
EG UK Theory and Practice of Computer Graphics (2010)

John Collomosse, Ian Grimstead (Editors)

Integrating Haptic Interaction Into An Existing

Virtual Environment Toolkit

Peter Scopes and Shamus P. Smith†

School of Engineering and Computing Sciences

Durham University, Durham, United Kingdom

Abstract

There is increasing demand for haptic, or touch-based, interaction in virtual environments. Although many haptic

devices come with APIs to enable the development of haptic-based applications, many do not provide the same

level of graphical support available in virtual environment or game technology toolkits.

This paper will discuss the integration of haptic interaction into an existing virtual environment toolkit. By creating

a flexible middleware component, haptic interaction and force feedback for a haptic device can augment sensory

experiences in existing virtual environments. A user study was conducted to evaluate the integration of haptics and

realistic physics in an example virtual environment.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Methodologies]: Computer

Graphics[three-dimensional graphics and realism] D.2.13 [Software]: Software Engineering[reusable software]

1. Introduction

Virtual environments are commonly visually oriented. A

contributing factor has been the technological constraints

on providing a richer sense-based environment [Kal93].

Over the last decade visual technologies have matured and

it is now common to find virtual environments using a

range of visual-oriented technology, for example desktop

monitors, head-mounted displays and surround-screen dis-

plays [BKLP05].

Interaction in such virtual environments, and the poten-

tial for complex and realistic interactions, has been driven

by the dominance of these visual technologies. This has lim-

ited the veracity of the resulting interaction [Smi07]. Stan-

ney et al. [SMK98] note that “multimodal interaction may

be a primary factor that leads to enhanced human perfor-

mance for certain tasks presented in virtual worlds.” Unfor-

tunately to be able to touch or feel virtual objects has been

constrained to bulky and expensive equipment. However, re-

cent advances in technology has meant that haptic devices

are now being used in all manner of applications [WB06] in-

cluding medical device simulation, computer aided design,

† Correspondence author: shamus.smith@durham.ac.uk.

visualisation and the graphic arts [BS02]. Virtual environ-

ments using sight and touch are quite feasible, but there is

a dearth of resources for building such multimodal environ-

ments.

Although there are a number of virtual reality (VR) toolk-

its available, most prioritise graphical rendering, usability

issues and the support of 3D graphical models. It is less

common to find general VR toolkits that also support sen-

sory feedback as provided by haptic cues. A contributing

factor has been the immaturity and availability of the as-

sociated output technology. However, reduced cost hard-

ware is now available to support novel and complex in-

teractions as seen in the use of 3D spatial interaction us-

ing the Nintendo Wii [LaV08] and force feedback inter-

action with affordable haptic devices such as the PHAN-

TOM Omni (http://www.sensable.com) and the Novint Fal-

con (http://home.novint.com). It is common for support for

such technology to be by the hardware developers, although

there is increasing interest in device independent APIs for

use in existing graphical applications, such as VR toolkits

and gaming engines [DP07].

This paper describes the integration of haptic, or touch-

based, interaction into an existing virtual environment en-

gine. A framework was developed to allow developers to

c© The Eurographics Association 2010.

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG10/241-248

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/241-248


P. Scopes & S. P. Smith / Integrating Haptic Interaction

transparently integrate haptic cues into virtual environment

applications. A number of example virtual environment and

haptic APIs were reviewed and a middleware library was

constructed. A user study was conducted to evaluate the user

perceived realism and accuracy of the haptic integration.

2. Related Work

Much of the related work has focused on the development

of environments to integrate visual and haptic representa-

tions. These systems, which are typically sets of C++ li-

braries, aim to move away from the traditional use of low-

level haptic device drivers or APIs supplied with specific de-

vices, for example those provided by SensAble Technolo-

gies, developers of the PHANTOM range of haptic devices

(http://www.sensable.com), and Reachin, developers of the

Reachin Display supporting co-located visual/haptic experi-

ences (http://www.reachin.se). This section will overview a

number of relevant examples of visual/haptic development

environments and some recently developed haptic library

technologies.

