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Abstract
Extraction of scaffolds, such as the meiotic spindles, a 3D tubular framework consisting of the microtubules, from
conforcal laser scanning microscopy (CLSM) data of a cell is a challenge in biological image processing. It is
of major importance in the research of microtubule anchor proteins, and molecular motor mechanics. However,
the scaffold is hidden within CLSM data due to the nature of light excitation, and is difficult to visualize using
traditional opacity and color transfer functions that depend only on local intensity. In this paper, we treat 3D CLSM
data as a hyper-surface in R4, and show that the crest points of the hyper-surface correspond to the centerline of
the hidden scaffold. We propose an automatic approach to extract the hidden scaffold from CLSM data. First, the
spindle from the large data set is segmented using Weibull E-SD fields. We, next, apply the Savitzky-Golay (S-G)
filter and Gaussian convolution to reduce the noise in the data and calculate the first and second derivatives.
Lastly, direct volume rendering using ray casting is applied to visualize the volume data. We combine the local
intensity and maximum curvature information to decide the opacity transfer function. Promising results are shown
on simulated data sets as well as real CLSM data of mouse egg.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism, J.3.1 Computer Applications Biology and genetics

1. Introduction

Cellular and structural biologists have used confocal laser
scanning microscopy (CLSM) to visualize various targets
within cells. This visualization helps not only recognize
structural patterns within the cell but can be used to eval-
uate the location of signaling elements associated with the
microfilaments. One of the most widely studied structures
is the cytoskeleton that is proposed to function as a scaf-
fold assisting in the spatial and temporal positioning of ele-
ments within the cell 3 4. The concept of scaffolds assisting
in signaling pathways is becoming widely accepted through
the research of microtubule anchor proteins (MAPs), ARPs
(actin related proteins) and molecular motor mechanics. Al-
though CLSM can be very specific in locating species fea-
tures within cells and tissue samples, the nature of light ex-
citation involves scattered light creating a blurred image of
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smaller features within the image. Features labeled within
the image must be spaced greater than 2 µm to be visualized
as separate features within a confocal image. Features that
have less than 2 µm spacing appear as a single feature with-
out specific detail. An example of this type of image distor-
tion can be seen in Figure 3 in which the spindle scaffold is
hidden within CLSM data appearing only as a intense region
of color without structural definition.

The spindle scaffold is a thin 3D framework of the micro-
tubules which are cytoskeleted elements that create a protec-
tive cage around the DNA in mouse eggs undergoing divi-
sion. The thin framework is one of the most important ge-
ometric features in biological images and, at present, the
common method of extraction is based on the classification
of the local structures. Sato 9 and Frangi 10 independently
employ eigenvalues of the Hessian matrix at each voxel to
design a filter for vessel enhancement in 3D medical digital
images. Two years later Sato et al.8 generalize the previously
introduced concept to enhance tubular, blob, and sheet-like
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structures. Tubular object centerline extraction is based on
dynamic-scale intensity ridge traversal 11. The definition of
maximum convexity height ridge depends on the eigenval-
ues and eigenvectors of the Hessian matrix at each vertex.
This approach, however, uses the concept of a multifeature
thin framework extraction, and leaves the user to set the 5
parameters. When two features are too close, it is difficult to
select a proper set of parameters to extract them individually.

Monga 2 and Prinet 1 treated the 3D volume data as a
hyper-surface in R4, and showed that the crest points of this
hyper-surface correspond to the centerline of the vascular
framework in 3D images. They next applied maximum cur-
vatures and direction at each vertex to extract a thin network
from the 3D images. This method to extract tubular objects
does not requires any specific parameters and is easy to im-
plement automatically. However, it requires the data if free
of noise, because it uses the third derivative to extract a crest
point.

In this paper, we propose an automatic approach to scaf-
fold extraction using crest point for volume rendering. The
basic idea is to extract each microtubule based not only on its
intensity values, but also its locally largest curvatures at each
vertex of the volume data. However, the rapid increase in
data set sizes which is required to collect image data around
the spindle apparatus as well as the poor signal to noise ratio
in the data set, make it difficult to compute the curvatures at
vertices of the volume data efficiently and accurately. There-
fore, we first segment the spindle from the large data set. Sta-
tistical segmentation 6has been employed instead of binary
classification in order to make the analysis focus on the vol-
ume data with smaller and proper size. Next, the Savitzky-
Golay (S-G) filter13 and Gaussian convolution are used to re-
duce the noise in the data and calculate the first and second
derivatives. Last, direct volume rendering using ray casting
is applied to visualize the volume data. To support our con-
clusions, we compare the results of Hessian matrix 8 10 to
images produced by our algorithms.

