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Abstract  

This paper presents a novel free-form surface recognition method from 2D freehand sketching. The approach is based on the 
Radial basis function (RBF), an artificial intelligence technique. A simple three-layered network has been designed and 
constructed. After training and testing with two types of surfaces (four sided boundary surfaces and four close section 
surfaces), it has been shown that the method is useful in freeform surface recognition. The testing results are very satisfactory.   
 
Categories and Subject Descriptors (according to ACM CSS): H.5.2 [Information Interfaces and Presentation]: Graphical 
user interfaces (GUI); I.2.10 [Artificial Intelligence]: surface modelling. 
    
                                                                                   
1. Introduction  
 
Shape design plays an important role in a product’s 
commercial competitiveness.  Currently, there exists little 
computational support for the early stages of form design 
as in conceptual design [QWJ01]. The early shape design 
process has the characteristics of fuzzy problems, tolerating 
high degrees of uncertainty and ambiguity. Various CAD 
systems have been developed to support  2D drafting and 
3D modelling of products, but they usually require 
complete, concrete and precise definitions on the geometry, 
which are only available at the end of the design process 
[GD00]. Therefore, at the early design stage, there is a 
strong need of intuitive and efficient geometric modelling 
tools for designers to effectively express, communicate and 
record their new ideas.   
 
   Freeform surface interpretation from 2D sketches is more 
difficult than recovering 3D polyhedra. Current solutions 
for polyhedra such as line-labelling schemes 
[Huf71][Clo71], The gradient space approach [Mac73], 
The linear System approach [VSMM00], and optimization 
method [LS96] are not suitable for freeform surface 
interpretation problems. Interpretation of drawings 
containing curved objects presents several unsolved 
problems because that many of the simplifying 
assumptions made in interpreting polyhedra do not hold for 
curved objects [VTMH04]. For example, for a curved 

object, a curved line may change from convex to 
occluding. It cannot have a consistent line label.  
Therefore, gesture-based systems [ZHH96][IMT99] have 
been developed to interactively create 3D freeform surface 
models. However, in order to deal with general engineering 
surfaces, the gesture-based method seems problematic. 
 
   In the vision community, there has been extensive 
research on object detection and classification based on 
learning [Ede93][RYA02]. The learning process must start 
with the selection of a class from which the concepts to be 
learned will be drawn. This selection poses the difficult 
problem of achieving a compromise between the
conflicting requirements of description and generalization. 
On one hand, the concepts are required to be sufficiently 
expressive to describe faithfully the target patterns and to 
capture any fine distinctions that may be present among 
them. On the other hand, concepts whose descriptions must 
be learned from examples and, at the same time, support 
generalization to novel situations should be kept as simple 
as possible. 
 
   In recent years, Artificial Neural Networks (ANN) have 
been widely applied to the function approximation, non-
linear mapping, prediction and pattern recognition 
problems. Neural networks are effective in these 
applications because of their learning capabilities. Artificial 
neural networks (ANN) techniques are biologically 
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inspired models analogous to the basic functions of 
biological neurons. They have been widely utilized to 
implement learning processes or solving the surface and 
vertex corresponding problems in multiple-view-based 3D 
object recognition systems [LLTL91], for classifying 3D 
objects from 2D images [DSC98], and for freeform surface 
reconstruction from range images in reverse engineering 
[GY95][BF02][PG90]. However, there are little reports of 
interpretation of freeform surfaces from 2D sketches using 
ANN. 
 
   This paper describes the development of the artificial 
neural network (ANN)-based freeform surface recognition 
method from on-line 2D sketches. In this study, the RBF 
network was selected as the recogniser because of its 
renowned function approximation, non-linear mapping and 
identification ability. The fundamental difficulty in 
recognising unknown 3D objects from 2D sketches (or 
images) is that one set of 2D sketches (a projection) may 
correspond to infinite numbers of 3D objects. Moreover, 
the sketches are typically drawn from an unknown 
viewpoint. Their appearance varies with different users and 
drawing skills. Therefore, the recognition algorithms need 
to be very robust.    
 
