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Abstract

We present a novel approach to learn motion controllers for real-time character animation based on motion cap-
ture data. We employ a tree-based regression algorithm for reinforcement learning, which enables us to generate
motions that require planning. This approach is more flexible and more robust than previous strategies. We also
extend the learning framework to include parameterized motions and interpolation. This enables us to control the
character more precisely with a small amount of motion data. Finally, we present results of our algorithm for three
different types of controllers.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

An important component of applications in virtual environ-
ments and computer games is to generate human motion in
real-time and with interactive user control. The most com-
mon approach is based on large databases of motion capture
data. Motion capture data provides a high degree of realism,
but it needs to be processed and organized into suitable data
structures to allow for interactive control and the synthesis
of new motion. Typically the data is split into short motion
clips. The clips are organized in a graph structure, and new
motion is generated by traversing the graph.

For interactive applications, the main challenge of these
approaches is to determine an appropriate graph traversal,
i.e., a sequence of motion clips, in real time and under con-
tinuous user control. In computer games, this problem is
usually solved by manually constructing elaborate state ma-
chines that determine the next best clip based on the current
environment and user input. This approach involves a large
amount of manual work to carefully craft the state machines
and the rules specifying all potential state transitions. This
becomes particularly cumbersome in modern games that use
thousands of motion clips. In addition, it is hard to incorpo-
rate behaviors that require planning for a distant goal.

Reinforcement learning is a promising approach to ad-
dress these issues. Using reinforcement learning it is pos-
sible to formulate higher level goals, such as obstacle avoid-
ance or grasping objects at specific locations, and generate

control policies to achieve these goals. One does not need to
manually construct transitions to indicate how to fulfill the
tasks in different situations. Instead, the controller is con-
structed in a pre-process by exploring and learning from
all possible situations. At run-time, the controller can make
near-optimal decisions automatically and instantaneously,
reacting to user input or changes in the environment.

In this paper we describe a reinforcement learning tech-
nique for interactive control of human characters. Our ap-
proach can generate motions that require planning, and it al-
lows for precise control using parametric blending of several
motions. Our algorithm includes two main contributions:

• We use a tree-based fitted iteration algorithm to learn con-
trol policies. This approach is more flexible and more
robust than previous methods to construct motion con-
trollers using reinforcement learning.

• We extend the reinforcement learning framework to in-
clude parameterized motions and interpolation. This al-
lows us to control characters more precisely without re-
quiring an excessive amount of input data.

The rest of this paper is organized as follows: We describe
previous work in Section 2. We present the reinforcement
learning framework and our tree-based fitted iteration algo-
rithm in Section 3. We describe how to include parameter-
ized motions in Section 4. Finally, we present results of sev-
eral motion controllers in Section 5 and conclusions and fu-
ture work in Section 6.
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2. Background

Motion capture data is extensively used in computer ani-
mation, because it is able to capture all the subtleties of
real human motion. By piecing together many short mo-
tion clips, we can further create novel but realistic mo-
tions. Consequently, segmenting the acquired motion and
rearranging the clips to achieve specific goals is an impor-
tant research topic. A number of algorithms have been de-
veloped to represent plausible transitions between motion
clips with graph structures [KGP02, AF02, LCL06]. With
these techniques, novel motions can be generated simply
by building walks on the graph. For off-line applications,
where the full motion specification is known in advance, a
global sub-optimal or close-to-optimal solution that mini-
mizes an objective function, such as a certain energy, can
be found [KGP02, AFO03, SKG05, LK05, SH07]. In inter-
active applications, new input is continuously arriving and
the decision for selecting the next clip needs to be made in
a very short amount of time. Therefore, only local search
can be performed to generate motions in response to user-
input [PSKS04, LK05, KS05, SO06, HG07].

