
PileBars: Scalable Dynamic Thumbnail Bars

Paolo Brivio1, Marco Tarini1,2, Federico Ponchio2, Paolo Cignoni2, Roberto Scopigno2

1Università degli Studi dell’Insubria, Varese, Italy
2 Istituto di Scienza e Tecnologie dell’Informazione (ISTI), CNR, Pisa, Italy

Abstract
We introduce PileBars, a new class of animated thumbnail-bars supporting browsing of large image datasets
(hundreds or thousands of images). Since the bar is meant to be just one element of a GUI, it covers only a small
portion of the screen; yet it provides a global view of the entire dataset, without any scrolling panel. Instead,
thumbnails are dynamically rearranged, resized and reclustered into adaptive layouts during the entire browsing
process. The objective is to enable the user both to accurately pinpoint a specific image (even among semantically
close ones), and to jump anywhere to “distant” parts of the dataset. The thumbnail layouts proposed maximize
also the temporal coherence, thus allowing for smooth animations from one layout to the next. The system is very
general: it can be driven by any application-specific image-to-image semantic distance function, and respects any
user-defined total ordering of the images; the ordering can be either inferred from the semantic or be chosen
independently from it, depending on the application. The applicability of the resulting system is tested in a number
of practical applications and fits very well the issues in management of Cultural Heritage image collections.

1. Introduction

In the aftermath of the explosion of digital imagery, large im-
age datasets are becoming ubiquitous. The management of
large collections of semantically-related images (up to tens
of thousands of digital images) is a common need in sev-
eral application domains. Immediate examples are the ex-
tensive photographic acquisition campaigns in Cultural Her-
itage (CH) applications (documentation of architectures and
of archaeological excavation sites, conservation projects,
etc.), but also thematic picture collections harvested from the
web with image-based web-searches, and personal picture
collections. Invariably, CH users demand practical and in-
tuitive ways to profitably explore and browse these images,
possibly integrated in virtual 3D environments [BBT∗12],
both for scientific purposes and for disseminating their re-
sults (e.g. museal presentations).

Dealing with image datasets of that size is not trivial. Even
plain browsing becomes a difficult task, e.g. how to let a user
locate one image, or how to visualize the entire dataset as
a whole, or how to navigate throughout the dataset. In this
context, thumbnail-bars are a very common browsing GUI
mechanism. In a thumbnail-bar each image is represented
by a small thumbnail (a downsized and/or cropped version
of the original image). Usually the thumbnail-bar is but one

element of a more complex interface, and covers only a sub-
set of the screen space.
Conventional thumbnail-bars display thumbnails over a
panel, laid in a line or in a regular grid. When the panel
size exceeds the screen size devoted to the thumbnail-
bar, the panel is made scrollable and scrolling mechanisms
are provided to the user to navigate the dataset. As the
number of images increase over a few hundreds, this ap-
proach quickly becomes inadequate: either thumbnails are
excessively downsized to be meaningful, or the amount of
scrolling required becomes unfeasible.

We propose a new class of thumbnail-bars, termed ‘Pile-
Bars’ (see Fig. 1), that are focus-plus-context oriented in or-
der to achieve a better scalability. Images come often en-
riched with meta-data, ranging from tagging (e.g. from “se-
mantic web”), to time of shot/creation, to per-image extrin-
sic camera calibration (position/orientation of the camera),
and others yet can be extracted with various kinds of con-
tent analysis. We take advantage of that meta-data by using
it either as ordering functions or as semantic distance func-
tions defined over the dataset. The main idea is to reduce the
cluttering on the screen by dynamic and automatic grouping
mechanisms. The challenge lies primarily in the conception
of effective, new info-visualization and interaction mecha-

c© The Eurographics Association 2012.

The 13th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST (2012)
D. Arnold, J. Kaminski, F. Niccolucci, and A. Stork (Editors)

DOI: 10.2312/VAST/VAST12/049-056

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/VAST/VAST12/049-056

Brivio, Tarini, Ponchio, Cignoni and Scopigno / PileBars: Scalable Dynamic Thumbnail Bars

Figure 1: A dataset of a thousand images visualized globally in a PileBar. Near the center, each individual image is visible as a
larger thumbnail. At the side, images far from the area of interest are piled together into increasingly taller stacks. As the area
of interest changes, the thumbnail bar dynamically rearranges accordingly with a smooth animation.

nisms, but it also embeds a system design constraint: images
in the dataset can be just too many to host their thumbnails
simultaneously in RAM (or in texture RAM); also in cases
where the dataset is hosted on a remote server, e.g. in web
applications, it would be impractical to download the entire
thumbnail dataset before browsing it.