   The goal of the proposed freeform shape recognition and 
reconstruction method is to perform robust interpretation in 
3D to the 2D sketches regardless of the object orientation. 
The target applications are shape/form designs in 
product/industrial design.  The shape recogniser is a RBF 
neural network, which is trained by using some initial 
normalised 3D shape data and their corresponding 2D 
projection data, and then the unknown 2D sketches are 
normalised and sent into the 3D shape recogniser—the 
trained RBF neural network for automatically generating a 
corresponding 3D freeform shape. The method has been 
tested with a range of data and it gives satisfactory results. 
 
   The rest of this paper is organised as follows. The RBF 
network is introduced in Section 2. In Sections 3 and 4, the 
training data preparation and experimental results and 
performance tests are presented respectively. Finally, 
conclusions are drawn in Section 5. 
 
2. The RBF neural network structure and learning 

algorithm 
 
Radial basis function neural networks are special classes of 
the general feedforward neural network models. A RBF 
network is simply composed of three layers - one input 
layer, one hidden layer and one output layer - as shown in 
Fig. 1.  
 
   The nodes in the input layer pass the input data directly 
to the nodes in the hidden layer. The hidden layer is fully 
connected to the input layer and produces localized 
responses to the inputs. These hidden nodes perform 
significant nonlinear data transformation for output nodes 

in order to produce arbitrary output functions. Generally, 
the neurons in the hidden layer have a Gaussian activity 
function and their input output relationship is: 
 

( )2
( ) exp 1,2,...,j p j p jz f X b X C j M= = − − =�   (1) 

                           
where zj is the output of the jth node in the hidden layer, Xp 
={x1p,x2p,…,xNp} is the input pattern vector, Cj is the center 
vector of the Gaussian function for node j, bj is the inverse 
of the width associated with the kernel function of node j, 
through which we can control the receptive field of that 
neuron, and M is the number of nodes in the hidden layer.     
The value of zj is in the range from 0~1, and depends on 
the distance between Xp and Cj. The closer the distance is, 
the larger the output of the basis function is. The output 
layer is fully connected to the hidden layer. The nodes in 
the output layer summarise the hidden layer output values 
with weights. After the output values of the hidden nodes 
have been computed, the values for the output layer nodes 
can be calculated by: 
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where yk is the output of the kth node in the output layer, zj 
is the output of the jth node in the hidden layer, Wkj is the 
weight between the node j of hidden layer and the node k 
of output layer, and L is the number of nodes in the output 
layer. 
 

 
 

Figure 1: The Structure of the RBF neural network. 
 

 
   The outstanding issue associated with the development of 
a RBF network is the network structure determination and 
the parameters selection. They can be performed 
respectively or at the same time. In our research, the 
network structure determination and the parameters 
selection are performed respectively. The network structure 
is fixed in advance, and then the hidden layer parameters 
and the connection weights are adjusted through training.  
 
   The numbers of neurons in input and output layer are 
easy to determine and they are dependent on the task. The 

S. F. Qin, et al. / 2D Sketch Based Recognition of 3D freeform Shapes by Using the RBF Neural Network

c© The Eurographics Association 2005.

120



 

neuron number in the input layer is consistent with the 
dimension of the input feature vector and the neuron 
number in the output layer is consistent with the dimension 
of the desired output feature. The remaining unknown 
parameter about the network structure is the number of 
neuron in the hidden layer. It is critical because it 
determines the non-linear behaviour of the network. In 
general, it can be set according to some heuristical 
considerations. The more hidden nodes are used, the more 
accurate the approximation is. If the number of hidden 
nodes is too small, the network cannot approximate the 
underlying function accurately. On the other hand, if too 
many hidden nodes are used, the network will over-fit the 
training samples and results in poor generalization. In our 
research, the optimum number of hidden units was 
determined by experimentation. 
 
   The appropriate parameter values of the center Cj and the 
width bj of the kernel function in the hidden layer and the 
connection weights Wkj of the output layer are determined 
through the back-propagation learning algorithm. The 
learning process consists of two phases, feed-forward and 
back-propagation.  During training, an input vector Xp is 
fed to the network and propagated to the final layer, then 
the output is compared with the desired output and the 
error is back-propagated, so that the parameter values and 
weights can be adjusted. 
 
The back-propagation learning algorithm is shown below: 
 
(1) Initialization: Cj , bj and Wkj are initially set by some 

random values in the range [0, 1]. 
 
(2) Forward pass: Arbitrarily choose the input feature 

vector 1 2[ , ,..., ]T
p p p Npx x x=X and the desired 

output Dp=[d1p, d2p,...,dkp]
T from the training sample 

set and feed it to the network, compute the network 
outputs by proceeding forward through the network, 
layer by layer. 