The challenge for local search methods is to synthesize
motions that require planning. Motion planning is important
to achieve realistic results in many scenarios. For example,
one may need to prepare well in advance to grasp an object
at a particular location. Hence, instead of trying to search a
point-to-point path on the graph, we use reinforcement learn-
ing techniques [KLM96, SB98] to train a motion controller
off-line, which can make on-line decision quickly in any
given situation. Several methods have been proposed in com-
puter animation to utilize reinforcement learning to obtain
policies for choosing actions that will increase long term ex-
pected rewards [LL04,IAF05,LL06,TLP07,MP07]. Lee and
Lee [LL04,LL06] discretize the state space and use dynamic
programming to construct a sample-based value function for
boxing. Ikemoto et al. [IAF05] exploit a more complete state
space in order to aid a global planner. More recently, Mc-
Cann and Pollard [MP07] integrated a model of player be-
havior into an existing reinforcement learning method, en-
abling highly responsive character animation in real-time.
Instead of discretizing the state space, Treuille et al. [TLP07]
approximate the value function over a continuous state
space, enabling the construction of low-dimensional, near-
optimal motion controllers. We adopt tree-based regression
algorithms [EGW05] to better approximate the value func-
tion. Compared to previous work, our approach converges
faster without any assumption about the shape of the value
function. We can support value functions with any possible
shapes. Moreover, the above methods suffer from the lim-
itation that the space of available motions is discrete. This
makes it harder to achieve precise control such as walking in
an exact direction or stepping on an exact point.

Parametric synthesis allows interpolating motions from a
parametric space, and thus it can provide fine control. The

parametric space is an abstract space defined by kinematic
or physical attributes of motions. By parameterizing all mo-
tion samples in the space, and by blending among multi-
ple motions, motion interpolation can create novel motions
that have specific kinematic or physical attributes [WH97,
RCB98]. Kovar and Gleicher [KG03, KG04] proposed an
automated method for identifying and registering logically
similar motions. They also build a continuous parameterized
motion space for similar motions that provide efficient con-
trol for interpolation. Mukai and Kuriyama [MK05] improve
motion interpolation with the use of geostatistics, treating
interpolation as statistical prediction of missing data in the
parametric space. Safonova and Hodgins [SH05] analyze
interpolated human motions for physical correctness and
show that the interpolated results are close to the physically-
correct motions. Cooper et al. proposed active learning to
adaptively sample the parametric space so that the space can
be well sampled with a reduced number of clips [CHP07].
Recently, researchers have also combined motion graphs
with parametric synthesis to form richer, more complete mo-
tion spaces [SH07,HG07]. In order to provide accurate con-
trol, we present a way to learn parametric motion controllers,
which can compute near-optimal parameters for motion syn-
thesis in real-time.

3. Learning the Motion Controllers

In this section we describe a reinforcement learning frame-
work to obtain motion controllers for interactive character
animation. Using a database of atomic motion clips, our goal
is to generate natural character motion as a sequence of clips.
At each time step, the motion controller decides which mo-
tion clip best follows the user input and respects constraints
imposed by the environment. This decision must be made
quickly, since time lags are not allowed in interactive envi-
ronments. The controller should also be able to achieve user
objectives that require planning ahead of time. In addition,
both user input and the environment should be represented
using continuous parameters to allow for precise control.
We describe in Section 3.1 how this problem can be framed
in the context of reinforcement learning. We discuss differ-
ent strategies to solve the learning problem in Section 3.2,
and we describe our tree-based approach for learning mo-
tion controllers in Section 3.3.

3.1. Problem Formulation and the Optimal Policy

We consider the motion control problem as a time-invariant
stochastic system with discrete-time dynamics,

st+1 = f (st ,at+1), (1)

where for all discrete time steps t, st is an element of state
space S, at+1 is an element of action space A, and f is the
transition function. In our context, action space is the set of
motion clips in the database. State space S is composed of all
possible configurations of the current character motion, the
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environment, and user input. The parameterization of state
space is application specific, and we give concrete examples
in Section 5. In general, an element s of state space is a vec-
tor (a,x1, . . . ,xn), where a ∈ A is the clip currently played,
and x1, . . . ,xn ∈Rn are parameters describing the character’s
current situation in the environment, such as the relative po-
sition to the goal, or deviation from desired orientation.

The transition function f describes how the current state
is updated when a certain action is executed. At time t, when
the action at+1 for the next time step is picked, the cor-
responding clip is selected from the database and concate-
nated with the current motion. Then the state st+1 is updated
with the character’s new situation in the environment. For
any state s and next action a′ the transition function can be
expanded as

f (s,a′) = s′ = (a′,x1 +dx′1, . . . ,xn +dx′n), (2)

where dx′i represents the amount of change in xi with the use
of clip a′. Take the navigation controller for example: the
goal of this controller is to let the user control the walking
direction of the character, so x1 represents the deviation from
the desired walking direction, and dx1 of each clip represents
the character’s change of orientation during that clip.