2. Methods

2.1. Definitions

Let V(N) denote an observed volumetric data which has N =
Nx × Ny × Nz voxels, and f (x) be an intensity function of
the volume, where x = (x,y,z) ∈ V . M is a map from V to
U ∈R4 defined as

M : (x,y,z) → (x,y,z, f (x,y,z)). (1)

Then, S = {v ∈ R4|v = (x,y,z, f (x,y,z))} represents the
hyper-surface traced by the image. We can compute the three
prinicipal curvatures k1 ≥ k2 ≥ k3 and their corresponding
normalized eigenvectors e1,e2,e3 from the 3×3 Weingarten
matrix7 1 defined as follows:

W =
1
D

H
(

I+(5 f )τ 5 f
)−1

, (2)

at each vertex on S, where τ is the matrix transpose, I is

the 3× 3 identity matrix, D =
√

1+ f 2
x + f 2

y + f 2
z , 5 f and

H denote the gradient vector and the Hessian matrix, re-
spectively. The eigenvector e1, corresponding to the largest
eigenvalue k1, represents the direction along which the am-
plitude of curvature is maximum. The gradient vector is de-
fined as

5 f = ( fx, fy, fz), (3)

where partial derivatives of volume intensity f (x) are repre-
sented as fx = ∂ f /∂x, fy = ∂ f /∂y, and fz = ∂v/∂z. The gra-
dient vector is widely used as a normal to an implicitly de-
fined isosurface, and its magnitude provides us with a mea-
sure of 3D edge structure and can be used as a modulation
factor in 3D imaging 8 9. The Hessian matrix is given by

H =





fxx fxy fxz
fyx fyy fyz
fzx fzy fzz



 , (4)

where second-order partial derivatives of f (x) are repre-
sented as fst = ∂2 f /∂s∂t, (s, t = x,y, or z). Let the eigenval-
ues of H be λ1,λ2,λ3 ordered by λ1 ≥ λ2 ≥ λ3, and their cor-
responding normalized eigenvector be t1, t2, t3, respectively.
The eigenvector t1, corresponding to the largest eigenvalue
λ1, represents the direction along which the second deriva-
tive is maximum, and λ1 gives the maximum second-order
derivative value. Similarly, λ3 and t3 give the minimum
directional second-order derivative value and its direction,
and t2 is the cross product of eigenvectors t3 and e1, i.e.,
t2 = t3× t1 and λ2 gives the directional second-order deriva-
tive value along t2.

A crest point is a local shape feature of a surface, and
defined by1 2

5 k1(x,y,z) · e1 = 0, (5)

Crest points are defined using directional derivative of the
maximum curvature of the volume data. A vertex in the vol-
ume is a crest point if the maximum curvature is extremal
in the corresponding principal direction. Figure 1 illustrates
the geometric meaning of a crest point in a 2D surface. By
Equations (2) and (5), crest point extraction involves third-
order derivatives, therefore, the volume should be smoothed
before crest points are extracted. We are also specifically in-
terested in a line-like point defined using the eigenvectors
and eigenvalues of the Hessian matrix at x. Two conditions
must hold for x to be a line-like point8 10. One, the point
x must be a ridge point. Second-derivative information dis-
tinguishes ridges from valleys, saddles, planes, and spheres.
The Hessian matrix captures second-derivative information
at a point in an image. For a point to be on a 1D ridge of
an 3D hype-surface, two of eigenvectors of the Hessian of
V(N) at x must have negative eigenvalues. Given ordered
two eigenvalues, we test this condition by verifying

0 > λ2 ≥ λ3. (6)

c© The Eurographics Association 2003.

124



Hu et al / Scaffold Visualization

Figure 1: Illustration of the geometric meaning of crest
point in a 2D surface.

Two, the ridge is central to a tubular object that has a nearly
circular cross section in t2t3 plane, and has longer axis along
the t1 direction. That is, the three eigenvalues of the Hessian
matrix must satisfy the following conditions,

λ2
λ3

≥ 1− ε, and | λ1
√

λ2λ3
| < δ (7)

where ε > 0 and δ > 0 are less than 1.