 
(3) Backward pass: Calculate the sum-squared error Ep and 

error gradients versus the parameters p

kj
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where ykp is the output of the kth node in output layer, 
dkp is the desired output of the kth node.  
 

(4) Update parameters through an iterative process: 
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     Where  η1, η2, and  η3, are rates of learning with respect 
to parameters Wkj, Cj, bj.  

 
(5) Repeat the algorithm for all training samples, if one 

epoch of training is finished, repeat the training for 
another epoch, until the precision or the training times 
reach their predetermined values. 

 
   After training, the well-trained RBF NN can be used for 
recognising unknown 3D freeform surface from 2D 
sketching data. 
 
3. Training data acquisition and normalization for 3D 
freeform surface recognition                  
 
In order to train our RBF network, we generate a set of 
training data between known 3D freeform surfaces and 
their 2D isometric projections. The 2D and 3D coordinates 
are directly used as feature data.  
 
   Given a 3D shape surface represented by a set of points  
(N data points on or control points of the surface curves), 

{ }NizyxPS i ,,2,1),,( �== , 

Its variation can be obtained by either randomly disturbing 
its original data point positions or rotating it rigidly 
between –30 to +30 degrees about X, Y, Z axes 
respectively so that unknown view points in the real world 
and ambiguity in sketch strokes can be mimicked. Let the 
original shape has  
P-1 variations, in total, there are P similar shapes  for 
training. The resulting 3D training data set T is represented 
as a one-dimensional vector with the K=3*N*P coordinate 
component elements. 
 

{ } { }KktPpST kp ,,2,1,...,2,1 �====  

 
   In order to deal with general surfaces, the 3D coordinate 
data set is firstly normalized in a unit volume as shown in 
Fig.2.  The normalization is performed in two steps: 
 

(1) Search for the minimum element within the 
training data vector and check if it is negative. If 
so, the vector will be translated by adding the 
absolute the value of the minimum element to all 
elements in the vector. 

 

c© The Eurographics Association 2005.

S. F. Qin, et al. / 2D Sketch Based Recognition of 3D freeform Shapes by Using the RBF Neural Network 121



 

 

(2) Search for the maximum element within the 
vector, and normalize the training vector by 
dividing all elements by the maximum element (a 
scaling transformation), so that the training 
shapes will be within a unite volume. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   After normalizing the 3D training data, their 2D 
isometric projections can be obtained easily. All resultant 
3D coordinates and corresponding 2D data sets are then 
used for training our RBF neural network. 
 
   For the learning purpose, 2D sketched input has to be 
normalized in accordance with the 3D normalization. 2D 
sketches can be described in a 2D window system Xw-Yw 
(Fig. 3). Its origin is at the lower left corner. Similar to 
screen display resolutions, an actual window may has 
different heights and widths. However, we can still regard 
the window as a square without losing information if using 
the bigger value (H) between its height and the width to 
represent it. With reference to the isometric projection, 
from the middle point on the bottom line we draw two lines 
paralleling to two isometric axes respectively. Similarly, 
two lines are drawn from the central point on the top line. 
These four lines combining with the left and the right edges 
of the window form a projection region, which responds to 
the biggest area within the window to describe an isometric 
projection of a cube positioned like the unit volume in Fig 
2. The 2D sketch normalization process has four steps as 
follows. 

 
(1) Scale 2D sketches (four curves in blue color in 

Fig. 3) to the centre point C (H/2, H/2) of the 
window to make sure the sketches are within the 
project region. Draw ray casting lines from the 
centre to 2D sketched points (small circle on 
sketched curves) and check if a sketched point is 
out of the projection region. If so, calculate a 
scale factor to get the point in. After checking all 
sketched points, the smallest factor will be 
applied to all points to achieve our goal. 

(2) Scale 2D sketches again to the centre point by a 
fixed scaling factor: 2*0.82/H (0.82 is the 
foreshortening factor of an isometric projection). 

(3) Translate the origin of the window system to the 
centre C. 

