
Volume Graphics (2006)
T. Möller, R. Machiraju, T. Ertl, M. Chen (Editors)

Employing Complex GPU Data Structures for the Interactive

Visualization of Adaptive Mesh Refinement Data

Joachim E. Vollrath† Tobias Schafhitzel† Thomas Ertl†

Visualization and Interactive Systems Group (VIS)
University of Stuttgart

Universitätsstr. 38, 70569 Stuttgart, Germany

Abstract

We present a framework for interactively visualizing volumetric Adaptive Mesh Refinement (AMR) data. For this

purpose we employ complex data structures to map the entire AMR dataset to graphics memory. This allows to

apply hardware accelerated visualization algorithms previously only operating on uniform cartesian grids. For

mapping the data to graphics memory we consider two approaches, a space-efficient, texture-based octree and

a fast method based on page table address translation. We demonstrate the utility of our approach by extending

an existing GPU raycasting implementation to render AMR data. As a first step to vector field visualization

techniques we successfully integrated our framework into a commercial CFD postprocessing tool and visualized

scalar properties of the vector field.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation–Viewing Algorithms; I.3.6 [Computer Graphics]: Methodology and Techniques–Graphics data struc-
tures and data types; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism–Raytracing

1. Introduction

AMR is a popular technique in large scale CFD simula-
tions. For efficiency reasons, AMR data is organized in a
hierarchical grid where the resolution is refined adaptively
in regions of interest or where the simulation necessitates it
(Color Plate I).

Runtimes for CPU-based algorithms on AMR data such
as isosurface extraction are in the order of minutes for typi-
cal datasets with several million cells. Thus, it is desirable to
replace them with fast and direct, GPU-based visualization
techniques. However, current graphics hardware is only op-
timized for two- or three-dimensional data on uniform carte-
sian grids. Recently, the programming model of GPUs has
been extended to support modern language constructs which
allow to implement more complex data structures.

Our contributions are methods of mapping entire AMR
datasets to graphics memory by employing GPU implemen-
tations of complex data structures that have been presented

† {vollrath|schafhitzel|ertl}@vis.uni-stuttgart.de

recently. Two approaches are discussed: an octree texture
providing a compact representation at the cost of rendering
speed, and an adaptive page table that offers high frame rates
but consumes more texture memory. These approaches allow
us to apply GPU-based single-pass rendering algorithms for
the first time, which we demonstrate by extending a single-
pass GPU raycaster to operate on adaptive grids and inte-
grating it into a commercial CFD postprocessing tool.

Section 2 gives an overview of the related work, Sec-
tions 3 and 4 discuss the mapping approaches. Section 5
deals with AMR data visualization, followed by a discussion
of our results in Section 6. Finally, we conclude this work in
Section 7 and sketch our plans for future work.

2. Related Work

First introduced by Berger and Oliger [BO84], AMR has
found various applications such as in astrophysics, weather
and fluid dynamics simulation for engineering.

Kaufmann and Mueller [KM05] give a comprehensive
general overview of volume rendering, while Pfister [Pfi05]
presents hardware accelerated techniques.

c© The Eurographics Association 2006.

55

http://www.eg.org
http://diglib.eg.org

J.E. Vollrath et al. / Employing Complex GPU Data Structures for the Interactive Visualization of Adaptive Mesh Refinement Data

Both Park et al. [PBS02] and Kähler et al. [KH02] vi-
sualize AMR data interactively in a multipass approach by
partitioning into bricks and the use of tree data structures for
brick selection on the CPU. Park et al. render bricks with
hardware-accelerated hierarchical splatting, whereas Käh-
ler et al. rely on the classical slicing-based approach.

Our mapping of adaptive grids to graphics memory is
based on the work of Lefebvre et al. [LHN05], who im-
plemented the octree texture [BD02] on the GPU, and of
Lefohn et al. [LKS∗06], who presented an adaptive multi-
resolution data structure for the GPU.