2. Related work

Image browsers are very common. Every modern Operating
System embeds at least one, and with the ubiquitous diffu-
sion of small digital cameras we can find browsers even in
mobile phones. A conventional solution that image browsers
adopt is to present images on a linear thumbnail-bar [Goo04]
or arranged in a simple grid layout. As discussed, in many
CH scenarios these simple approaches do not scale up well
enough with the number of images.
Zoomable interfaces (i.e. dynamically reducing and enlarg-
ing thumbnails size) can aid the browsing to some ex-
tent [CB99], but images cannot be reduced indefinitely,
and some sort of semantic zooming [HDBW05] or group-
ing [Bed01] must be introduced. Also, image arrange-
ment has significant impact on the browsing, and differ-
ent users might prefer different arrangements for the same
dataset [RBSW01]. Users generally prefer to see many
thumbnails in layouts which reflect some meaningful order
(e.g. the time of shot), while browsing is usually performed
interactively rather than by queries [RW03].
A trend consists in clustering images hierarchically, ac-
cording to some kind of image semantic, like combining
tags [KS05], time [GGMPW02], time and space [RCC10],
color [PCF02], spatial image-distances [EOWZ07, JYC09],
or a mixture of them [MFGJ08] to automatically, or inter-
actively [GSW∗09, CdOKRV09] compute image-clusters.
Most of these works strive to identify good clusterings for
images, rather than good way to dynamically present and
explore the clustered dataset. Our approach is orthogonal to
these, and we can adopt many of these clustering techniques.
Our approach is similarly motivated to a [BTC10], which is
based on an extended Voronoi relaxation scheme. [BTC10]

supports arbitrary shaped thumbnail-bars, with irregularly
shaped thumbnails whose sizes and locations are dynami-
cally rearranged in liquid, optimized compositions. Thanks
to the irregular thumbnail shapes, that approach copes bet-
ter with the differences in aspect ratios of input images. In
exchange, PileBars is superior under the following aspects:

• it is lighter on computational resources (and also easier to
implement);

• thumbnail layouts are more regular, are thus more intu-
itive to scan [RBSW01]; they are also more stable during
the animations;

• the approximative number of images clustered together is
made visible in the interface;

• experiments indicates a better overall scalability with the
number of images

Figure 2: A screenshot of PhotoCloud, an application using
PileBars and presenting here the Cavalieri Square dataset.
The main area of the screen presents a 3D scene, that the
user is able to navigate. Selecting a focus image on the Pile-
Bar presented below causes the viewpoint to jump on the
corresponding virtual camera location.

3. PileBars overview

In thumbnail-bars (including PileBars), at any given time,
one image of the dataset is the current ‘focus’, selected by
the user. The focus image can be regarded as the current

c© The Eurographics Association 2012.

50

Brivio, Tarini, Ponchio, Cignoni and Scopigno / PileBars: Scalable Dynamic Thumbnail Bars

“position” where the user sits within the dataset. The exact
meaning of selecting a focus depends on the application: in
an image viewer, the focus can be the image being shown at
full resolution in the main area of the screen; in a 3D naviga-
tion application [Mic07, BBT∗12], where images are linked
to viewpoints (the physical camera positions of the shot), the
focus image can drive the setup of the virtual camera used to
render the 3D scene inside the main screen area (see Fig. 2).

In a PileBar, thumbnails dynamically change size and po-
sition during the browsing, and can be laid on top of each
other forming ‘piles’ of varying heights. Piling is a natural
visual way of clustering similar images together. During the
browsing, piles dynamically split into smaller piles or are
merged into larger piles. In a pile, only the top thumbnail is
fully visible to the user. Therefore, it must be a good repre-
sentative of the images behind it.

The current focus determines the layout of the thumbnail-
bar, i.e. the position, size and piling of every thumbnail in the
dataset (see Sec. 4.2 and Fig. 4). A browsing session consists
in a sequence of selections of new focuses, and consequently
the animations from each thumbnail layout to the next.

In line with focus-plus-context principle, images seman-
tically closer to the current focus are displayed as larger
thumbnails: this constitutes the “focus” part of the interface,
where the user must be able to see, and tell apart, images
close to its current “position” in the dataset. Conversely, im-
ages farther from the focus will be represented by thumb-
nails which are smaller and stacked in taller piles: this is
the “context” part of the interface, where the user is given a
global vision of the entire dataset.