CHAI 3D (http://www.chai3d.org) is a freely available set

of C++ libraries for graphics and haptic rendering which has

built-in support for multiple haptic devices. CHAI 3D is de-

signed to tightly integrate haptics and visual representations

of objects and to remove the complexities of individual hap-

tic devices. The graphics rendering is built over OpenGL and

allows mono and stereo graphics. This system is an exam-

ple of an integrated development environment which can be

used to construct multimodal virtual worlds. By integrating

the visual and haptic representations of objects into a single

set of libraries allows a developer to build applications at a

higher abstraction level than when working with individual

haptic devices.

The H3D API (http://www.h3dapi.org) is an open source

haptics software development platform that uses the open

standards OpenGL and X3D (http://www.web3d.org/x3d)

with haptics in one unified scene graph to handle both graph-

ics and haptics. It aims to be both cross platform and de-

vice independent while supporting a reduction of data re-

dundancy as it can render graphics and haptics from the one

scene graph.

TheOpenSceneGraph (http://www.openscenegraph.org)

(OSG) project is a scene graph graphics toolkit designed

for the development of high-performance graphics applica-

tions. OSG is open source and provides an object oriented

framework on top of OpenGL. This supports rapid applica-

tion development as the developer is not restricted to low-

level graphics calls. The OSG project aims to make scene

graph technology available to both commercial and non-

commercial users. Key strengths include performance, scal-

ability and portability.

De Pascale and Prattichizzo [DP07] describe the Hap-

tik Library (http://www.haptiklibrary.org). This system was

developed to provide easy but powerful low-level access to

haptic devices from different vendors. It has a component

based architecture and supports plug-ins to support new de-

vices and drivers to be added without recompilation of the

library or existing client applications. De Pascale and Prat-

tichizzo demonstrate a number of alternative plugins for

Haptik and note its use in a robotic system. The library was

evaluated by considering callback timings to a PHANTOM

haptic device and they concluded that the Haptik library

runs at least as fast as applications using low-level haptic

libraries, such as the CHAI API. Their work does not detail

any user performance evaluation of the Haptik Library.

Pava and MacLean [PM04] consider a middleware ar-

chitecture for distributed implementations across multiple

computers on a network to support haptic rendering and

visualisation processes. Their system provides an extend-

able, device-independent and network-transparent interface

to I/O devices. They evaluated their system with timing ex-

periments which demonstrated the feasibility of using a dis-

tributed object computing architecture for multimodal appli-

cations.

3. Integrating Haptic Interaction

There are many different virtual environment engines and

toolkits available. In the context of this work, we reviewed a

number of different systems which were either open source

or free-ware. A number of dimensions to support initial

graphical engine/toolkit selection were determined includ-

ing (i) programming language used, (ii) the native system

language, and (iii) any evidence of documentation, tuto-

rials and an online development community. Section 3.1

overviews a number of candidate graphical systems and Sec-

tion 3.2 overviews candidate haptic APIs.

3.1. Virtual Environment Engines

The Blender Game Engine (Blender GE) was developed

from Blender (http://www.blender.org), a 3D content cre-

ation suite. Blender is an open source modelling and ani-

mation software and is free under the GNU General Pub-

lic License (GPL). The game engine is embedded into the

Blender program and as such isn’t the main focus of the

program. Blender is mainly a modelling and animation pro-

gram, though the functions and capabilities of the game en-

gine are growing with each release of the system. The doc-

umentation for the GE is a work-in-progress. Unlike most

other virtual environment engines, the Blender GE is much

more focused on 3D models and graphical interfaces as op-

posed to the programming, though scripting in the form of

Python is possible. To support haptic interaction it is likely

that it would require re-writing parts of the engine kernel.

Although this would allow for a more full integration of the

haptics into any developed virtual environments it would re-

quire expert knowledge of the kernel, with associated time

implications.

c© The Eurographics Association 2010.

242



P. Scopes & S. P. Smith / Integrating Haptic Interaction

OGRE (http://www.ogre3d.org) (Object-Orientated

Graphics Rendering Engine) was built from, and is being

maintained by, a small core development team support with

a large group of independent contributors. OGRE is open

source and is free under the GNU LGPL. As the name

suggests it is not a game engine, a modelling program nor an

all-in-one solution. The ideology behind OGRE is that it is

to be used as a component in a custom virtual environment

engine. The aim is not to force developers to use a specific

modelling program or game logic but to allow developers

to choose the best components that fit their current project.