2.2. Savitzky-Golay Smoothing Filters

In this subsection, we will describe the S-G filter13, and show
how it smoothes a CLSM data while still keeps the thin and
close the linear features in the data.

The simplest type of digital filter replaces each data value
fi by a linear combination gi of itself and some number of
nearby neighbors,

gi =
nr

∑
n=−nl

cn fi+n, (8)

where nl is the number of points toward left of a data point i,
while nr is the number used to the right.This is called mov-
ing window filter, for some fixed nl = nr, compute each gi as
the average of the data points from fi−nl to fi−nr , and cor-
responds to Equation (8) with constant cn = 1/(nl +nr +1).
However, moving window filter will merge the line struc-
tures which are close to each other. The idea of Savitzky-
Golay filtering is to find filter coefficients cn that preserve
higher moments, i.e., to approximate the underlying func-
tion within the moving window not by a constant, but by
a polynomial of higher order, that is, to fit a polynomial of
degree M in i, namely a0 + a1i + · · ·+ aM iM to the value
f−nl , · · · , fnr . Typically M is 2 or 4. The coefficients of S-G
filter satisfy

cn =
M

∑
m=0

{

(Aτ ·A)−1
}

0m
nm, (9)

where the matrix A is (Ai j), and Ai j = i j , i = −nl , · · · ,nr,
j = 0, · · · ,M.

Figure 4(a) shows the distribution of coefficients of S-G

filter when the window of width 27 (i.e. nl = nr = 13) and
M = 2 and M = 4.

Figure 4(b) shows a numerical experiment using a 27
point smoothing filter (this is only for illustration purpose to
show the shape of the curve, but for real data the window size
is less then 9). The black curve shows a test function, con-
structed to have four "bumps" of varying width. Gaussian
white noise of unit variance was added to the test function
shown in gray. The red curve shows the result of smooth-
ing by the moving window filter. One sees that the window
of width 27 does quite a nice job of smoothing the broadest
bump, but the narrower bumps suffer a considerable loss of
height and increase of width. That means the thin line struc-
tures in the data will be missed. The green curve shows the
result of smoothing with S-G filter of identical width, and
degree M = 4. Ones sees that the heights and widths of the
bumps are preserved well. A trade-off is that the broadest
bump is less smoothed.

2.3. Volume Rendering and Algorithm

Direct volume rendering is slow because it is computation-
ally intensive, therefore, we chose to a software package in-
tended for conventional volume rendering. We carried out
the method using the volume rendering modules in the Vi-
sualization Toolkit 12(vtk version 3.1). These vtk modules
generate both unshaded and shaded composite images from
a scalar volume. In order to explore the relationship between
the spindle and its scaffold or between scaffold and DNA,
we have to render multichannel data, that is, there are at least
two intensities, denoted by vector-valued ( f1(x), f2(x), · · ·),
at each voxel, although the extraction of the spindle scaf-
fold just use one channel. To render the multichannel data,
we convert a vector-valued volume to a scalar volume by
assigning the scaffold data and spindle or DNA to different
intervals5 8. In our application, the first interval is linearly
mapped by raw data and the second one corresponds to crest
points (see Figure 2) as follows

g(x) =

{

Fi( fi(x)−mi)/Mi, if x not feature point
Fi( fi(x)−mi)/Mi +Fi +L, if x feature point

(10)
where Mi and mi is equal to the maximum and minimum
intensity of the ith channel of volume data, L ≤ 5 is a small
gap between intervals , and Fi = (Mi − L)/2. The opacity
and color transfer functions will depend on g(x) only.

Based on the above discussion, the algorithm for scaffold
extraction for volume rendering is outlined as follows:

Step 1 Segment the interest regions out of a volume data,
and obtain a new volume data with a smaller size.

Step 2 Smooth the new data by using a combination S-G
and Gaussian filter with σ ≤ 1.

Step 3 Compute the Weingarten matrix and crest point de-
scribed by Equations (2) and (5) using Gaussian convolu-
tion.
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Figure 2: Multichannel data converted to scalar volume
data.

Step 4 Render multichannel volume data using ray casting
whose opacity and color transfer depend not only on the
intensity at vertex but also on whether it is a feature point
or not.