There is a continuum, both spatial and temporal, going
from the “focus” to the “context” part. Spatially, the change
of thumbnail sizes and piling is progressive, from the central
focus thumbnail (large, isolated thumbnails) to the periph-
eral parts of the bar (small, piled thumbnails). Temporally,
the transitions from a thumbnail disposition to the next (trig-
gered by any change of the current “focus”) is made smooth:
we strive to keep the changes in size, position and piling of
thumbnails as small as possible; changes are further masked
by means of smooth animations (Sec. 4.3).

4. PileBars

Thumbnail layouts in a PileBar change dynamically by fol-
lowing some assumptions and objectives:

Total ordering. At any given moment, a specific total or-
dering is defined over the images; i.e. images in the datasets
are assumed to be (implicitly) numbered from the first I0
to the last IN−1. This is a central choice of our approach,
as navigating a linearized dataset is intrinsically easier and
more intuitive; this is especially meaningful for thumbnail-
bars whose shapes have a single dominant dimension. Al-
ternative orderings can be selected dynamically by the user.

The total ordering helps the user orient in the dataset: it is
always reflected in the left-to-right spatial disposition of the
thumbnails.

Semantic distance function. PileBars can take advantage of
any meaningful image-to-image distance function F(Ia, Ib)
available in the context of the dataset, and use this infor-
mation as a way to drive thumbnail piling. Images which
are mutually closer (according to this function) are piled to-
gether more often than images that differ much from each
other. This way, the image visible on top of the pile will be
a good representative of the pile. Images that are detected as
different can still be piled together, but only when they are
sufficiently farther away from the current focus.

The definition of image-to-image distance function(s)
and total ordering(s) are two ways to taylor the behav-
ior of a PileBar around the needs of a specific applica-
tion scenario. Several possible choices (both general and
application-specific) are summarized in Sec. 6.1 and Sec. 6
respectively.

4.1. Defining a PileBar shape

A standard thumbnail-bar is customizable by few spatial pa-
rameters, e.g. overall size, thumbnail size, and spacing be-
tween thumbnails. A PileBar has more degrees of freedom
and it is defined mainly by a configuration of ‘slots’, which
partition the 2D region of the screen it covers (see Fig. 3). A
slot is a fixed rectangular region that will be occupied by a
single pile of thumbnails.

Each slot Si comes with a set of predefined fixed at-
tributes, which stay constant during the browsing (barring
resizing events, see Sec. 4.4). There are: a 2D position pi, a
size di, and a ‘stacking value’ ki affecting the height of the
piles that will occupy it: slot Si is expected to host piles of
around 2ki thumbnails. The special value ki =−1 means that
slot Si will host piles consisting of strictly one thumbnail.

There is a total of 2n + 1 slots, indexed from S−n to Sn.
Slot S0, termed the ‘central’ slot, is designated to contain
the focus thumbnail. That slot is maximal in size, central in
position, and carries a pile of only one thumbnail (i.e. k0 =
−1). Slots Si, i ∈ {−n, ...,−1} are placed on the left of S0,
and slots Si, i ∈ {1, ...,n} are placed symmetrically on its
right. Slots become progressively smaller in size and have
bigger values of ki as |i| increases. On either sides, sets of
consecutive slots are grouped into a number of side-to-side
‘columns’; each is composed of a number (usually 1 to 5) of
vertically aligned slots of the same size.

Different arrangements of slots following the above
schema, like the ones depicted in Fig. 3 and Fig. 4, can be
easily constructed procedurally, by selecting a few parame-
ters which determine the number of slots per column and the
fixed attributes of each slots Si, as a function of |i|.

c© The Eurographics Association 2012.

51

Brivio, Tarini, Ponchio, Cignoni and Scopigno / PileBars: Scalable Dynamic Thumbnail Bars

Figure 3: An example of the arrangement of slots for a PileBar. Below each column of slots we report the value of k for all the
slots in that column. Each slot will host a pile of, on average, 2k thumbnails (or exactly one when k =−1).