There is a large community of users to help support other

users. OGRE is a very customisable tool, written in C++

and can be compiled onto the different platforms including

Windows, Linux and Mac OSX. It has a component-based

design which would allow plug-ins or libraries to be written

to integrate haptics. Although it is open source, and thus

it would be possible to re-write the kernel, the complexity

and the component based nature of OGRE could make this

problematic.

The jMonkey Engine (http://www.jmonkeyengine.com)

(jME) is a scene graph based API created to be a high perfor-

mance graphics engine for the Java language. It uses an ab-

straction layer to allow any rendering system to be plugged

in. jME is open source under the BSD (Berkeley Software

Distribution). jME is focused on allowing the use of all the

features that graphics cards can give and making it easier for

developers to use them. As it is written in and for Java, it

is thus naturally multi-platform. Although the modular ap-

proach to design and the object oriented (OO) structure of

Java would help in the development, many haptic devices

and haptic APIs are written in C++. This could add compli-

cations in developing middleware or direct kernel modifica-

tion for haptic device support.

Java3D (https://java3d.dev.java.net) is a scene graph

based API which runs on top of either OpenGL or Direct3D.

It provides a high-level interface for creating and manipulat-

ing 3D geometries and building structures used in rendering

geometry. Java3D is an open project, but not open source, re-

leased under the BSD licence. Java3D is written in Java and

hence has the same multi-platform functionality as the Java

platform. As it is common for haptic devices to be written

in C++, this would make integrating the haptics with Java3D

challenging. Although Java boasts the JNI (Java Native In-

terface) which allows other languages, such as C, C++ and

assembler, to call Java code that is running in the Java vir-

tual machine, Java3D is not open source and thus it would

not be possible to modify or make changes to the underlying

kernel.

MAVERIK (http://aig.cs.man.ac.uk/maverik) [HCK∗01]

is a VR toolkit developed by the Advanced Interfaces Group

(AIG) at The University of Manchester (UK). MAVERIK is

designed to primarily deal with graphical and spatial man-

agement allowing it to support, among other things, high-

performance rendering. Due to its design MAVERIK pro-

vides a stable environment for rapid production of com-

plex virtual environments as well as many functions that

are useful for developing applications with 3D graphics

and/or using 3D peripherals. MAVERIK is made up of

two components, the micro-kernel which implements a set

of core services and framework, and the supporting mod-

ules which contain methods for various functionalities.

MAVERIK is open source and free under the GNU GPL li-

cence. MAVERIK uses a novel approach to data represen-

tation. Instead of converting the data into a native format,

like other VR systems, it avoids this by using its own in-

ternal data structures which leads to two important benefits.

It can easily take advantage of optimisations that are highly

application specific and it can readily dynamically adapt to

a wide range of application demands. It is written entirely in

C++ which will allow a library to be written to directly in-

corporate haptics or alternatively the kernel could be altered

and recompiled.

The Irrlicht engine (http://irrlicht.sourceforge.net) is a

high performance 3D engine with a high level API for creat-

ing complete 2/3D applications like games and scientific vi-

sualisations. It is free and open source under its own license

based on the zlib/libpng license. Irrlicht is purely a graphics

engine and as such has no sound built into it but offers a free

plug-in called irrKlang (http://www.ambiera.com/irrklang)

and offers other tools to support development. It is platform

independent and rendering can be done using Direct3D,

OpenGL and some of its own renderers. It also supports a

large range of different input file formats and bindings which

makes the engine available to all .NET languages. Irrlicht

comes with a variety of common special effects, such as re-

alistic water surfaces, and dynamic shadows. It is written en-

tirely in C++ and boasts full object oriented design. Since it

is open source, the kernel of the engine could be re-written

to allow for haptic integration as could an extension library

be written or plugged in.

Coin3D (http://www.coin3d.org) is a high-level 3D

graphics toolkit designed to be fully backward compatible

with the Open Inventor API since Open Inventor 2.1 is a

de facto standard for 3D visualisation and visual simulation.