A basic component of reinforcement learning is the in-
stantaneous reward rt = R(st ,at+1), which is a scalar valued
function defined for each current state and next action. In our
context, the reward is composed of a state reward Rs and a
transition reward Rt ,

R(s,a′) = Rs(s)+Rt(a,a′). (3)

The state reward measures how well the character respects
user objectives and environmental constraints, while the
transition reward is used to ensure smooth motion transition
between different clips. Note that the state reward is applica-
tion specific and usually designed manually. We provide the
details for several motion controllers in Section 5. As for the
transition reward, we compute the weighted sum of squared
differences of the positions and orientations across all joints
in the blended region of motion clip a and a′, and reward
them if the difference is small.

The main idea of reinforcement learning is to determine
an optimal policy that, at every time step t and state st , se-
lects a next action at+1 so that the long term reward is max-
imized. The long term reward is defined as ∑

∞
t=0 α

t rt , where
α∈ [0,1) is the discount factor. The discount factor accounts
for future uncertainty and gives more weight to the near than
the distant future. Maximizing the long term reward enables
planning. The optimal policy may not always choose the ac-
tion with the highest instantaneous reward, but select an ac-
tion that results in a higher reward over time.

Suppose the decision is made by some policy Π, that is
Π(st) = at+1. The value function V Π represents the expected
long-term reward from an initial state s following this policy.

It is defined by the Bellman equation,

V Π(s) = EΠ

[∞
∑
t=0

α
t rt

∣∣∣s0 = s
]

= R(s,Π(s))+αV Π(s′),

(4)

where s′ = f (s,Π(s)). One can prove [SB98] that there is
always at least one optimal policy Π

?, for which V ?(s) ≥
V Π(s) for all states s and all policies Π, where the value
function V ? measures the long-term state reward under the
optimal policy. Note that, if we have the value function V ?,
we can construct the optimal policy as follows:

Π
?(s) = argmax

a′∈A

[
E?
[∞
∑
t=0

α
t rt

∣∣∣s0 = s,a1 = a′
]]

= argmax
a′∈A

[
R(s,a′)+αV ?(s′)

]
= argmax

a′∈A

[
Rt(a,a′)+αV ?(s′)

]
,

(5)

where s′ = f (s,a′). In our application, we compute the value
function V ? in a pre-process. Once this value function is
known, the optimal policy in Equation 5 can be efficiently
evaluated at run-time.

3.2. Regressions

In the case of discrete state spaces, a simple approach to
compute the value function V ? is the so-called value itera-
tion [SB98]. This approach, however, does not apply to con-
tinuous state spaces. Instead, a general strategy is to use a
fitted iteration algorithm. These algorithms start with an ini-
tial value function V that equals zero everywhere on the state
space, and iterate towards a better V by running the follow-
ing steps until convergence:

1. Generate a set of state samples s, compute their long-term
state rewards v based on the current value function, and
add each pair (s,v) to a training set T ,

T ← T ∪{(s,v)|s ∈ S,v ∈ R}.

The long term reward based on the current value function
is given by

v = max
a′∈A

[
R(s,a′)+αV (s′)

]
, (6)

where s′ = f (s,a′).
2. Use a regression algorithm to update V using the training

set T so that, for any tuple (s,v) in T , V (s) is as close to
v as as possible. Update all tuples in T using the new V .

Note that the value of v would equal to V (s) for all possible
s ∈ S if and only if V = V ?. The goal of the regression is to
improve V to better approximate V ? in every iteration.

Designing a suitable regression algorithm for Step 2. is
crucial for the robustness and efficiency of reinforcement
learning. Different alternatives have been proposed in the
literature. Lee and Lee [LL04] used piece-wise linear grids
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(c) Splitting recursively(b) Splitting partitions

potential cuts

(d) Final regression(a) Trajectories

State space State space State space State space

Figure 1: Illustration of one step in our tree-based fitted iteration. The figure shows an abstract visualization of state space;
it should not be interpreted as the 2D position of a character. Please refer to Section 5 for the precise definition of state space
for different motion controllers. (a) We use the current value function to generate trajectories that approach the goal, depicted
by the red star. Each circle represents a sample state. The colors denote different clips included in the states. (b) Each sample
is added to a training set according to the clip it includes. For each training set we build a separate tree in a top-down manner
starting with the whole space as the root node. We generate a potential cut randomly for each dimension and select the cut with
highest score. (c) We recursively split the nodes until the number of samples in each node is below or equal to nmin. (d) After
tree construction, the leaf nodes of the tree build a piece-wise constant approximation of the value function.

as their approximation architecture for precomputing avatar
behavior from human motion data. Although they obtain
good results, their approach is limited. For carefully tuned
grids this type of approximation architecture can lead to
good results. However, it is not very robust with respect to
grid size and slight variations may strongly influence the re-
sult [EGW05].