3. Octree Texture

An octree represents a uniform cartesian grid at any depth
and is therefore well suited to store AMR data. The GPU
implementation represents each inner node with a cube of
2 × 2 × 2 texels. These texels represent the eight children
of an octree node and are either interpreted as a reference
(“pointer”) to the respective child if it is an inner node or
as a scalar sample if the child is a leaf. This is achieved by
using the alpha component to indicate the node type (empty,
leaf or inner node) and the RGB-components as references
within the octree texture or as scalar samples. The octree
is traversed in a top-down process on the GPU, details are
found in the original article by Lefebvre et al. [LHN05].

3.1. Texture Construction

The adaptive grid employed in our target CFD postprocess-
ing tool is organized as a hierarchical data structure where
each individual cell of the coarsest resolution can be consid-
ered as the root of an octree. We construct the octree texture
by reconstructing a full octree covering the entire domain of
the grid from these subtrees (Figure 1) and store the octree
nodes in a 3D texture in depth-first order.

Figure 1: Tree interpretation of an adaptive 1D grid. The

dotted part has to be reconstructed.

As described above, one color channel of each texel in-
dicates the type of the child node. The scalar sample con-
tained in a leaf can then be stored in one of the remaining
three channels, leaving only two channels to store gradients
for shading computations. Therefore, we store the gradient
in spherical coordinates in the remaining two channels and
convert it back into cartesian coordinates in the fragment
program.

3.2. Interpolation

Lefebvre et al. [LHN05] propose a hardware accelerated in-
terpolation scheme for the octree texture which requires all
leafs of the octree to be at the same depth. Benson and
Davis [BD02] propose a scheme that constructs a virtual
uniform grid of the desired resolution on which trilinear or
tricubic interpolation can take place. We propose an interpo-
lation scheme more suitable for graphics hardware, which
guarantees continuous interpolation within octree leafs of
the same depth. Strictly speaking, the interpolation across
different depths will be discontinuous, but in practice hardly
any visible artifacts will occur as we show in Section 6.

For a given sampling position the octree traversal returns
the sample at the nearest neighbor cell. The other seven of
the eight samples needed for trilinear interpolation are re-
trieved by performing traversal with the sampling position
offset by half the size of the nearest neighbor cell (depend-
ing on the octant in which the sampling position lies).

Interpolation of samples of the same depth in the tree is
trivial and shall not be further detailed. We perform interpo-
lation of samples at different depths with the aid of a level
of detail (LOD) approach. Together with the octree texture
we construct an LOD texture containing the averaged val-
ues of the child nodes for each internal node of the octree.
Due to the favorable ratio between the number of internal
nodes and the number of leafs (1:7 for a full octree), the ad-
ditional storage requirements are tolerable. Assume that for
a certain sampling position the sample value of the leaf at
depth d containing this sampling position and the values at
the seven neighboring cells needed for trilinear interpolation
have been retrieved. Then, for each neighbor cell, the fol-
lowing cases may arise:

1. The neighbor cell is at depth d: Its sample is used for
interpolation.

2. The neighbor cell is at depth d + 1: The averaged value
at depth d from the LOD texture is used for interpolation
(Figure 2a).

3. The neighbor cell is at depth d −1: Its sample is used for
interpolation, which is equivalent to subdividing the cell
into eight children with the same value (Figure 2b).

(a) (b)

Figure 2: The octree interpolation scheme in 2D. The sam-

pling position is marked with a cross, required samples of a

different refinement level are marked with a diamond.

c© The Eurographics Association 2006.

56

J.E. Vollrath et al. / Employing Complex GPU Data Structures for the Interactive Visualization of Adaptive Mesh Refinement Data

Figure 3: Mapping between the virtual and physical domain

4. Adaptive Page Table

Lefohn et al. [LKS∗06] presented a “dynamic adaptive
multi-resolution GPU data structure” which performs page
table address translation on the GPU by mapping from a
virtual domain to the physical domain of graphics memory.
The idea is to partition space into pages with identical num-
ber of samples, stored in a page texture (Figure 3). A page
table texture handles the mapping, accomplishing adaptiv-
ity by mapping multiple virtual pages to a single physical
page. We implemented a cell-centered version of this data
structure and refer to it as “adaptive page table” to simplify
matters.