If we calculate the Hessian matrix and its eigenvalues in-
stead of the Weingarten matrix in Step 3, we can still extract
line-like local structures.

3. Results

In this section we will look at two examples illustrating
the proposed method. The first example examines artificial
volume data added with Gaussian white noise. The second
example uses real CLSM data, and demonstrate the hid-
den spindle scaffold extraction using crest points for vol-
ume rendering. In order to compare the difference of extrac-
tion methods between crest point and line-like point based
on Hessian matrix, some results of line-like point extraction
based on Hessian are given. The hardware we used is a Dell
Precision workstation 330, with P4 1.4GHz CPU, and 1-GB
RAM.

For all experiments and applications presented in this pa-
per to test for equal-to-zero in Equation (5), we use

(

∂k1
∂x

)2

+

(

∂k1
∂y

)2

+

(

∂k1
∂z

)2

< 0.001, (11)

and use 0.5 for ε and
√

2/4 for δ in Equation 7. This al-
lows cross section intensity patterns to deviate from a circu-
lar shape and resemble an ellipse with a 2:1 ratio between
the lengths of the major and minor axes, but with a 4:1 ratio
at least between the lengths of the axis along the eigenvec-
tor corresponding to the maximum eigenvalue and the major
axis of the cross ellipse. For S-G filter, we use the different
parameters for each experiment.

3.1. Simulated data

We create a 100× 100× 100 voxel dataset containing three
sine-shaped, parallel, tubular objects. Two of them close to
each other are called twins, another far away is called single.
The distance of centerline is 4 pixels between the twins and
16 pixels between single and the nearest one of the twins.

The distance of 6 pixels is representative of gap between two
nearest fingers detectable in CLSM data. The upper part (de-
fined by z > 50) and the lower part (defined by z ≤ 50) in the
simulated data are added different levels of identical noise,
respectively. Noise standard deviations are 20 in the upper
part and 50 in the lower. The noise-free background values
are 20 in the upper and 50 in the lower and the noise-free
tubes have Gaussian intensity profiles, value of 150 along
the centerline. When we apply the S-G filter, we use 5 for
the size of moving window and 4 for the degree of polyno-
mial, and σ = 0.85 for Gaussian filter.

Figure ??(a) shows the result of ray casting of the whole
simulated dataset, and the upper part of the three tubular
objects is clearer than the lower part of them. Figure ??(b)
shows the results of our algorithms on the simulated dataset
using the same opacity and color transfer function as in the
result shown Figure ??(a). The three objects are almost uni-
formly visualized in the upper and lower part of the data, and
the twins are separated more clearly. The results of line-like
point extraction based on Hessian matrix are given in Figure
??(c) and (d), which are rendered using vector and boundary
surface representation, respectively. A vector in Figure ??(c)
indicates the direction of eigenvector corresponding to the
maximum eigenvalue of Hessian matrix at a line-like point,
and starts from it, and has unit length. The surfaces shown in
Figure ??(d) characterize the boundary of the set of line-like
point in the simulated data. The lower parts of the surfaces
are fatter than the upper part of them, due to the different
levels of noise.

3.2. Real CLSM Data

Cell biologists use CLSM to visualize mouse eggs where
they study signaling pathways that instruct eggs to leave
meiotic metaphase II cell cycle arrest and continue in de-
velopment into an embryo. Cell cycle arrest is maintained
by proteins and enzymes found on the meiotic spindle. The
meiotic spindle is a cytoskeletal structure that is used as a
scaffold in eggs to organize both spatially and temporally
signaling elements that regulate this event 3 4. The meiotic
spindle is about 12 µm in length and is contained within an
egg with a diameter of approximately 60µm. Using immuno-
cytochemical, methods the egg is labeled with an alpha tubu-
lin antibody so that any structure that is composed of this cy-
toskeletal protein can be visualized by laser excitation using
the CLSM. As shown in Figure 3 the meiotic spindle (seen
in green) is composed of alpha tubulin and can be clearly
distinguished within the egg. Because of scattered light, fea-
tures within the spindle greater than 2 µm in distance appear
as a blur. After segmenting the spindle region using Weibull
E-SD fields6, the Gaussian and S-G filters are applied. The
image data is filtered by these algorithms which will reduce
the amount of scattered light that creates background noise.
The data is then analyzed using the crest point algorithm that
selects for dominant patterns found within the data.
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In order to contrast the extraction of crest points for vol-
ume rendering, Figure ?? shows the results using line-like
point collection based on Hessian matrix. The means of
vector in Figure ??(a) and surface representation in (b) are
the same in Figure ??(c) and (d), respectively. The line-like
points in the same connected component in Figure ??(a) are
labeled the same color. However, several fingers of the spin-
dle have some huge "blobs", on the contrary, some fingers
are broken. This is due to the lack of adaptive selection of
parameters in Equation 7 to extract variant types of line-
like points. Therefore, the extraction of line-like points is
too more around some places but too less around other.