4.2. Arranging and piling thumbnails into slots

In a preprocessing stage, each image Ii in the dataset, i ∈
{0..N − 1}, is assigned to a integer value σi, which rep-
resents its 1D position into a ‘linear semantic space’. The
values are strictly monotonically increasing and are such
that, for two consecutive images in the dataset (in the to-
tal ordering), the difference of their σ is proportional to their
image-to-image distance (up to the rounding). The following
pseudo-code computes values of σi (F is the image distance
function, and K is a parameter):

σ0← 0
foreach i in {0..N−2} :

σi+1← σi + dK ·F(Ii, Ii+1)e

At runtime, each thumbnail Ti of image Ii is assigned to a
slot S j. The linear semantic space is subdivided into chunks
of increasing size, and thumbnails of consecutive images
with σ values falling into the same chunk are piled into the
same slot. Images are processed from the focus image I f ,
whose thumbnail Tf is assigned to the central slot S0, to the
last image. Every time an image is found to belong to a dif-
ferent chunk of semantic space than the previous image, the
next slot gets used. The size of the chunk depends on the
clustering factor k j of the currently slot S j. Consecutive im-
ages falling in the same cluster are placed in the same chunk:

p r o c e d u r e Arrange :
j← 0
clast ← C l u s t e r (σ f ,k j)
foreach i in { f ..N−1} :

cnow← C l u s t e r (σi,k j)
i f cnow 6= clast t h e n j← j + 1
Ass ign Ti t o S j
clast ← cnow

where Cluster is a function returning an unique index of a
chunk of semantic space, given a position in linear semantic
space σ and the clustering factor k, as described below. The
process is repeated backwards to assign all thumbnails from
Tf to T0 to left-side slots.

f u n c t i o n C l u s t e r (σ,k) :
i f k =−1 re turn σ

e l s e re turn σ >> (norm + k)

Figure 4: Another example of layout of slots (as in Fig 3),
this time for a PileBar with a rectangular shape.

where >> is the right shift operation in base 2. In the
k = −1 case, a cluster will span exactly one value of the
linear semantic space, as intended. The integer value norm
is a normalization factor: norm = log2(σN−1/N), rounded
to the closest integer. That value is selected so that when
k = 0 there is approximately one cluster of semantic space
per image in the dataset: for any k 6= 0, the semantic space
is clustered into approximatively N/2k chunks, resulting on
an average of around 2k images per slot. Note that a slot
with k = 0 usually contains one image, but can occasionally
contain multiple semantically close ones.

The above functions are designed to ensure that, if image
Ti is on top of a stack in a given layout, it will continue to do
so if the focus is moved closer. This is necessary to ensure
good continuous transitions between layouts.

Sort over y axis: in contrast to the ordering of thumbnails
on the x screen axis, which reflects the total ordering of the
images, the distribution of thumbnails on the y screen axis is
not associated to any semantic and is exploited to maximize
temporal coherence. To achieve this, we keep track of the y
position that each thumbnail had in the last frame. Within
each column, thumbnail piles are re-assigned to the slot in
the same order (from bottommost to topmost) of the y values
of last frame. This simple strategy ensures that, when a new
focus is selected, piles (whether they are dividing, merging,
or just moving) are rearranged in a way that minimizes the
total magnitude of movements (see the attached videos).

Determining size of thumbnails: in a slot ending up with
just one thumbnail, that thumbnail covers the entire slot.
When a pile of np > 1 thumbnails is assigned to a slot, a
little of the space is devoted to make the stacking visible to
the user: thumbnails are slightly reduced in size, by a factor r
which increases with np (r = 1−r0 log2(np), with r0 = 0.3).
Topmost thumbnail is pushed to the bottom left border of the

c© The Eurographics Association 2012.

52

Brivio, Tarini, Ponchio, Cignoni and Scopigno / PileBars: Scalable Dynamic Thumbnail Bars

Figure 5: Example of thumbnails piled inside a slot (shown dashed). From left to right: a pile of 1, 2, 3, 4, 12, 100 thumbnails.

slot (bottom right, on the left-sided slots), leaving a margin
where the other thumbnails are equally spaced (see Fig. 5).

4.3. Transitions

Change in thumbnails disposition induced by choice of
a new focus is performed through an animation which
smoothly interpolates between the old and the new layout.
This is trivial to do, because the layout consists in a status
per each thumbnail, and statuses can be linearly interpolated
by linearly interpolating all their attributes.

4.4. Liquid PileBar shapes

Even if the layouts and the attributes of the slots are kept
fixed during navigation, they can be easily changed dynam-
ically to adapt to changed conditions. The values of slot at-
tributes k can be made adaptive: if empty slot columns are
found on either side, the values of k of a few slots are au-
tomatically decreased so that the piles will partially unfold
and spread into more slots, covering the empty space. Con-
versely, whenever slots are not enough to hold the piles, the
values of k are increased to produce taller and fewer piles.