The mapping of virtual to physical pages is realized by
storing a reference in the RGB color channels of each texel
of the page table texture. The alpha channel stores a scaling
factor depending on the refinement level of the page that is
addressed.

4.1. Texture Construction

For a given page size p, the adaptive grid is partitioned into
pages with p× p× p samples. However, the refinement level
of the cells covered by a page may vary. To avoid undersam-
pling, a page is then recursively subdivided into sub-pages
(each with p3 samples) of a higher sampling rate until the
level of refinement matches that of the smallest covered cell.
This leads to an oversampling of some cells (Figure 4) and
increases storage requirements as we discuss in Section 6.

before after

Figure 4: Partitioning of a grid consisting of 126 cells with

p = 4. The grid is represented by 13 pages with a total of

208 samples. Oversampled cells are highlighted in red.

Since the pages are equally sized there is no need for any
sophisticated packing in the page texture – it is simply filled
with pages in the order of occurence during partitioning.

Table 1: Overhead through sharing between physical pages

p 8 16 32 64 128
o(p) 56.25% 26.56% 12.89% 6.35% 3.15%

4.2. Interpolation

The adaptive page table offers constant access complexity
and can exploit hardware filtering since physical pages are
stored coherently in texture memory. However, since it is
not guaranteed that pages adjacent in the virtual domain
are adjacent in graphics memory, continuous interpolation is
ensured by additionally sharing one layer of cells between
physical pages. The number of samples thus increases to
(p+2)3 in our cell-centered implementation. Depending on
the page size p this produces an overhead:

o(p) =
(p+2)3

− p3

p3
=

6

p
+

12

p2
+

8

p3

Table 1 implies that it might be desirable to choose large
page sizes to reduce this overhead. However, with increas-
ing size, the aforementioned overhead through oversampling
carries more weight. In practice, the actual behavior strongly
depends on the structure of the adaptive grid. Therefore, we
suggest to run the partitioning algorithm for various values
of p and to select the best size for the dataset.

5. Visualization

To demonstrate the utility of the presented meth-
ods, we extended the single-pass raycaster by
Stegmaier et al. [SSKE05]. We have chosen a raycaster due
its flexibility and the greater blending accuracy.

Different visualization techniques are easily realized with
the raycasting method. As a first step to vector field visual-
ization we employ direct volume rendering, isosurface ray-
casting and combined techniques (Color Plate II) to visualize
scalar properties of the vector field such as velocity magni-
tude, temperature or pressure. Results demonstrating image
quality are presented in the following section.

6. Results and Discussion

Table 2 lists the footprints for three datasets. It shows that
the octree approach is notably more memory-efficient. The
page table approach consumes roughly three and a half times
more memory due to the previously addressed overheads.
An interesting conclusion can be drawn from Table 3: the
octree texture shows a roughly constant overhead of about
20% for representing the adaptive grid, whereas the adaptive
page table reveals a much larger variance. This proves our
previous statement that the behavior of this data structure is
strongly dependent on the structure of the adaptive grid.

c© The Eurographics Association 2006.

57

J.E. Vollrath et al. / Employing Complex GPU Data Structures for the Interactive Visualization of Adaptive Mesh Refinement Data

Table 2: Memory Requirements of 3 different AMR grids

Model Audi BMW Motorbike

Refinement levels 4 5 6
Number of Cells 2338083 3346309 5146028

Octree levels 11 13 13
Octree size (MB) 10.89 15.26 23.39

LOD size (MB) 1.02 1.43 2.19

Number of pages 1606 2621 3467
Page size (MB) 37.02 60.07 80.09

Index size (MB) 0.07 1.25 2.5

Table 3: Ratio of number of texels and original grid cells

Model Audi BMW Motorbike

octree texture 1.22 1.19 1.19
adaptive page table 4.01 4.57 3.93

Table 4 shows performance measurements on a 3.4 GHz
Pentium IV machine with a GeForce 7800 GTX card in a
5002 viewport. Obviously, the adaptive page table dramat-
ically outperformes the octree texture due to its better ac-
cess complexity and native hardware filtering. Altogether,
three to four times larger memory requirements for up to 40
times more performance with the adaptive page table must
be considered a fair deal. Nevertheless, for very large AMR
datasets the octree texture may be the only viable approach.

