently is one of
the major requirments for a VFX fluid simulator.

4.1. Review of Collision Detection Methods

Different methods have been proposed for representing ob-
ject boundaries. One of the most adopted solutions samples
boundary geometry with particles, which interact with the
fluid through penalty forces. This approach has been ap-
plied both to rigid [Mon05, AIA∗12] and deformable ob-
jects [MST∗04, ACAT13]. Penalty forces may be unstable
under large time steps and difficult to control. Direct forcing
approaches alleviate this problem [BTT09, IAGT10]. How-
ever, sampling is difficult to apply when fluids of different
resolution interact with the objects.

Alternatively, it is possible to compute the interactions di-
rectly with triangle meshes. However, particle-mesh colli-
sion detection is costly and time steps must be small to avoid
penetrations.

Yet another type of representation is distance
fields [JBS06]. The advantage of distance fields is
that distance queries are straightforward and inexpen-
sive [FSG03]. In PBF, collision queries need to be executed
on each substep iteration, not just once per step, hence fast
collision queries are crucial for efficiency. Additionally,
dense distance fields can be treated as raw pointers or
3D textures, which simplifies their integration in GPU
implementations [HKK07].

4.2. VDB for Fluid Collision Detection

However, production scenes are often large and contain fine
details, hence dense distance-field representations would be-
come the memory bottleneck and fail to meet the artist’s res-
olution demands. Instead, we propose the use of adaptive
distance fields [FPRJ00]. Specifically, we use narrow-band
distance fields stored using VDB grids [Mus13]. The VDB
grid is a tree-like data structure with different branching
granularity per tree level, support for unbounded domains,
activation masks, and efficient cached access.

OpenVDB is the open-source implementation of VDB
provided by Dreamworks, LLC [Dre15]. This implementa-
tion also provides the guidelines on how to compute ro-
bust distance fields from geometry, with support for non-
manifold surfaces, self-intersections, degenerate faces, and
meshes without normals. Such geometric difficulties are
common in the models produced by artists (see Fig. 5) and
cause simulation problems if they are not properly handled.

Using VDB grids as the base data structure, we have im-
plemented three different modes of distance field computa-
tion, which provide the versatility needed to interact with
any kind of geometry. For objects with clear inside-outside
definition, we provide solid-inside and solid-outside rasteri-
zation modes. For open objects we provide a shell rasteriza-
tion mode which creates an unsigned distance field and then
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Figure 5: Robust computation of distance fields in our
simulator. The tank and the boat are non-manifold self-
intersecting geometries. The waterfall is an example of shell-
mode rasterization. The wings of the dragon have no volume,
hence they need an additional surface offset to be well rep-
resented.

dilates the zero-valued isosurface. On top of these modes,
the user can configure the rasterization cell size, a surface
offset for defining the collision isosurface, and a domain off-
set to define the narrow band where the distance field is com-
puted.

The simulation of collisions with non-static geometry re-
quires a velocity field too. For rigid bodies, the computa-
tion of velocity information is straightforward. For hand-
animated deformable bodies, such as the dragon in Fig. 1,
vertex velocities can be inferred through finite differences
from positions in consecutive frames. Then, we propose an
efficient way of converting vertex velocities into a velocity
field by extending the distance field computation.

In addition to the distance field, we store in the narrow
band an auxiliary field with indices to the closest primitives.
This auxiliary field is initialized together with the distance
field, on the voxels intersected by surface primitives. The
auxiliary field is expanded on the narrow band together with
the distance field itself at almost no additional cost. The pro-
cess is demonstrated in Fig. 7. Using the auxiliary field, we
compute the velocity field as follows. We copy the VDB
tree topology of the distance field into an empty VDB vec-
tor field. Then, per active voxel, we obtain the index of the
closest primitive from the auxiliary grid. We compute the ac-
tual point in the primitive that is closest to the voxel, use its
barycentric coordinates to interpolate vertex velocities, and
write the resulting velocity at the voxel. Each voxel’s calcu-
lation is independent, hence the process is trivial to paral-
lelize. Fig. 6 shows two examples of velocity field computa-
tion.

Figure 6: Visualization of the velocity field for horse and
dragon hand-animated characters (red indicates higher ve-
locities).

The approach described above for the computation of the
velocity field can be adapted to compute any secondary field
needed by the simulator. For example, if variable friction co-
efficients are defined on the geometry as a texture, we can
reuse the auxiliary field to identify the closest primitive to
any voxel, and then compute the barycentric and texture co-
ordinates of the closest point to obtain the friction coefficient
for the voxel.

As a limitation, the VDB grid representation is a complex
data structure designed to perform well on CPUs, but to date
it is too complex to be fully supported on GPUs.