(4) Translate all points along y-axis by –0.82. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Currently, in our system, every 3D freeform surface 
consists of 4 three-dimensional curves. For each 3D curve, 
we specified it by four 3D edit points on the curve and then 
generate a standard cubic Coons curve with 11 parameter 
points. All these 44 parameter points will then be used for 
representing a shape. In order to mimic unknown view 
points in the real world, we randomly vary the positions of 
3D edit points and allow the varied 3D edit points have 
rigid rotations between –30 to +30 degrees about X, Y, Z 
axes respectively. All these variations will have their 
corresponding new shapes (each shape has 44 points). 
After receiving the variations, all points associated with the 
shapes will be used to normalize the 3D training data. 
 
   Each normalized shape with 44 normalized 3D points 
will be then isometric projected on the 2D projection plan. 
Note that the projection is automatically consistent with the 
2D sketch normalization. The pair of normalized 3D 
coordinates data (xi, yi, zi | i=1, 2, … , 44) and 
corresponding 2D coordinate data (sxi, syi | i=1, 2, … ,44)  
then be used for training data.  
 
   By the method mentioned above, we have obtained the 
required training data set of a 3D freeform surface and their 
corresponding 2D projection data set. The dimension of a 
2D training vector is 88 (44x2) and the dimension of a 3D 
training vector is 132 (44x3). In total we obtained 370 
shape variations. Among them, we randomly picked up 300 
shapes as a training sample set and left 75 for network 
testing. For training the recogniser, the 2D training vector 
of a shape is inputted into the input layer of the neural 
network, while the corresponding 3D training vector is 
uploaded in the output layer for supervised network 
learning. After the training, we first used a group of 2D 
training vectors from the 75 left shapes as inputs to the 
recogniser and the corresponding 3D outputs are regarded 
as learning outcomes. By comparing the 3D outputs to their 
corresponding 3D original shape data, the recogniser can 
be evaluated if it is ready for recognising shapes from 
sketches. If the recogniser is well trained, it can take 
sketches as input and output 3D desired shapes. If it is not 
good enough, the further training may be needed.  
 

1 1 
1 

X 

Y 

Z 

Figure 2: 3D data normalisation 

C  

30   
Xw 

Yw 

(H, H)  

Figure 3: 2D sketch normalisation 
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4. Experimental results and performance tests 
 
In our research, because the dimensions of the 2D input 
data and the 3D output data are 88 and 132 respectively, 
the neuron numbers of the input layer and output layer are 
N=88 and L=132 correspondingly. The number of hidden 
neuron is 100, determined by experiment.   
 

     After the structure of network has been determined, the 
training sample set is utilized to train the network 
according to the Back-propagation learning algorithm 
mentioned in section 2.  

 
      The Fig 4 gives the changes of the sum-squared error and 

leaning rate. After 2741 epochs, the neural network 
converged to a predefined threshold (T). From the learning 
rate graph, it can be seen that the learning rate decreased 
sharply and with stability towards a stable state. Then the 
recognition performance of the RBF network was tested 
with the test sample set. To do so, two groups of 
experiments were made.   

 
      We trained the RBF network by two types of surfaces: 

cross-sectional surfaces and four-sided surfaces. Each 
surface has four curves but their topology is different. This 
means we could use any four curves to represent any type 
of surface. Here we only show two types of surface in 
terms of open topology surfaces (cross section curves) and 
full-connected surfaces (four sided patches). On each 
curve, 11 parametric points with equal parametric intervals 
are used to represent a smooth curve. Some experimental 
results are given in Figures 5 and 6.  

 
       Fig.5 shows the recognition result of a four-sided surface. 

The Fig.5 (a) shows the original 3D surface. This surface 
was isometric-projected on the XY plane. The 
corresponding 2D data was then fed to the neural network. 
The output of the neural network is shown in the Fig. 5(b) 
as a reconstructed 3D freeform surface.  

 
       Fig.6 illustrates the recognition result of a desired cross-

sectional curved surface (Fig. 6a). This surface was 
represented by four cross sectional curves (Fig 6b). Those 
curves were then projected and fed into the neural network 
and reconstructed to a surface with rendering (Fig 6c).  

 
       Fig.7 shows a design example. The Original freehand 2D 

sketch (Fig. 7a) has been extracted with 44 points on its 
four sides (Fig 7b). Those 2D points were normalized 
before being applied to the neural network. The 
corresponding data resulted in a 3D freeform surface (Fig 
7c) from the neural network. The result is very satisfactory. 
From our experiments, the average error between the 
desired 3D surface and recognized 3D surface over all our 
test sample data (75) is less than 0.1 (in normalized space). 
From the results above, we observe that the RBF network 
performs very well in 3D freeform surface recognition.  