The scattered light has been removed and the resulting im-
age shows detailed structures found within the spindle. The
resolution between features has been increased from 2µm to
about 1- 1.9µm accuracy. This image was also visualized as
its original 3D composite image using ray casting that also
demonstrated this increased detail (see Figure ??).

Increased resolution from the original confocal image to
that of an analyzed image has revealed increased detail that
has not been visualized with confocal data before. We can
clearly see cytoskeletal "fingers" and are able to visualize
potential astral microtubules that have only been seen in mi-
totic spindles of mouse somatic cells and not known to be
found in the mouse meiotic spindles. The discovery of astral
microtubules gives additional information to researchers be-
cause they are thought to position the spindle within a cell
and assist in the cell cycle progression.

4. Conclusions

We used the crest point algorithm to automatically extract
the centerline of spindle scaffold for volume rendering af-
ter segmenting the spindle region using Weibull E-SD fields,
and smoothing by S-G filters. We have consistently demon-
strated this approach on controlled as well as on real volume
data. Comparison with the extraction using line-like point
based on Hessian matrix, the scaffold extraction using crest
point needs less control parameters and is more efficient.
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(a) (b)

Figure 3: These images show single tiff slices. (a) a slice of
raw data, (b) a slice of data segmented using Weibull E-SD
highlighting the spindle region
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Figure 4: (a) The distribution of coefficients of S-G filter
when the window of width is 27 (i.e. nl = nr = 13) with M =
2 and M = 4. (b) A numerical experiment using a 27 point
smoothing filter.

(a) (b)

Figure 5: The results of line-like point extraction based on
Hessian matrix of the real mouse egg data, (a) vector repre-
sentation, and (b) boundary surface representation of the set
of line-like points.

(a) (b) (c) (d)

Figure 6: A simulated data containing three sine-shaped,
parallel, tubular objects. (a) The result of ray casting of the
whole simulated dataset. (b) The results of our algorithms
using the same opacity and color transfer function as in the
result shown in (a). The results of line-like point extraction
based on Hessian matrix are given in (c) and (d), which are
rendered using vector and boundary surface representation,
respectively.

(a) (b)

(c) (d)

Figure 7: (a) and (b) are the different viewports of spin-
dle scaffold with increased detail using our extraction algo-
rithms. (c) and (d) are the different viewports of mulitchan-
nel ray casting which includes spindle scaffold (green) and
DNA (red).
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Figure 3: These images show single tiff slices. (a) a slice of
raw data, (b) a slice of data segmented using Weibull E-SD
highlighting the spindle region
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Figure 4: (a) The distribution of coefficients of S-G filter
when the window of width is 27 (i.e. nl = nr = 13) with M =
2 and M = 4. (b) A numerical experiment using a 27 point
smoothing filter.

(a) (b)

Figure 5: The results of line-like point extraction based on
Hessian matrix of the real mouse egg data, (a) vector repre-
sentation, and (b) boundary surface representation of the set
of line-like points.

(a) (b) (c) (d)

Figure 6: A simulated data containing three sine-shaped,
parallel, tubular objects. (a) The result of ray casting of the
whole simulated dataset. (b) The results of our algorithms
using the same opacity and color transfer function as in the
result shown in (a). The results of line-like point extraction
based on Hessian matrix are given in (c) and (d), which are
rendered using vector and boundary surface representation,
respectively.
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(c) (d)

Figure 7: (a) and (b) are the different viewports of spin-
dle scaffold with increased detail using our extraction algo-
rithms. (c) and (d) are the different viewports of mulitchan-
nel ray casting which includes spindle scaffold (green) and
DNA (red).
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