Coin3D is portable over many platforms and is under duel

release licenses GNU LGPL and PEL (Professional Edition

License). It is built on top of OpenGL and uses scene graph

data structures to render the 3D graphics. It also implements

user interface bindings to open window management which

it does through a number of libraries and comes with sev-

eral file I/O libraries. Coin3D saves CPU resources by only

redrawing when the scene data is changed making it bet-

ter suited for user interface-based applications. Coin3D is

able to work with OpenGL allowing a gradual change over

from an application purely in OpenGL to Coin3D. Since

Coin3D is available under the GNU LGPL for free-software

this would allow the source code to be altered to integrate

c© The Eurographics Association 2010.

243



P. Scopes & S. P. Smith / Integrating Haptic Interaction

haptics. An external library/toolkit could also be written to

integrate haptics into this graphics engine.

3.2. Haptic APIs

The OpenHaptics toolkit, from SensAble

(http://www.sensable.com), aims to give software de-

velopers the ability to add haptics into a wide range of

applications, from games to simulations and visualisations.

The toolkit was patterned after OpenGL to support learnabil-

ity for graphics programmers. It provides haptics commands

so that developers can use existing code for specifying

geometry to give properties such as fiction and stiffness.

OpenHaptics is designed to be extendable so that extra

functionality can be implemented and third-party libraries

can be integrated. The toolkit only supports SensAble haptic

devices, e.g. the PHANTOM range of haptic devices, but

is cross-platform. The toolkit provides two libraries, the

Haptic Device API (DHAPI) which a low-level API and the

Haptic Library API (HLAPI) which is a higher level API.

These two libraries aim to allow users of the toolkit to gain

precise control or a higher level abstraction as needed.

HAPI (http://www.sensegraphics.com) is a haptics ren-

dering engine which is device independent with built-in sup-

port for multiple haptic devices. It is open source and cross

platform and released free under the GPL license. HAPI is

written entirely in C++ and was created in the development

of H3D, a scene-graph API (see Section 2). It is designed to

be modular and all the features can be extended or modified

by users. It allows force generation from 3D graphics and is

tested with both DirectX and OpenGL. HAPI gives the user

collision handling, haptics rendering algorithms, surface in-

teraction, force effects and thread handling. HAPI is both

a good example of a haptics API and a good candidate to

be used in the integration of haptics into an existing virtual

environment. It allows developers to work at a higher level

of abstraction than other haptics APIs, e.g. the OpenHaptics

toolkit. As it is open source, modifications would be possible

if the need arose to implement extra functionality.

DHD-API (http://www.forcedimension.com) is a haptics

API from Force Dimension which, by hiding the complexi-

ties of haptic programming, enables users to add haptic ca-

pabilities to their applications quickly and easily. It allows

users, when required, to use a range of low-level calls to pro-

vide advanced control over haptic devices. It is available on

all major operating systems. It has a modular design provid-

ing a single programming interface with consistent syntax

and also has built in third-party support for other haptic vi-

sualisation packages. The DHD-API is a commercial prod-

uct from Force Dimension which is written in C/C++. It is

not a candidate for the haptic API that will be used as it is

not a free API and it is very much aimed at Force Dimension

products.

3.3. Virtual Environment Engine and Haptic API

Selection

Even within the small subset of virtual environment engines

that have been considered in Section 3.1 there are a number

of potential candidates, such as MAVERIK and Irrlicht, to

choose from to integrate into a haptics API. A summary of

the key features of each of the reviewed virtual environment

engines can be seen in Table 1. Although many of the vir-

tual environment engines are suitable candidates, OGREwas

chosen because it is very powerful, customisable, designed

for plug-ins and has a large active development community.

There are fewer freely available haptic APIs. This is un-

surprising considering that haptics is a relatively new field

and there isn’t such a large commercial backing as there is

behind graphics nor are haptic devices commonly in use.

The OpenHaptics toolkit only works with SensAble prod-

ucts which would limit the usage of any middleware using

this. This restriction isn’t necessary as there are other APIs

which offer the same service but also allow for other product

lines. DHD-API is able to support more haptic devices than

just those from the manufacturers’ product line which would

therefore be desirable but as it is not free, this leaves HAPI

as the choice for the haptic API to use. It has number of ad-

vantages including that it is free, supports third-party haptic

devices and it provides a high level interface. Therefore we

have developed a set of middleware libraries to sit between

OGRE and HAPI called OgreHAPI.