In an interface, the user can be allowed to reshape the Pile-
Bar. Changing its aspect ratio has a potentially useful and
intuitive side effect: when the PileBar is reduced only verti-
cally, and columns are kept the same number of slots, then
the slots size will reduce so that they can fit vertically in
the new shape. This will make new columns of slots appear
at the sides, which, being empty, trigger lowering of k val-
ues. The net effect is that, making the PileBar thinner will
reduce the thumbnails, but will result in less piling, thus re-
vealing more images. Conversely, widening the bar produces
larger thumbnails, but more extreme clustering (see attached
Video 5).

5. Interacting with the PileBar

PileBar comes with an array of natural interaction mecha-
nisms. A class of mechanisms requires the user to pick a
thumbnail with the pointer (e.g. mouse). Note that, thanks to
the way thumbnails are arranged into piles (see Fig. 5), not
only the top thumbnail of each pile can be picked, but also
to the ones behind it, by pointing at the small border which
is left visible.

Focus change. Modifications of the current focus can be
triggered by events like:

• pointing and clicking on a thumbnail anywhere in the Pile-
Bar: the selected thumbnail becomes the new focus;

• dragging a thumbnail with the pointer over the x axis into
a new position: the focus changes, so that the user selected
x position is matched by the layout induced by the new fo-
cus. This is the user action corresponding to a scroll action
in a conventional thumbnail-bar.

• next and prev events (e.g. linked to buttons, keys, or mouse
wheel, etc.): the focus changes by one or several images
in either direction.

The dragging action is very general: bringing a thumb-
nail in place of the current focus will make it the new fo-
cus; dragging a thumbnail away in the peripheral region of
the PileBar will cause the focus to change drastically, be-
cause of the exponential piling factor. Conversely, the next
and prev keys support fine tuning of the focus. Additional
application-specific mechanisms (e.g. returning to a previ-
ously bookmarked thumbnail, image searches, etc.) can be
added to change the current focus.

Whatever is the reason that triggered the change of fo-
cus, the effect is that, due exponential effect of the piling
nature, the small piles close to the focus will move very fast,
while the taller piles at the borders will move at a much lower
speed; all piles will progressively split into smaller piles as
they get closer to the focus, or merge into taller piles as they
get farther from the focus. Importantly, small
changes of focus will cause correspondingly
small layout changes.

Figure 6: A screenshot of the effect of “peeking” at a
thumbnail inside a pile.

Peeking. The user can peek at thumbnails, even if they are
far away from the focus, by positioning the pointer over
them, while (for example) pressing the right mouse button.
The peeked thumbnail image will be shown above the Pile-
Bar fully unoccluded and at maximal thumbnail size, regard-
less of its position and size (see Fig. 6 and Video 3). This can
be useful to enlarge small thumbnails at the PileBar periph-
ery, and to reveal thumbnails partially hidden behind others
inside piles.

c© The Eurographics Association 2012.

53

Brivio, Tarini, Ponchio, Cignoni and Scopigno / PileBars: Scalable Dynamic Thumbnail Bars

Vertical drags. The effect of dragging a thumbnail solely
along the y screen direction is simply to change the position
of the moved pile from a slot to another in the same column.

Reordering. When more than one total ordering among im-
ages is available and meaningful (Sec. 6.1), the user can be
allowed to switch dynamically from an ordering to another,
e.g. via a button, similarly to what happens in a traditional
image or file browser. The new ordering will automatically
induce a new disposition of thumbnails inside the bar (po-
sition, sizing, piling of thumbnails); temporal coherence is
ameliorated, as normal, by animations (see Sec. 4.3). The
net effect is that the focus thumbnail remains fixed, and the
other thumbnails redispose around it.

Resizing. As mentioned in Sec. 4.4, the PileBar is liquid in
the sense that it is capable of gracefully adapting to different
sizes and aspect ratios, with useful side effects.

6. Image Ordering and Image Distance Functions

As mentioned, an image-to-image distance function is used
to cluster thumbnails relative to similar images into piles.
Any distance function defined between images can be prof-
itably employed for this purpose, regardless of the range, the
scale, and the distribution of the returned values. Compu-
tational time is not critical here also because the distance
will be pre-computed only for pairs of images that are con-
secutive in the total ordering, which is feasible even for the
largest image datasets.

There are plenty of image distance metrics readily avail-
able. These include:

1. time (the distance in seconds between times of shot);
2. shot positions (the distance between shot positions);
3. shot directions (the angle between two shot directions —

note that, conversely, the rotation of the camera around
the shot direction axis is usually not meaningful);

4. view frustum content similarity;
5. average color (distance between images average colors);
6. color distribution (distance between normalized color

histograms);
7. color spatial distribution (averaged per-pixel distance be-

tween severely downsized versions of the two images);
8. tagging distance (distance in tag space).