Treuille et al. adopted parametric regressions [TLP07] for
training animation controllers. They approximate the value
function by a linear combination of manually designed basis
functions, which are either polynomials or Gaussians. Their
approach is efficient in storage. However, it relies on the
assumption that the desired value function can be approxi-
mated using only few basis functions. Their regression al-
gorithm becomes very inefficient for larger number of basis
functions, because it requires the solution of a linear pro-
gramming problem in each iteration. In addition, we have
observed that this approach often does not converge if the
basis functions are not carefully chosen to match the shape
of the value function. We show more comparison results in
Section 5.2.

Ernest et al. [EGW05] provide a comprehensive compar-
ison among several regression methods for reinforcement
learning, including kNN, piecewise constant and piecewise
linear grids, and various tree-based methods. Their study
of several application cases shows that the so-called Extra-
trees [GEW06] perform significantly better than the other
methods. Therefore, we use this approach for regression in
Step 2., and we will present details of our fitted iteration al-
gorithm in Section 3.3.

Generally, a regression tree partitions the training set T
into several regions and determines a constant prediction in
each region by averaging the values of the elements from
the training set that fall into this region. The Extra-trees al-
gorithm builds the partition in a top-down manner. For each
node, it selects a random cut position for each dimension.

It then computes a score for each of the potential cuts, and
chooses the one that maximizes the score. The algorithm
stops splitting a node when the number of samples in this
node is less than a parameter nmin.

3.3. Tree-based Fitted Iteration for Motion Controllers

Our state space S is continuous except for the dimension
along the clips A, which is discrete. Hence, we build a re-
gression tree for each clip in the database, but we optimize
all the trees at the same time. Here, we present our tree-based
fitted iteration algorithm that includes three steps: initializa-
tion, iteration, and pruning.

Initialization. We initialize the value function V to zero ev-
erywhere on S. We maintain a training set TA for each clip
A. The training sets are initialized as empty sets.

Iteration. We illustrate one step of our iteration process in
Figure 1. In each step, we first add samples to the training
sets TA by generating a number of trajectories in the sys-
tem. Each trajectory starts from an randomly chosen initial
state and finishes when the task goal is achieved, or when a
predefined maximal number of steps is reached. During the
trajectories, the action at+1 selected at time t is chosen ac-
cording to Equation 5 using the current value function V . For
every state s generated in the trajectories, we compute v us-
ing Equation 6, and then add (s,v) to the the training set of
the chosen clip.

After updating the training sets TA, we build an Extra-tree
for regression for each training set. We treat the whole state
space as a root node, and recursively split the nodes until the
number of samples contained in each node is equal or less
than nmin. To determine a split at each node, we randomly
pick a cut position for each dimension and compute a corre-
sponding score that measures the relative variance reduction,
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Score =
var(N )− #Nl

#N var(Nl)− #Nr
#N var(Nr)

var(N )
, (7)

where N ⊆ TA denotes the subset of samples in the node,
Nl and Nr denote the samples on the two sides of the cut
in the node, and var is the empirical variance of the sample
values v. We make the cut with highest score. When no more
nodes can be split the value function V is updated using the
new regression trees, and all existing tuples in the training
sets are also updated using Equation 6.

The sampling and regression steps are repeated until a
stopping condition is reached. We measure the quality of the
current value function using the Bellman residual [Bai95],
which is defined as the difference between the two sides of
the Bellman equation 4,

V (s)− max
a′∈A

[
R(s,a′)+αV (s′)

]
. (8)

Note that V ? is the only function leading to a zero Bellman
residual for every possible state. Therefore, the residual mea-
sures how close the value function is to the optimal one. In
our system, we compute the mean square of the Bellman
residual over the training sets. The iteration is stopped if the
residual is below some predefined threshold.