4. OgreHAPI

There are generally three alternatives when attaching hap-

tic devices to a virtual environment engine/toolkit. Either (i)

write a new device driver, (ii) use a device specific API or

(iii) use a device independent API. Also if the virtual envi-

ronment is open source then any of these solutions could be

written directly into the kernel code, requiring a recompila-

tion of the kernel, or alternatively via a higher level abstrac-

tion layer, e.g. a toolkit API (see Figure 1).

Figure 1: Integrating haptic devices into virtual environ-

ments.

We chose to implement OgreHAPI as a middleware com-

ponent between a haptic API and a virtual environment

c© The Eurographics Association 2010.

244



P. Scopes & S. P. Smith / Integrating Haptic Interaction

Languages Community Documentation Tutorials Native code

Blender GE Python Large, active Work-in progress Yes C++

OGRE C++ Large, active Yes Yes C++

jMonkey Java (C,C++)* Large, active Java doc Yes Java

Java3D Java (C,C++)* Large, active Java doc Yes Java

MAVERIK C,C++ Yes Demos C++

Irrlicht C++ Large, active Yes Yes C++

Coin3D C++ Mailing lists Yes Yes C++

Table 1: Summary of virtual environment engine features (* available through JNI).

toolkit API as integrating directly into the kernel of a vir-

tual environment engine would require a high level of ex-

pertise of the engine and could result in undesirable, and

hidden, consequences due to dependability issues between

components in the kernel. Also as both OGRE and HAPI

are third-party applications, changing either kernels would

irrevocably customise the final system. This is against the

ethos of both OGRE and HAPI. Finally, working at a kernel

level would be very time consuming as building the kernel

of OGRE takes 20+ minutes to compile.

In the simplest form OgreHAPI works by attaching Ob-

jects, which describe the haptic shape, position, orientation,

etc. to OGRE scene nodes. These objects are then put into

the haptic Space so that they will be rendered. A FrameLis-

tener ensures that before each frame is rendered the positions

and orientations of all the Objects in the haptic Space are

updated to match the scene node that they are attached to.

Furthermore the FrameListener handles input device input

(such as keyboards) and updates the position and orientation

of any environment avatar representing the haptic device in

the OGRE world.

A call to update positions and orientations will also check

to see if the haptic device is within the bound object of the

Object. If so, it will render it relative to the position and ori-

entation of the camera in which the OGRE world is being

observed. This way the user can explore the world both vi-

sually and haptically.

The OgreHAPI library is made up of five main classes.

• OgreHAPIPrimitives: Pre-built primitive OgreHAPI ob-

jects including Sphere (a primitive haptic shape),

MeshObject (a haptic shape based on a specified mesh)

andMeshObjectAnimated (a haptic shape based on a spec-

ified mesh with animation).

• OgreHAPIObject: This is a haptic object to be rendered.

This class keeps track of position, orientation, shape, etc.

of the haptic object.

• OgreHAPIFramelistener: Keeps the haptic rendering

update-to-date with the specified SceneManager project-

ing the rendering so that it is relative to the camera po-

sition and orientation. It provides a means of control-

ling camera movements through unbuffered input from

the keyboard.

• OgreHAPISpace: Tracks all the haptic objects that should

be rendered, for example with functions to add haptic ob-

jects to a space or to query the details of all the haptic

objects currently in a space.

• OgreHAPIUtil: The link between OGRE and HAPI. Con-

verts units between OGRE [Vector3, Quaternion, Radian,

Matrix4], HAPI [Vec3, Matrix4] and H3DUtil [Quater-

nion, Vec3f, H3DFloat angle, Rotation]. Also translates

specified vector positions from relative positions to global

positions and vice versa.

There are three main steps for building an Ogre-

HAPI application. The following sections will use

an example application, called What’s In The Box

(also see Section 5.1). These sections only provide

an overview of this process (OgreHAPI documenta-

tion, classes and two tutorials are available online at

http://www.dur.ac.uk/shamus.smith/ogrehapi/).