Clearly, not every measure is available in every dataset.
Most photographic collections (including most personal im-
age collections) come with time-of-shot data (provided by
the file system or exif metadata). Time distances can range
from a few milliseconds to several months, within the same
dataset. This is not a problem, thanks to the normalization
described in Sec. 4.2. Time distances are often a very natu-
ral choice, as it results in images being piled (and dynami-
cally re-piled) per hour, day, week, month, etc. (according
to the distance from the focus). Shot-positions and shot-
directions are available when we have per-image camera

calibration data, as in datasets resulting from photographic
campaigns processed with 3D photo reconstruction tech-
niques [VVG06, Mic07]. The color-based metrics (distances
5, 6, 7) are the simplest content-based distance functions,
and they are usually good indicators of image semantic sim-
ilarity. They can be useful, for example, to pile together im-
ages from a movie belonging to the same scene.
Regardless of its origin, each distance function results in a
scalar positive quantity returned for an image pair. There-
fore, different distance functions can be interpolated to form
new mixed distance functions.

6.1. Examples of image ordering functions

As mentioned, a total ordering is assumed to be defined over
the images. Many applicative contexts come with one (or
more) “natural” image orderings: e.g. an order for a photo-
graphic campaign can be induced by the time of shot; web
search results can be ordered by relevance; tagged images
can be ordered alphabetically by tags, etc.

Useful orderings can also be inferred from any of the
semantic functions described above (including the mixed
ones): the image dataset can be considered a weighted fully
connected graph, and the (approximatively) minimal Hamil-
tonian path will define a linear ordering of the images (found
by means of heuristics).

7. Implementation issues

Since the focus of PileBars is scalability with dataset size,
implementation efficiency is crucial. Real time performance
is needed, but system resources must be left untapped for the
rest of the application in which the PileBar is embedded in.

Arranging thumbnails according to a new focus (Sec. 4.2)
is very efficient and must be performed once per focus
change. Animating the thumbnail layout (Sec. 4.3) must be
done once per frame, but is an even less demanding op-
eration, boiling down to interpolation of a few scalar pa-
rameters per image. Tests show that both tasks present no
performance hit even for datasets with 105 images. More
care must be used with rendering performance, and mem-
ory/bandwidth requirements.

7.1. Rendering system

PileBars can take advantage of basic rendering mechanisms
hardwired (and heavily optimized) in any GPU card. A
thumbnail is simply a textured quad with a low resolution
texture (not higher than the slot largest size, in pixels). How-
ever, plain rendering of several thousands of textured quads
can still downgrade system performance. Technically, the
problem is tied to the extreme depth complexity reached in
piles holding hundreds of images, which tend to make the
application fill limited (even if the per-fragment workload
is very small). Both issues are solved by checking, for each

c© The Eurographics Association 2012.

54

Brivio, Tarini, Ponchio, Cignoni and Scopigno / PileBars: Scalable Dynamic Thumbnail Bars

thumbnail Ti not on top of its pile, the relative position of
thumbnail Tj directly above it in the current layout. During
rasterization, the two positions differ by an integer number
p of pixels (the maximal one at the four sides). Whenever
p is zero (which happens if Tj is aligned with Ti up to pixel
precision), the rendering of Ti is skipped. If p is one, only
a row and a column of pixels of Tj is rendered (with line
primitives). Else, the thumbnail is fully rendered. In very tall
piles, static or moving, most renderings are skipped; a mi-
nority will be rendered producing few fragments; only one
will be fully rendered.

On average, in a PileBar of 105 thumbnails laid out as
in Fig. 1, 90.0% of the thumbnails are skipped, 9.8% are
rendered as lines, and 0.2% are fully rendered.

7.2. Cache system

Large dataset visualization requires keeping in memory a
large number of thumbnails. Even considering that they are
much smaller than the real images they represent, the mem-
ory requirement easily surpasses texture RAM capacities
(e.g. 105 images, with thumbnails resolution 2562, require
∼ 20 GBytes of raw pixel data in texture memory; using
MIP-maps, this requirement rises to 27 GBytes). Texture
compression alone does not solve the problem.

To address this issue, we adopted a strictly inclusive, mul-
tilevel, multithreaded cache system, similarly to [vW07],
consisting of four layers: (1) remote server (in remote appli-
cations); (2) local disk; (3) RAM; (4) texture RAM, on board
of the graphic card. Each stage of the cache is executed in its
own thread to avoid stalling the system on load/download.