Pruning. It is nontrivial for the user to specify nmin, and
the optimal value may vary for different tasks and for dif-
ferent sizes of training sets. Therefore, we use pruning as a
post-processing step to automatically determine the maximal
number of samples in a leaf. Pruning is carried out by select-
ing at random two thirds of the elements of T , re-building
trees for every possible value of nmin with this smaller train-
ing set, and determining with which value of nmin the square
error over the last third samples is minimized. Then, we run
the Extra-trees algorithm again on the whole training set T
using this optimal value of nmin.

3.4. Convergence

Although the Extra-trees algorithm can well extract infor-
mation from the training sets, it does not guarantee conver-
gence, since it readjusts the approximation architecture, i.e.,
the tree structure, to the new expected rewards at each itera-
tion. However, and contrary to many parametric approxima-
tion schemes, it does not lead to divergence to infinity prob-
lems, but just oscillates around some value [EGW05]. To
ensure convergence in our system, we freeze the tree struc-
ture and stop adding new samples after it begins to oscillate
or after the number of iterations exceeds some predefined
number. It converges fast with a frozen tree structure.

4. Incorporating Parameterized Motion Groups

One of the challenges of character animation based on mo-
tion data is that it may require large databases and exces-
sive sampling of the continuous space of motions to allow

for precise control of generated motion. Moreover, in our
context it would lead to large precomputation and memory
requirements to learn and store a value function for each
clip in a large database. Here, we present an approach to
incorporate parameterized motion groups in our reinforce-
ment learning framework. We effectively reduce the num-
ber of actions by clustering similar motions, alleviating the
precomputation and storage cost. In addition, each cluster
forms a parameterized subspace of motion. This allows us to
obtain precise control over the synthesized motion by con-
tinuously interpolating in this space. In the following para-
graphs, we first explain how we pre-process our motion data.
Then we describe how we cluster motion clips into groups
and how we define transition costs between clusters. Finally
we demonstrate how to modify the transition function so that
the planning controller can work with parameterized groups.

Pre-processing. We manually segment motion data into
short clips. Our current database includes walking and grasp-
ing motions. We define constraint frames for each clip sim-
ilar to Treuille et al. [TLP07]. The constraint frames are
used to temporally align consecutive clips. This allows us
to construct a valid animation from any sequence of clips,
and to prevent foot-skating. We do not need to construct an
explicit graph structure, because unnatural and non-smooth
transitions will be avoided by the reinforcement learning ap-
proach with the transition reward. To construct a desired
controller, we design a state space represented by parame-
ters x1, . . . ,xn. We parameterize each clip by determining the
change dx1, . . . ,dxn caused by the clip. We illustrate this us-
ing a navigation controller in Figure 2a. For more examples
we refer to our results in Section 5.

Clustering. In the clustering step, we group similar motions
together to share a single value function. Because clips are
characterized by their instantaneous reward for the purpose
of learning, it is reasonable to classify clips with similar re-
ward functions into one cluster. Our reinforcement learning
algorithm is then based on clusters of motion clips rather
than on individual clips.

To determine clips with similar rewards, remember that
the reward is composed of a transition reward and a state re-
ward. Any two motions that are similar numerically [KG04]
will have a similar transition reward. On the other hand, the
state reward measures how well a state fulfills the goal of
the controller. According to the transition function in Equa-
tion 2, if two motions have similar parameters dx1, . . . ,dxn,
they will lead to similar states. Therefore they will have sim-
ilar state rewards. Following these observations, we group
together motions that are numerically similar and close in
the parametric space. In our current implementation, clus-
tering is performed manually. We illustrate clustering for the
navigation controller in Figure 2b. Note that a clip may be-
long to several clusters. This allows us to make sure that the
parameter domain is covered completely by the clusters.
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Clusters allow us to interpolate in a continuous space of
motions spanned by the cluster members. We use registra-
tion curves [KG03] to perform the interpolation. In other
words, each cluster represents a range of motions instead of
a single clip. This allows us to achieve more precise control
as shown in Section 5.

Transition Cost. We define the transition cost Rt(a,a′) be-
tween two clusters simply as the average of the pairwise
transition costs of all clips in the two groups. This is jus-
tified because the clips in each group are similar and each
pair of clips will have a similar cost.

Parametric Transition Function. We define a modified
transition function to incorporate parameterized groups into
the reinforcement learning framework. Now an action a∈A
corresponds to the selection of a parameterized group, which
represents a continuous range of motions. We determine the
long-time reward for each group by finding the one motion
represented by the group that maximizes the value function.