 
 

  Figure 4: The changes of the sum-squared error and 
learning rate. 

 
Figure 5(a) An original four-sided 3D surface in world 
coordinate system 

 
Figure 5(b): The 3D freeform surface reconstructed by NN 

 
Figure 5: Recognition result of a four-sided surface 
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Figure 6(a): The desired surface. 
 
 

 

 
 

Figure 6(b): Cross sections for recognition. 
 
 
 

 
 

Figure 6(c): Recognized surface with rendering. 
 
 
 

Figure 6: Recognition of a cross-sectional surface 
 

 
 

 
 

Figure 7 (a): The original 2D freehand sketch. 
 
 
 
 

 
 
 
 Figure 7 (b): Extracted with 44 points on its four sides 

 
 

Figure 7 (c): The resultant surface. 
 

 
Figure 7. A design example 
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5.Discussion and conclusion 
 
This paper presents a RBF neural network-based surface 
recognition method from 2D sketches (or 2D drawings). 
The results have shown that ANN techniques can be used 
for shape learning from 2D sketches.  
   For creating training data, currently, we only employed 
known 3D shapes and their corresponding 2D projections. 
The reason for not directly using sketches for training is 
because that based on 2D sketches, we don’t know their 
corresponding 3D information. If we have a design 
database holding freehand sketches and their corresponding 
3D information, it is possible to use the real sketches for 
training. 
 
   Current training data is based on 44 3D points on 4 
surface curves. Points on each curve have an equal 
parametric space. The reason for selecting 4 curves is that 
4-sides surfaces are easy to compute.  Dividing each curve 
by 10 in its parametric space is easy again to give 11 
points. Actually, these 44 points can be on many numbers 
of curves such as 1, 2, 3, or 5. In the neural network, each 
coordinate component is separately represented by a 
neuron. Thus, it is believed that impact of their data 
structure on the network’s performance is not significant. 
In theory, these points can be distributed randomly on the 
surface. Our examples have shown that four curves can 
have arbitrary topology such as full connected (4 side 
surface) or totally open (4 cross-sections).  Furthermore, 
the training data can be control points for a surface as well.  
 
   On the other hand, from the trained neural network, we 
can only receive 44 normalised 3D points. In order to 
reconstruct 3D surfaces, we need to know some constraints 
such as first 11 points on one curve and the following 11 
points on another. This is the other reason for using curves 
as constraints. Otherwise, we will receive a group of 3D 
data and have to use general surface approximation method 
to get a surface. This will have difficulties in determining 
boundaries of the surface. 
 
   For the training data, we assume that designers prefer to 
describe 3D shapes in a modelling system and then create 
their projections separately. For example, if a face is 
parallel to the YZ plane perceptually, points on the face 
will be assumed to have the same x coordinate component. 
Therefore, in our system, a 2D point (isometric projection) 
has different x and y coordinate components from its 
corresponding 3D points. This is different from the 2 1⁄2 
inflation system as [VSMM00, LS96]. We cannot simply 
learn z component only for each 2D training point. 
 
   Currently, the number of input layer nodes is related to 
the number of curves. This brings the limitation on 
freehand sketches.  In order to support any types of 
sketched 2D input, we are going to use scan-line 
techniques to divide a 2D sketch after normalisation by a 
group of grid lines. Each grid point may require a node on 
the input layer. If we can map a corresponding 3D point for 

each 2D grid point, then the network can be used for 
general surface training. As a result, the final learnt surface 
could be represented by a set of 3D points, which can be 
constructed by reverse engineering methods.   
 
   In order to make learning more efficiently (in terms of 
both computation and number of examples), as pointed in 
[RYA02], using complex intermediate representations 
extracted from raw data rather than raw data itself will 
benefit future work on recognition and in particular, robust 
recognition under realistic condition. For example, Lipson 
and Shpitalni [LS02] have used 3D-2D geometric 
correlation such as angles to recognise 3D objects from 2D 
drawings.  If we can learn from intermediate attributes 
rather than raw data, the learning processing may become 
more efficient and robust. 
 
Acknowledgement 

 
This work was funded by the UK EPSRC grant 
(GR/S01701/01). 
 