4.1. Step One: Set Up a Header File

The first header item is a sub-class of the Ogre-

HAPI::FrameListener class with a single extra variable

mApp which is a pointer to the main application, in this case

WhatsInTheBoxApplication. The constructor is then overrid-

den to initialise mApp when creating a new instance of the

WhatsInTheBoxFrameListener:

class WhatsInTheBoxFrameListener

: public OgreHAPI::FrameListener

{private: WhatsInTheBox *mApp;};

The next constructor is exactly the same as the standard

OgreHAPI::FrameListener constructor except for the addi-

tion of the pointer to theWhatsInTheBoxApplication.

public:

WhatsInTheBoxFrameListener(Ogre::RenderWindow

*mWindow, Ogre::SceneManager *mSceneMgr,

Ogre::Camera *mCamera,

HAPI::HAPIHapticsDevice *mHapticsDevice,

OgreHAPI::Space *mSpace,

WhatsInTheBoxApplication *app);

The next constructor calls the OgreHAPI::FrameListener

constructor as well as collecting the pointer for the

WhatsInTheBoxApplication object. It also calls a function

c© The Eurographics Association 2010.

245



P. Scopes & S. P. Smith / Integrating Haptic Interaction

called setCameraOffset which sets, in OGRE units, the po-

sition of the center of the haptic device relative to where the

camera is. The setScale function sets the scale of the number

of meters that one OGRE unit should be.

OgreHAPI supports the movement of the camera around

the OGRE world, thus allowing users to change what they

are able to haptically interact with. OgreHAPI also provides

a function setFixedCamera(bool fixed) which can fix the

camera so that, unless code elsewhere is written to move it,

the camera won’t be able to move.

WhatsInTheBoxFrameListener::

WhatsInTheBoxFrameListener(Ogre::

RenderWindow *mWindow,

Ogre::SceneManager *mSceneMgr,

Ogre::Camera *mCamera,

HAPI::HAPIHapticsDevice *mHapticsDevice,

OgreHAPI::Space *mSpace,

WhatsInTheBoxApplication *app) :

OgreHAPI::FrameListener(mWindow, mSceneMgr,

mCamera,mHapticsDevice, mSpace),mApp(app)

{setCameraOffset(Ogre::Vector3(0,0,30));

setScale(0.01); }

4.2. Step Two: Set Up the Main Application

The main constuctor creates and stores two variables, both

of which are needed for OgreHAPI to work. mHapticsDe-

vice holds a pointer to a HAPI::AnyHapticsDevice, which

is any haptics device supported by the HAPI package. If,

initially, a haptics device is not turned on or even plugged

in, OgreHAPI will automatically catch the first haptics de-

vice it supports and use that when the application is running.

mSpace holds a pointer to the haptic space where all haptic

objects will have to be added to if they are to be haptically

rendered.

WhatsInTheBoxApplication::

WhatsInTheBoxApplication(void)

{mHapticsDevice =

new HAPI::AnyHapticsDevice();

mSpace =

new OgreHAPI::Space(mHapticsDevice);}

4.3. Step Three: Adding Haptic Objects.

objects[0] = new OgreHAPI::

Objects::MeshObject(ent->getMesh(),

new HAPI::

FrictionSurface(1.35,0,0.2,0.2),0.1);

objects[1] = new OgreHAPI::

Objects::Sphere(0.0375,

new HAPI::

FrictionSurface(1.35,0,0.2,0.2));

The first object uses the OGRE entities mesh informa-

tion to build the haptic object, whereas the second uses a

primitive shape. It is recommended to use primitive shapes

where possible as they are processed significantly faster

than mesh objects. The MeshObject constructor takes an

Ogre::MeshPtr object, a HAPI::HapticSurfaceObject and

then the radius of the bounding sphere (at the moment this

must be the size in the haptic world not OGRE world, i.e.

the haptic world without the scale). The Sphere constructor

takes the radius of the sphere (again in without the scale ap-

plied to it) and a HAPI::HapticSurfaceObject.