Assuming there are m members in the group, we use
blending weights {w1 . . .wm} to characterize any motion in-
terpolated in the group. We further denote the change of pa-
rameter i induced by member j of the group by dxi j. The
parametric change given by a set of blending weights is
therefore the vector(

m

∑
j=1

w jdx1 j, . . . ,
m

∑
j=1

w jdxn j

)
.

Given a current state s = (a,x1, . . . ,xn), the maximum of the
value function for a potential next action a′ happens at

{w1 . . .wm}= (9)

argmax
0≤w1,...,wm≤1
w1+···+wm=1

V ?

(
a′,x1 +

m

∑
j=1

w jdx′1 j, . . . ,xn +
m

∑
j=1

w jdx′n j

)
.

This is also illustrated in Figures 2c and 2d. In our im-
plementation we solve the above equation by uniformly
sampling the space of blending parameters {w1 . . .wm} and
picking the one with the highest value. Once the blending
weights are determined, the transition function for any state
is

f (s,a′) = s′ =

(
a′,x1 +

m

∑
j=1

w jdx′1 j, . . . ,xn +
m

∑
j=1

w jdx′n j

)
.

At run time, whenever a clip finishes, the controller uses
the optimal policy described by Equation 5 to select the
next group. This is achieved by scanning every group as
a potential next action a′. We compute the optimal blend-
ing parameters with Equation 9 for each group, and ob-
tain the corresponding state s′. We also evaluate the tran-
sition cost Rt(a,a′) between the current group a and each
candidate a′. We select the next group a′ that maximizes
Rt(a,a′)+αV ?(s′).
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a
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direction

current
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b

Figure 2: Parameterized groups for the navigation con-
troller, which has only one parameter θ. The value of θ rep-
resents the difference between the current and desired walk-
ing directions. (a) The clips (yellow circles) are parameter-
ized by the change in torso orientation dθ. Blue and red
arrows indicate the character’s orientation in the first and
last frame of the clip, respectively. (b) Parameterized groups.
Each group has one corresponding value function. (c) The
example value function of the group shaded in (b). Assume
the current value of θ is δ, the shaded area represents the
possible values of θ in the next time step, with the use of any
motion from this group. (d) Visualization of the variables in
(c). If the controller picks the best solution in the shaded area
in (c), the character will turn exactly toward the desired di-
rection in the next time step.

5. Results

We learned three different controllers to demonstrate our
method: navigation, grasping, and guidance.

Navigation. The navigation controller allows a user to nav-
igate a character through an environment by specifying its
desired walking direction. A state is given by s = {a,θ},
where the parameter θ∈ [−π,π) measures the angle between
the current and the desired walking direction. We define the
state reward function as

Rs(s,a′) =−γ|θ|, (10)

where γ is a scaling parameter.
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u
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θ
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Figure 3: State variables for the grasping (a) and guidance
controller (b). The red star and arrow indicate the position
and orientation of the gate, and θ is the angle between the
the gate and the walking direction of the character.

Grasping. With the grasping controller, the goal of the
character is to grasp an object that is at an arbitrary position
relative to the character. The object can be moved around in
real-time, and the character will immediately adjust its path
accordingly. Once the character is within reach of the object,
the controller picks an optimal way to grasp it according to
its relative position.

We define a state for this controller as s = {a,u,v}, where
u and v represent the position of the object projected onto the
ground plane in local coordinates of the character, as shown
in Figure 3a. The state reward function is

Rs(s,a′) =

{
λ if the object is reachable,
0 else,

(11)

where λ is a constant. The motion database for this controller
includes walking steps and grasping motions. All clips are
parameterized with the change in the object’s relative posi-
tion and clustered as described in Section 4. The parameter-
ized grasping motions allow the character to reach the object
accurately using motion blending.

Guidance. The goal of this controller is to guide a charac-
ter to walk through a gate without bumping into walls and
doors. We define a state as s = {a,θ,u,v}. Here, (u,v) is the
position of the center of the gate and θ its orientation, both
relative to the character. We illustrate the set-up in Figure 3b.
Our state reward function is

Rs(s,a′) =

{
−λ if close to the obstacles,
−γ1|θ|− γ2

v
u2+v2 else,

(12)
where γ1 and γ2 are scaling parameters, and λ is a very large
constant. Intuitively, this reward function penalizes states
where the character is close to the walls and doors around
the opening of the gate. In addition, it guides the character
towards the center of the gate while maintaining the appro-
priate torso orientation to pass through the gate.