In layers (1) and (2) thumbnails are stored using the com-
pact JPG format. In layers (3) and (4) they are stored in the
less compact but GPU friendly DXT1 compression. When
passing objects from (2) to (3), fast JPG compression (lib-
jpeg_simd) and fast DXT recompression [RJL07] libraries
are used; both performs at around 100 MPixels/sec (mean-
ing that computational resources are left untapped).

The total ordering of the thumbnails is used to assign a
priority to each thumbnail equal to the image pixels actually
shown on screen. The cache dynamically manages the avail-
able memory so to keep the highest priority thumbnails as
close as possible to the last stage. Thumbnails not ready in
GPU RAM are shown as rectangles colored as their average
color, which is precomputed.

8. Application scenario examples

The PileBars approach has been used in the PhotoCloud sys-
tem (Fig. 2, [BBT∗12]) and we extensively tested it on sev-
eral application scenarios:

1. Cavalieri square, Archeo01, Arche02: calibrated images
resulting from CH photographic campaigns;

2. Pumpkin: images resulting from a Google search;
3. Toy: frames from a movie;
4. Animals: tagged images featuring different animals.

Tab. 1 presents for each scenario: the ordering functions
used, the metric distance function used, and links to the im-
ages in the paper and the attached videos. Fig. 7 shows some
thumbnail arrangements produced with PileBars. However,
a still image is inadequate to show its effect and the reader
is invited to see the attached videos. Performance-wise, the
system is able to run at 60 fps on off the shelf computers,
leaving RAM, CPU and texture memory untapped.

9. Conclusions

We have presented PileBar, a scalable tool to effectively and
efficiently browse very large image datasets with a focus-
plus-context approach. Its features include clarity of dataset
visualization, ease of use, temporal coherence, customizat-
ibility, richness of interaction mechanisms, ease of imple-
mentation, and low performance impact. Thanks to its fea-
tures, PileBar is a GUI component for image browsing which
can be beneficially integrated within a wide variety of soft-
ware applications. The main limitation is that image aspect
ratio is assumed to be constant in the dataset (cropping must
be employed when this is not the case, e.g. [AS07]).

A user study, strongly indicating that PileBar outperforms
conventional image browsers, is available at the project web
page: http://vcg.isti.cnr.it/pilebars/

Acknowledgements This work received funding from the EC 7th
FP (FP7/2007 2013) under grant agreement No. 231809 (IP 3DCO-
FORM).

References
[AS07] AVIDAN S., SHAMIR A.: Seam carving for content-aware

image resizing. ACM Trans. Graph. 26 (2007). 7

[BBT∗12] BRIVIO P., BENEDETTI L., TARINI M., PONCHIO F.,
CIGNONI P., SCOPIGNO R.: PhotoCloud: realtime web-based
interactive exploration of large mixed 2D-3D datasets. IEEE
Computer Graphics and Applications 32 (2012), in press. 1, 3, 7

[Bed01] BEDERSON B. B.: Photomesa: a zoomable image
browser using quantum treemaps and bubblemaps. In UIST ’01:
Proceedings of the 14th annual ACM symposium on User inter-
face software and technology (2001), ACM, pp. 71–80. 2

[BTC10] BRIVIO P., TARINI M., CIGNONI P.: Browsing large
image datasets through voronoi diagrams. IEEE Trans. on Visu-
alization and Computer Graphics 16, 6 (2010), 1261–1270. 2

[CB99] COMBS T. T. A., BEDERSON B. B.: Does zooming im-
prove image browsing? In Proc. of the 4th ACM conference on
Digital libraries (1999), ACM, pp. 130–137. 2

[CdOKRV09] CRAMPES M., DE OLIVEIRA-KUMAR J., RAN-
WEZ S., VILLERD J.: Visualizing social photos on a hasse di-
agram for eliciting relations and indexing new photos. IEEE
Trans. on Visualiz. and Comp. Graph. 15 (2009), 985–992. 2

[EOWZ07] EPSHTEIN B., OFEK E., WEXLER Y., ZHANG P.:
Hierarchical photo organization using geo-relevance. In GIS ’07:
Proc. of the 15th ACM Int. Symp. on Advances in Geographic
Information Systems (2007), ACM, pp. 1–7. 2

c© The Eurographics Association 2012.

55

http://vcg.isti.cnr.it/pilebars/

Brivio, Tarini, Ponchio, Cignoni and Scopigno / PileBars: Scalable Dynamic Thumbnail Bars

Figure 7: Screenshots of PileBars in action on different datasets. Also refer to the attached videos.