Finally the OgreHAPI::Object is attached to an

Ogre::SceneNode. This will ensure that the haptic ob-

ject will follow the position and orientation of the specified

scene node. Also the haptic object needs to be added to the

haptic space so that it will be rendered:

objects[0]->attachToSceneNode(nodes[0]);

mSpace->addObject(objects[0]);

5. Evaluation Study

A user study of the OgreHAPI environment was conducted

to evaluate the degree of cohesion between the haptic tech-

nology and the virtual environment toolkit. A within-subject

design was used for the study with all the participants receiv-

ing the same treatment (see Section 5.1). Six participants

volunteered for the study. All participants were male and

within the age range of 21-32 years. All participants used

a computer on a daily basis, both at work and at home and

regularly played computer games. Approximately 83% were

right handed and none were ambidextrous. Ethic permission

for the study was granted by the Computer Science Ethics

Committee (Durham University).

The evaluations were carried out in an empty room, to

reduce participant distractions, and were conducted by the

first author. The equipment consisted of a Pentium 4 CPU

2.4GHz PC with 1GB RAM running Windows XP (SP3), a

Dimensional Technologies display (in 2D mode), a standard

mouse and keyboard, and a PHANTOM Omni haptic device

(see Figures 2).

Figure 2: User study equipment and conditions.

c© The Eurographics Association 2010.

246



P. Scopes & S. P. Smith / Integrating Haptic Interaction

5.1. Evaluation Procedure

Demographic, computer usage and haptic technology expe-

rience information was gathered in a pre-session question-

naire. A consent form was also signed by all participants.

The evaluation study involved two tasks in applications im-

plemented with OGRE graphics and HAPI haptics support,

integrated through OgreHAPI.

What’s In The Box?: Participants were presented with an

opaque screen which obscured a haptically rendered object.

Participants were asked to feel three objects (Objects A, B,

and C - see Figure 3). Each of the participants had a differ-

ent permutation of the ordering to balance the experiment,

e.g. participant 1 had objects in order ABC, participant 2

has order ACB, participant 3 had order BAC and so on. Af-

ter having the opportunity to feel the haptic rendering, the

participants were asked to write down what they thought the

object was, or to give a brief description. After participants

had completed descriptions of the three objects they were

then shown images of all the objects and were asked to rate

the difficulty of identifying the different objects ([Hard] 1

2 3 4 [Easy)]) and to rate how realistically the shapes were

rendered ([Unrealistic] 1 2 3 4 [Realistic]).

Figure 3:What’s in the Box objects.

Bar Skittles: The second part of the evaluation re-

quired the participants to play two rounds of a Bar Skit-

tles game. The game presented a first-person view of a

3D virtual environment (see Figure 4). The object of the

game is to knock over all the skittles by repeated push-

ing the ball, which is attached to a pole, with an in-game

avatar controlled by the haptic device. The environment pro-

vided realistic physics for the ball and pin interactions. The

physics in this task were provided by OgreNewt which is

a library that wraps the Newton Game Dynamics physics

SDK (http://www.newtondynamics.com/) into OGRE. Tim-

ing metrics were collected for both rounds of the game.

Participants then completed a questionnaire of 4-point

Likert scale questions on the difficultly of playing the game

and the perceived realism of the game. Space was also pro-

vided on the questionnaire for short comments.

6. Results

All the participant completed both tasks. The results of the

What’s in the Box task can be seen in Figure 5. There were

Figure 4: The Bar Skittles game environment. The white dot

is the user’s avatar in the environment.

high levels of correct answers for all three objects. This was

surprising for Object C as this object had an unusual shape.

That the majority of participants could identify Object C

without visual feedback indicates a good level of accuracy

in the haptic integration.

Figure 5: Answers from the What’s in the Box task.

The timings from the Bar Skittles task can be seen in Fig-

ure 6. All participants improved on their timings between

rounds. Therefore the haptic renderings, graphical render-

ings and the implemented physics, were not interfering with

expected skills improvement through practise. This is en-

couraging in terms of the integration of the haptic and graph-

ical feedback in the environment.

Figure 6: Timings from the Bar Skittles task.

Figure 7 shows the results of the questions on difficulty

and realism over the two task environments. There were high

c© The Eurographics Association 2010.