Figure 4 shows the statistics of our controllers. At run
time, it takes less than 1ms to select the best next clip on
a Quad Core 2.4 GHz Intel processor.

Time #groups #T Storage
Navigation 5 s 18 13752 138KB
Guidance 4 min 8 48000 125KB
Grasping 20 min 17 178007 460KB

Figure 4: Statistics of our controllers, where Time means
the learning time.

Figure 5: The greedy strategy in the guidance controller.
In this experiment five out of ten characters bumped into the
gate. With our planning controller, however, every character
successfully enters it. The starting position and orientation
of each character is randomly decided in real-time.

5.1. Motion Planning

One of the advantages of motion planning is that we can
generate animations by just specifying a goal, rather than
indicating how a character should fulfill a task. We simply
formulate the goal as a reward function. For example for our
grasping controller, we only need to specify that the charac-
ter will obtain a reward if he reaches the object. We do not
need to tell the character how to approach the object. In a
traditional greedy controller, which picks the best next ac-
tion without planning into the future, this approach would
fail completely. The greedy policy is usually defined as

Πgreedy(s) = argmax
a′∈A

[
Rs(s′)+Rt(a,a′)

]
. (13)

In the grasping controller the state reward Rs(s′) for every
possible next state s′ is zero when the character is far away
from the object. Therefore the character would just walk
away as shown in Figure 9b. Planning also allows charac-
ters to prepare well for obstacles. For example, if we use
the greedy strategy with the guidance controller, characters
often run into the gate as illustrated in Figure 5. With our
approach the characters plan several steps ahead and they
successfully avoid the obstacles.

5.2. Extra-trees Regression

We compare the navigation controller learned with the work
proposed by Treuille et al. to our method. We use twenty
motion clips for training, and each clip contains one single
walk cycle. Treuille et al. approximate the value function by
solving the coefficient vector r of 2nd-degree polynomials
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V ≈ r1 + r2θ+ r3θ
2. They observed that the quadratic poly-

nomials are only about 11% different from 10th-degree poly-
nomials. Since their method takes much longer to learn with
higher order polynomials, they adopted 2nd-degree polyno-
mials for this controller. We use two metrics to asses the
performances of the algorithms. The first one measures the
quality of the regressions: we randomly sample one thou-
sand states (which may or may not be in T ) and average the
Bellman residuals in Equation 8. The lower the residual, the
closer the approximation is to the optimal value function.
The second metric measures the quality of the policy: we
randomly sample one thousand initial states, trace ten steps
from them individually by each policy, and average the long
term rewards achieved. The higher the average reward, the
better the policy performs. We show quantitative results in
Figure 6, illustrating that our method is scores much better
according to these metrics. Our learning time is also much
shorter, although we need more memory, because we store
tree representations of the value function, while they only
need to store coefficient vectors r. In Figure 7 we visualize
the approximated value functions for one clip. This shows
that the second order polynomial is not an accurate model
for the navigation controller.

#T Time Bellman
residual

Average
reward

Storage

[TLP07] 15920 7s 6490.31 -328 1k
Ours 15960 3s 48.45 -231 198k

Figure 6: Comparison between previous work and our re-
gression method.

We also did the same experiment with the fixed-obstacle-
avoidance controller proposed in previous work [TLP07].
Treuille et al. never require more than one hour to learn the
controller. Our approach yields a useful controller in less
than ten minutes.

For more complex control systems it is hard to approxi-
mate the shape of the value function well with a small num-
ber of manually designed basis functions. In our experience,
the regression algorithm [TLP07] often fails to converge if
the basis functions are chosen inappropriately. In contrast,
our tree-based algorithm does not make any assumptions
about the shape of the value function. Figure 8a illustrates
the complex shape of the value function for the grasping
controller. We used dense sampling (about 2 million sam-
ples) to obtain a “ground truth” solution in about three hours.
Polynomials and gaussians are ill-suited for approximating
value functions such as this one. It is asymmetric, has abrupt
changes and even a pit in the middle; but this does not pose a
problem for our algorithm. The v axis is asymmetric because
it is better to face an object to grasp it, rather than turning
one’s back to it. Since the reward for successfully grasping
the object is a constant, there is a constant plateau near the
center. The plateau is slightly off-center because grasping is
performed with the right hand. The other plateaus represent
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Figure 7: Value function of the navigation controller. (a)
Tree-based regression. (b) Regression using polynomials.
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Figure 8: Value function of the grasping controller. (a)
“Ground truth” using about two million samples, three
hours learning time. (b) Regression from six thousand sam-
ples, less than three minutes learning time.