5. Neighbor Search Acceleration

Particle-based fluid solvers require identifying, for every
particle, all the neighbors inside a predefined radius. Ac-
celeration algorithms are necessary to avoid the brute-force
computation with quadratic cost. In this section, we present
an efficient solution that extends the Z-index sort method,
but overcomes its simulation domain-size limitations and
high memory cost.

5.1. Review of Neighbor Search Methods

Spatial subdivision data structures such as uniform grids can
be used to accelerate neighbor queries, but they may become
a memory bottleneck. Teschner et al. [THM∗03] proposed
the use of spatial-hashing to overcome this limitation, but
cache-hit rates of this technique are low and hash-collisions
cause additional inefficiency.

To avoid the embedding of the geometry into acceleration
data structures and gain memory efficiency, index sort ap-
proaches maintain during the simulation a cell-ordered array
of particle indices, while a dense map points to each cell’s
range into this array [OD08]. Recently, several authors pro-
posed Z-index sort as a way to accelerate neighbor search
queries for SPH, both on multi-core CPUs [IABT11] and on
GPUs [GSSP10].
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Figure 7: Illustration of the process to compute our closest-primitive-index auxiliary field along with the expansion of the
distance field. Left: the distance field and the auxiliary field are initialized by rasterizing surface primitives. Middle: the fields
are expanded into a new voxel, and we compute the distance value from the values at the two neighbors marked in yellow, and
we copy the closest-primitive index from the neighbor with shortest distance. Right: the fields are expanded into yet another
voxel, and this time the distance is computed from three neighbors.

5.2. Improved Z-Index Sort

The Z-index sort algorithm assigns unique indices to cells
based on a space-filling Z-curve, which provides good cache
locality and can be easily computed by bit-interleaving.
Goswami et al. [GSSP10] proposed the use of 32-bit Z-
indices with 10 bits available per axis. Although GPU
friendly, this solution limits the resolution of the accelera-
tion grid to 1024 cells per axis. In production scenes not
restricted to a fixed container, this limitation would result
in excessively coarse grids and poor neighbor-search perfor-
mance.

Instead, we propose to use 64-bit indices, which yields
21 bits per axis (See Fig. 8). This results in an acceleration
grid with up to 221 cells per axis, which is far more than
necessary by any of today’s production scenes. Nonetheless,
our choice is GPU-friendly, as GPUs support 64-bit integer
computations.

To accelerate the evaluation of the Z-index for each parti-
cle, we precompute look-up tables per coordinate that facil-

Figure 8: Cell indices of a Z-curve represented using 64
bits, computed by bit-interleaving with 21 bits available per
axis and 1 bit unused.

itate the bit offsetting. At run-time, a bit-wise or operation
with values from these tables gives us the Z-index.

The Z-index sort method also requires a grid data struc-
ture that stores, for each cell, the range of ordered parti-
cles belonging to that cell. Previous work used a dense grid,
but with a 64-bit index representation this option is not fea-
sible. Instead, we propose to use a VDB grid to support
the Z-Index sort method, thus enabling sparse storage of
unbounded domains. To parallelize the construction of the
VDB grid, we partition the particles into the number of avail-
able cores, create one grid per core, and fill each grid storing
on each occupied cell the index of the first particle in that
cell. Then, we merge the grids with a reduce operation.

With the proposed modifications, our Z-Index sort method
for neighbor-search acceleration is able to support virtually
any kind of scene with sparse particle distributions.

6. Particle Data Management

In this section we present details on our particle data man-
agement. The choices we made aim to find a good compro-
mise between the efficiency of the simulator and the versa-
tility of the proposed tools.

In production scenarios, particle data may vary in number
and size. The particle count could grow dynamically to tens
of millions of particles, or drastically disappear due, e.g.,
to age-based particle killing. Concerning particle data size,
even if the particle properties needed for the simulation are
fixed, artists like the possibility to add arbitrary channels of
information to the particles, which will aid them later in the
rendering or compositing process.

For these reasons, we depart from the fixed-size par-
ticle data-structure approach used, e.g., by Macklin et
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Figure 9: Our collision detection method based on distance fields and VDB (see Section 4) provides fast and very accurate
interaction with detailed geometry even in middle- or large-scale scenarios like the one shown in the images. This scene also
showcases robust support of no-volume or shell geometry, often difficult to manage using distance fields.

al. [MMCK14], and propose a data structure based on in-
dependent raw arrays of information, each one representing
a property of the fluid. With this data structure, it is trivial to
add as many channels of information as desired by the artist,
cache efficiency during the simulation is higher, and GPU
acceleration can be easily supported by transferring to the
GPU only the required channels.