247



P. Scopes & S. P. Smith / Integrating Haptic Interaction

Figure 7: Boxplots of participant’s answers to difficulty and

realism questions for both tasks.

values for both task environments. The Bar Skittles environ-

ment was found to be more difficult and participant com-

ments indicated issues with the in-game avatar, i.e. the hap-

tic device representation. This was a small sphere and par-

ticipants noted that it was “hard to tell where the avatar was

in the 3D world” and that the avatar “kept slipping off of the

ball”. One suggestion was to provide a hand avatar to grab

and swing the ball, in contrast to the current method of push-

ing the ball. No participants suggested improving the haptic

interaction.

7. Conclusions

There is increasing demand for haptic, or touch-based, inter-

action in virtual envinronments. Although many haptic de-

vices come with APIs to enable the development of haptic-

based applications, many do not provide the same level of

graphical support available in virtual reality or game tech-

nology toolkits. It is important for the layer between the

haptic device and the graphics application to be extensible

and customizable [DP07]. This paper has described a mid-

dleware library of classes to support the integration of a de-

vice independent haptic API with an existing virtual environ-

ment engine. This work specifically provides an extendable

framework for linking OGRE and the HAPI API. More gen-

erally it provides an example framework for linking virtual

environment engines to a device independent haptic API.

Proof-of-concept has been demonstrated with a user study

where a high level of performance and acceptance of the

haptic integration was found. However, as middleware is cre-

ated for developers, to evaluate the flexibility and ease of use

of the proposed framework, a next step is to ask developers

to use the library, and its functions, to integrate a haptic de-

vice into a virtual environment. This is ongoing work.

The OgreHAPI library, class documentation and two tuto-

rials for building OgreHAPI applications are available online

at http://www.dur.ac.uk/shamus.smith/ogrehapi/.

8. Acknowledgements

The authors would like to thank the evaluation study partic-

ipants. This work was funded in part by the Nuffield Foun-

dation (Grant URB/35744).

References

[BKLP05] BOWMAN D. A., KRUIJFF E., LAVIOLA JR.

J. J., POUPYREV I.: 3D User interfaces: Theory and

Practise. Addison Wesley, USA, 2005.

[BS02] BIGGS S. J., SRINIVASAN M. A.: Haptic inter-

faces. In Handbook of Virtual Environments, Stanney

K. M., (Ed.). Lawrence Erlbaum Associates, New Jersey,

2002, pp. 93–115.

[DP07] DE PASCALE M., PRATTICHIZZO D.: The Haptik

library. IEEE Robotics & Automation Magazine (Decem-

ber 2007), 64–75.

[HCK∗01] HUBBOLD R., COOK J., KEATES M., GIB-

SON S., HOWARD T., MURTA A., WEST A., PETTIFER

S.: GNU/MAVERIK : A micro-kernel for large-scale vir-

tual environments. Presence: Teleoperators and Virtual

Environments 10 (February 2001), 22–34.

[Kal93] KALAWSKY R. S.: The Science of Virtual Reality

and Virtual Environments. Addison-Wesley, 1993.

[LaV08] LAVIOLA JR. J. J.: Bringing VR and spa-

tial 3D interaction to the masses through video games.

IEEE Computer Graphics and Applications (Septem-

ber/October 2008), 10–15.

[PM04] PAVA G., MACLEAN K. E.: Real time platform

middleware for transparent prototyping of haptic appli-

cations. International Symposium on Haptic Interfaces

for Virtual Environment and Teleoperator Systems (2004),

383–390.

[Smi07] SMITH S. P.: Exploring the specification of hap-

tic interaction. In Interactive Systems: Design, Specifica-

tion and Verification (2007), Doherty G., Blandford A.,

(Eds.), vol. 4322 of LNCS, Springer, pp. 171–184.

[SMK98] STANNEY K. M., MOURANT R. R., KENNEDY

R. S.: Human factors issues in virtual environments: A re-

view of the literature. Presence: Teleoperators and Virtual

Environments 7, 4 (August 1998), 327–352.

[WB06] WALL S., BREWSTER S.: Editorial: design of

haptic user-interfaces and applications. Virtual Reality 9,

2-3 (2006), 95–96.

c© The Eurographics Association 2010.

248