the steps needed to walk toward the peak region. For ex-
ample, if the character’s state is in the first plateau near the
peak, he needs one more step before being able to grasp. If
the character is too close to the object, it is also very diffi-
cult to grasp, hence there is a pit in the center of the value
function. Figure 8b shows a regression computed from six
thousand samples in less than three minutes. Here we store
about 1700 leaves in the regression tree. This shows that we
can obtain a reasonable approximation in a short time.

5.3. Parametric Synthesis

The advantage of parametric synthesis is that we gain more
precise control. As shown in Figure 2c the optimal value may
lie between existing motions. Therefore controllers with
non-parameterized motions can only pick sub-optimal clips.
Figure 11 shows quantitative improvements of parameter-
ized motions for the navigation controller. Figures 9c and 9d
show a comparison with the grasping controller. Without pa-
rameterized motions, none of the existing clips initially leads
to a good position for grasping the object, so the charac-
ter takes a detour (Figure 9c). With parametric synthesis, a
novel motion with optimal value is synthesized and the char-
acter turns immediately to grasp the object (Figure 9d).

#T Time Bellman
residual

Average
reward

non-parametric 15960 3s 48.45 -231
parametric 13752 5s 29.63 -161

Figure 11: Comparison between parametric and non-
parametric planning controllers.
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(d) Parametric planning controller(c) Planning controller(a) First clip (b) Greedy controller

Figure 9: Comparison of different grasping controllers. (a) Every controller starts with the same first clip. (b) Greedy controller.
(c) Planning controller with non-parameterized motions. (d) Planning controller with parameterized motions.

(b) Inversely proportional to the effort(a) Independent of the effort (c) Proportional to the effort

Figure 10: Real-time near-optimal control. The character is asked to grasp the object (a) in any way, (b) in the easiest way,
and (c) in the hardest way.

5.4. Near-optimal Control

In this experiment, we demonstrate that our controller makes
near-optimal decisions in real-time. We modified the reward
function of the grasping controller to take into account the
effort required for the grasping motion. In general, the ef-
fort needed to perform a motion can be approximated by the
sum of squared torques computed via inverse dynamics. Fig-
ure 10b shows the result when the reward is inversely pro-
portional to the effort required for grasping. This motivates
the character to step close to the object and pick it in the
easiest way. If the reward is positively proportional to the
effort required for grasping the character stops at a distance
and picks the object in the hardest way, as shown in Fig-
ure 10c. This demonstrates that the character plans ahead to
maximize the long term reward.

6. Conclusions

We presented a reinforcement learning framework to obtain
motion controllers with parameterized motions. We use a
tree-based fitted iteration algorithm to approximate the opti-
mal long-term reward function. This approach is more flex-
ible and more robust than previous methods, and enables us
to design reward functions in a straightforward way. We also
described how to incorporate parameterized motions into
the learning framework. This allows us to control charac-
ters more precisely with a limited amount of input data. We
demonstrate that our approach generates natural animation
in real-time for different tasks that require planning.

We believe that the major limitation of our approach is

the problem of dimensionality. For more complex environ-
ments we need more control parameters to define the state
space. Unfortunately, computing time and memory require-
ments increase superlinearly with the number of dimensions,
as more motion data and training samples are required to
properly cover the state space. Hence, it is important to sam-
ple the high dimensional space effectively. The active learn-
ing framework proposed by Cooper et al. [CHP07] could
be useful, for it can adaptively determine which motions to
add to the system, avoiding capturing and storing nonessen-
tial motions. Shum et al. [SKY08] also utilize reinforcement
learning for human interactions, and they observe that the
subspace of meaningful interactions occupies only a small
fraction of the whole state space. They thus propose a way to
efficiently collect samples by exploring the subspace where
dense interaction occurs. This sampling strategy might also
help for high dimensional state spaces. We believe that our
approach to include parameterized motions in a reinforce-
ment learning framework is a first step to make this tech-
nique more practical. However, future research is required
to extend it to more complex environments.
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