 
 
References 
 
[BF02]  BARHAK J., FISCHER A.: Adaptive reconstruction of 

freeform objects with 3D SOM neural network grids. 
Computers & Graphics 26 (2002), 745-752. 

[Clo71]  CLOWES M.B.: On seeing things. Artificial            
Intelligence 2(1) (1971), 79-112. 

[DSC98]  DESCHENES S., SHENG Y., and Chevrette P.C.: 
Three-dimensional object recognition from two-
dimensinal images using wavelet transforms and neural 
networks. Opt. Eng. 37(3) (1998), 763-770.  

[Ede93]  EDELMAN S.: On learning to recognize 3D objects 
from examples. IEEE Transactions on Pattern  Analysis 
and Machine Intelligence 15 (8) (1993), 833-837. 

[GD00]  GROSS M.D., DO E.Y.L.: Drawing on the back of 
an envelope: A framework for interacting with 
application programs by freehand drawing, Computers 
& Graphics. 24 (2000), 835-849. 

[GY95]  GU P., YAN X.: Neural network approach to the 
reconstruction of freeform surfaces for reverse 
engineering. Computer Aided Design 27 (1) (1995), 59-
64. 

[Huf71]  HUFFMAN D.A.: Impossible objects as nonsense 
sentences. In: Meltzer, Michie D., editors. Machine 
Intelligence, Edinburgh University Press. (1971), 295-
323. 

[LLTL91]  LIN W.C., LIAO F.Y., TSAO C.K. AND LINGUTLA 

T.: A Hierarchical Multiple-view Approach to Three-
Dimensional Object Recognition. IEEE Trans. Neural 
Networks 2 (1) (1991), 84-92.  

[IMT99]  IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: 
a sketching interface for 3D  freeform design. 
SIGGRAPH Computer Graphics proceedings  (1999), 
409-416. 

c© The Eurographics Association 2005.

S. F. Qin, et al. / 2D Sketch Based Recognition of 3D freeform Shapes by Using the RBF Neural Network 125



 

 

[LS96]  LIPSON H., SHPITALNI M.: Optimisation-based 
reconstruction of a 3D object from a single freehand line 
drawing. Computer-Aided Design 28(8) (1996), 651-663. 

[LS02]  LIPSON H., SHPITALNI M.: Corelation-based 
reconstruction of a 3D object from a single freehand 
sketch. AAAI Spring Symposium on Sketch 
Understanding, AAAI Press, Melno Park, CA. (2002), 
pp. 99-104. 

[Mac73]  MACKWORTH A.K.: Interpreting Pictures of 
Polyhedral Scenes. Artificial Intelligence Vol. 4 (1973), 
pp. 121-137. 

[PG90]  POGGIO T., GIROSO F.: Regularization algorithms 
for learning that are equivalent to multi-layer networks. 
Sci. 247 (1990), 978-982. 

[QWJ01]  QIN S.F.,WRIGHT D.K., JORDANOV I.N.: A 
conceptual design tool: A sketch and fuzzy logic based 
system. Proceedings of The Institution of Mechanical 
Engineers Part B-Journal of Engineering 
Manufacturing. 215 (2001), 111-116. 

[RYA02]  ROTH D., YANG M.S. , AHUJA N.: Learning to 
Recognise Three Dimensional Objects. Neural 
Computation 14 (2002) 1071-1103. 

[VSMM00]  VARLEY P.A.C., SUSUKI H., MITANI J., 
MARTIN    R.R.: Interpretation of Single Sketch Input for 

Mesh& Solid Models, International Journal of Shape 
Modeling  6( 2) (2000), 207-240. 

[VTMS04]  VARLEY P.A.C.,TAKAHASHI Y., MITANI J., AND 

SUZUKI H., A two-stage approach for interpreting line 
drawings of curved objects, EUROGRAPHICS  Workshop 
on Sketch-based Interface and Modeling, 2004. 

[ZHH96]  ZELEZNIK R.C., HERNDON K.P., and Hughes J.F.: 
SKETCH: an interface for sketching 3D scenes. 
SIGGRAPH Computer Graphics Proceedings (1996), 
163-170.  

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 

 
 
 
 
 
 

                     
 
 
 
 
 
  

c© The Eurographics Association 2005.

S. F. Qin, et al. / 2D Sketch Based Recognition of 3D freeform Shapes by Using the RBF Neural Network126