The interpolation scheme for the octree texture produces
images of higher quality compared to the adaptive page table
(Color Plate III), mainly because we currently employ a cell-
centered implementation of the adaptive page table which
produces more visible artifacts. Secondly, our octree inter-
polation scheme benefits from a property of the grids em-
ployed the CFD postprocessing tool: the level of refinement
for two adjacent cells never differs by more than one.

7. Conclusion and Future Work

We have discussed two methods of mapping entire AMR
datasets to graphics memory and visualized them using
single-pass GPU algorithms. The octree approach offers a
compact representation at the cost of logarithmic access

Table 4: Performance in frames/second. Abbreviations:

OCT = Octree Texture, APT = Adaptive Page Table, DVR

= direct volume rendering, ISO = isosurface rendering.

Audi BMW Motorbike
OCT APT OCT APT OCT APT

DVR 0.7 23.7 0.8 27.3 0.7 9.35
ISO 0.4 14.9 0.4 17.5 0.27 7.0

complexity and a quite costly interpolation. The adaptive
page table consumes roughly 3.5 times more memory but
offers constant access complexity in exchange. We have ex-
tended an existing GPU raycaster to operate on both data
structures and integrated it into a commercial CFD postpro-
cessing tool to perform direct volume and isosurface render-
ing of scalar properties of the vector field.

The next step is to implement the node-centered page ta-
ble from which we expect both an improved interpolation
and reduced storage requirements. Then, we plan to store
and visualize AMR vector field data using the described data
structures and to apply them to time-varying data.

8. Acknowledgements

We thank Martin Schulz and Milosz Walter from science-
computing as well as AUDI AG and BMW AG for their kind
support and the permission to publish renderings.

References

[BD02] BENSON D., DAVIS J.: Octree Textures. In SIG-

GRAPH ’02: Proceedings of the 29th annual conference

on Computer graphics and interactive techniques (2002),
pp. 785–790.

[BO84] BERGER M., OLIGER J.: Adaptive Mesh Refine-
ment for Hyperbolic Partial Differential Equations. Jour-

nal of Computational Physics 53, 3 (Mar. 1984), 484–512.

[KH02] KÄHLER R., HEGE H.-C.: Texture-based volume
rendering of adaptive mesh refinement data. The Visual

Computer 18, 8 (2002), 491–492.

[KM05] KAUFMAN A., MUELLER K.: Overview of vol-
ume rendering. In The Visualization Handbook, Hansen
C. D., Johnson C. R., (Eds.). Elsevier, 2005, pp. 127–174.

[LHN05] LEFEBVRE S., HORNUS S., NYRET F.: Octree
Textures on the GPU. In GPU Gems 2, Programming

Techniques for High-Performance Graphics and General-

Purpose Computation (2005), pp. 595–613.

[LKS∗06] LEFOHN A., KNISS J. M., STRZODKA R.,
SENGUPTA S., OWENS J. D.: Glift: Generic, efficient,
random-access gpu data structures. ACM Transactions on

Graphics 25, 1 (Jan. 2006), 60–99.

[PBS02] PARK S., BAJAJ C. L., SIDDAVANAHALLI V.:
Case study: interactive rendering of adaptive mesh refine-
ment data. In VIS 2002: Proceedings of the conference on

Visualization 2002 (2002), pp. 521–524.

[Pfi05] PFISTER H.: Hardware-accelerated volume ren-
dering. In The Visualization Handbook, Hansen C. D.,
Johnson C. R., (Eds.). Elsevier, 2005, pp. 229–258.

[SSKE05] STEGMAIER S., STRENGERT M., KLEIN T.,
ERTL T.: A Simple and Flexible Volume Rendering
Framework for Graphics-Hardware–based Raycasting. In
Proceedings of the International Workshop on Volume

Graphics 2005 (2005), pp. 187–195.

c© The Eurographics Association 2006.

58