However, with raw arrays of information, extra care needs
to be taken to keep efficiency and intelligent use of resources
as the simulation evolves, because memory copy operations
and data reorganization inside the arrays could seriously af-
fect performance. To minimize large data copy and trans-
fer operations, we change the size of arrays only at prede-
fined capacities chosen by experimentation, balancing mem-
ory use and cost of reallocation. To avoid excessive data re-
organization as particles disappear, removal operations are
handled with an active-particles mask, then regularly the ar-
rays are compacted to eliminate gaps, and if occupancy falls
below half, the arrays shrink to a lower predefined capacity.

To conclude, we support two different modes of memory
operation. When the simulation is paused and the artist inter-
acts with the application and/or constructs the scene, buffers
are stored in regular memory. When the simulation starts,
buffers are transferred to another pointer to pinned or non-
pageable memory. The use of pinned memory is more effi-
cient for CPU-GPU heterogeneous executions, but it is risky
because it prevents the operating system from reclaiming the
reserved memory. As soon as the simulation stops, buffers
are returned to regular storage.

7. Results

We have implemented our solver in a completely parallel
manner using Intel TBB. On top of TBB, we have created

our own custom parallelization model to support symmetric
optimizations on all pairwise computations. This gives addi-
tional performance gain as demonstrated by Dominguez et
al. [DCGG13].

The iterative nature of PBF makes our solver adequate for
handling extreme incompressibility. This is shown in Fig. 1,
where as soon as the dragon touches the liquid surface, the
liquid is repelled and violent splashes emerge. The proposed
fluid model can also be configured to produce diverse behav-
iors, as demonstrated in Fig. 2 and Fig. 3. It also supports a
wide range of scenarios, from small-scale to large-scale do-
mains, with their corresponding characteristic effects.

Figure 9 shows a long, large-scale shot, where a river
flows into a cascade, and water falls and accumulates natu-
rally forming a lake. Once the lake overflows, the river flows
further. This scene demonstrates the benefits of our VDB-

Figure 10: In this fountain of idols, particles are dynami-
cally created and deleted, but our particle data management
handles this situation efficiently.
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Figure 11: This mid-scale sewer drain scene showcases a potentially complex scenario for an animated feature film. The liquid
covers the road filling the gaps between cobblestones, falls through the grid-like drain, accumulates in a garbage-filled holder,
and the drain overflows as the exit pipe is partially clogged and cannot release all the incoming flow.

based distance-field collision detection. By using a memory-
efficient sparse distance-field representation we are able to
capture all the fine detail of the original geometry and per-
form quick particle-boundary collision queries.

Figure 4 shows a small-scale simulation example, where
fine surface-tension details are key for the scene’s realism.
This scene also shows an unbounded scenario where parti-
cles fall away. The voxelization technique presented in Sec-
tion 5 enables fast neighbor search operations in this sce-
nario. The Z-Index sort algorithm preserves locality, and
with the sparse storage provided by VDB it maintains mem-
ory consumption low.

Fig. 10 shows a scene where particles are dynamically
created and deleted. This is a worst-case scenario for our
particle data storage based on raw arrays, but our array real-
location policy and mask-based particle removal ensure sim-
ulation efficiency.

Finally, Fig. 11 shows a scenario suited for an animation
film, with many different geometry elements, and where the
fluid naturally evolves around intricate geometry creating in-
teresting effects.

Iteration times and memory consumption for several of
the scenes are presented in Table 1.

Scene #particles time step memory
(×103) (ms) (MB)

Idols 947 649 465
Wine 1452 1158 585
Drain 1594 2338 921

Waterfall 2049 1839 959
Dragon 6390 3868 1833

Table 1: Statistics and performance for several scenes. The
table indicates peak values for particle count, time-step per-
formance, and memory performance.

8. Conclusions

In this paper we have presented a production-oriented
particle-based fluid simulation framework able to achieve a
good compromise between efficiency, scalability, robustness
and versatility. The examples shown in the paper demon-
strate just a small number of the effects we can already
achieve with our solution. Yet there are many features we
wish to incorporate to our simulator.

Even though all the pieces of the simulator were designed
targeting heterogeneous computing systems, as outlined in
Section 5 and Section 6 full GPU acceleration support for
our simulator is still work-in-progress.

Currently, we only support one-way coupling of fluids
with rigid and deformable objects, as discussed in Section 4.
We would like to extend the simulator to handle two-way
coupling, being able to simulate at the same time object and
fluid dynamics interacting with each other.

Finally, although not shown in our results, our PBF solver
is general enough to support any type of constraint. In a
similar spirit to the Autodesk Nucleus solver [Sta09], arbi-
trary types of constraints with different levels of importance
can be incorporated to the iterative solver by external pro-
grammers. Similar to other work [MMCK14], the ability to
simulate different materials such as granulars, gases or non-
Newtonian fluids is a very interesting avenue for the future.
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