DATASET IMAGE NO. ORDERING FUNCTION(S) DISTANCE FUNCTION(S) FIG. VIDEO

Cavalieri 461 shot position + orientation time of shot 2
Square

Archeo01 430 time of shot, custom metric time of shot + constant 6 1,2
shot position

Archeo02 333 time of shot, shot position constant, 7 (top) 3,5
images spatial colour layout

Pumpkin 992 relevance, images spatial colour layout, 1 4
images spatial colour layout constant

Toy 10049 sequence of frames, images color, images color, 7 (bottom) 6
images spatial colour layout images spatial colour layout

Animals 3784 images metatag + images color images color + 7
+ images spatial colour layout images spatial colour layout

Table 1: Images used and relative data

[GGMPW02] GRAHAM A., GARCIA-MOLINA H., PAEPCKE
A., WINOGRAD T.: Time as essence for photo browsing through
personal digital libraries. In Proceedings of the 2nd ACM/IEEE-
CS joint conference on Digital libraries (New York, NY, USA,
2002), ACM, pp. 326–335. 2

[Goo04] GOOGLE: Picasa. http://picasa.google.com/,
2004. 2

[GSW∗09] GIRGENSOHN A., SHIPMAN F., WILCOX L.,
TURNER T., COOPER M.: Mediaglow: organizing photos in a
graph-based workspace. In Proc. of the 13th Int. Conf. on Intel-
ligent User Interfaces (2009), ACM, pp. 419–424. 2

[HDBW05] HUYNH D. F., DRUCKER S. M., BAUDISCH P.,
WONG C.: Time quilt: scaling up zoomable photo browsers for
large, unstructured photo collections. In CHI ’05: Conference
on Human Factors in Computing Systems (New York, NY, USA,
2005), ACM, pp. 1937–1940. 2

[JYC09] JANG C., YOON T., CHO H.-G.: A smart clustering
algorithm for photo set obtained from multiple digital cameras. In
Proceedings of the 2009 ACM symposium on Applied Computing
(New York, NY, USA, 2009), ACM, pp. 1784–1791. 2

[KS05] KUSTANOWITZ J., SHNEIDERMAN B.: Meaningful pre-
sentations of photo libraries: rationale and applications of bi-level
radial quantum layouts. In Proc. of the 5th ACM/IEEE-CS Conf.
on Digital libraries (2005), ACM, pp. 188–196. 2

[MFGJ08] MOTA J. A., FONSECA M. J., GONÇALVES D.,
JORGE J. A.: Agrafo: a visual interface for grouping and brows-

ing digital photos. In Proc.of the Conf. on Advanced Visual In-
terfaces (2008), ACM, pp. 494–495. 2

[Mic07] MICROSOFT: Photosynth.
http://photosynth.net, 2007. 3, 6

[PCF02] PLATT J. C., CZERWINSKI M., FIELD B. A.: Photo-
TOC: Automatic Clustering for Browsing Personal Photographs.
Tech. Rep. MSR-TR-2002-17, Microsoft Research, 2002. 2

[RBSW01] RODDEN K., BASALAJ W., SINCLAIR D., WOOD
K.: Does organisation by similarity assist image browsing? In
Proc. of the SIGCHI Conf. on Human Factors in Computing Sys-
tems (2001), ACM, pp. 190–197. 2

[RCC10] RYU D.-S., CHUNG W.-K., CHO H.-G.: Photoland:
a new image layout system using spatio-temporal information in
digital photos. In Proc. of the 2010 ACM Symp. on Applied Com-
puting (2010), ACM, pp. 1884–1891. 2

[RJL07] RENAMBOT L., JEONG B., LEIGH J.: Real-time com-
pression for high-resolution content. In Proceedings of the Ac-
cess Grid Retreat 2007 (Chicago, IL, USA, 2007). 7

[RW03] RODDEN K., WOOD K. R.: How do people manage their
digital photographs? In Proceedings of the SIGCHI conference
on Human factors in computing systems (New York, NY, USA,
2003), ACM, pp. 409–416. 2

[VVG06] VERGAUWEN M., VAN GOOL L.: Web-based 3d re-
construction service. Mach. Vision Appl. 17, 6 (2006), 411–426.
6

[vW07] VAN WAVEREN J. P.: Real-Time Texture Streaming and
Decompression. Tech. rep., Intel Software Network, 2007. 7

c© The Eurographics Association 2012.

56

