
Eurographics Symposium on Parallel Graphics and Visualization (2009)
J. Comba, K. Debattista, and D. Weiskopf (Editors)

Wait-Free Shared-Memory Irradiance Cache

Piotr Dubla1, Kurt Debattista1, Luís Paulo Santos2 and Alan Chalmers1

1The Digital Lab, WMG, University of Warwick, United Kingdom, [p.b.dubla | k.debattista | alan.chalmers]@warwick.ac.uk
2Departamento de Informática, Universidade do Minho, Portugal, psantos@di.uminho.pt

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

The irradiance cache (IC) is an acceleration data structure which caches indirect diffuse irradiance values within

the context of a ray tracing algorithm. In multi-threaded shared memory parallel systems the IC must be shared

among rendering threads in order to achieve high efficiency levels. Since all threads read and write from it an

access control mechanism is required, which ensures that the data structure is not corrupted. Besides assuring

correct accesses to the IC this access mechanism must incur minimal overheads such that performance is not

compromised.

In this paper we propose a new wait-free access mechanism to the shared irradiance cache. Wait-free data struc-

tures, unlike traditional access control mechanisms, do not make use of any blocking or busy waiting, avoiding

most serialisation and reducing contention. We compare this technique with two other classical approaches: a lock

based mechanism and a local write technique, where each thread maintains its own cache of locally evaluated

irradiance values. We demonstrate that the wait-free approach significantly reduces synchronisation overheads

compared to the two other approaches and that it increases data sharing over the local copy technique. This is, to

the extent of our knowledge, the first work explicitly addressing access to a shared IC; this problem is becoming

more and more relevant with the advent of multicore systems and the ever increasing number of processors within

these systems.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three Dimensional Graph-
ics and Realism—Ray Tracing Computer Graphics [I.3.1]: Hardware Architecture—Parallel Processing

1. Introduction

Rendering global illumination light transport effects within
a ray tracing context is a computationally very demand-
ing task. Recent improvements in the field of ray tracing
have made it possible to interactively compute many of the
global effects, such as specular phenomena and correct shad-
ows [WMG∗07]. Indirect diffuse interreflections, however,
require dense sampling of the hemisphere at each shading
point, dramatically increasing rendering times. Ward et al.
[War88] exploit the fact that the indirect diffuse component
is generally a continuous smooth function over space not af-
fected by the high frequency changes common with the spec-
ular component. They proposed the irradiance cache (IC)
data structure to allow sparse evaluation of indirect diffuse
irradiance. Sparsely calculated irradiance values are stored
in the IC and reused to extra(inter)polate irradiance values
at nearby locations. By exploiting spatial coherence, the IC
offers an order of magnitude improvement in rendering time

over unbiased Monte Carlo integration. Performance is fur-
ther improved when rendering animations of static scenes,
since the indirect diffuse irradiance remains constant and the
IC records can thus be maintained.

In multithreaded shared memory systems the irradiance
cache must be shared to avoid replicated computations of
diffuse samples among rendering threads, thus increasing ef-
ficiency. Since all rendering threads can read and write from
the IC, a data access control mechanism is required to ensure
that the data structure is not corrupted. Such control mech-
anism incurs overheads, such as serialisation of accesses to
the shared data structure; it must thus be carefully designed
in order not to compromise performance. Traditionally, ac-
cess control to shared memory data structures is maintained
via mutual exclusion, typically, using locks when frequent
access is required. However, alternatives that avoid the se-
rialisation and contention do exist, in the form of lock-free
synchronisation. By carefully ordering instructions lock-free

c© The Eurographics Association 2009.

DOI: 10.2312/EGPGV/EGPGV09/057-064

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV09/057-064

P. Dubla, K. Debattista, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Cache

algorithms can guarantee no form of serialisation of code,
from the removal of all critical sections, and a drastic reduc-
tion in contention. Certain lock-free synchronisation meth-
ods can guarantee to complete in a finite number of steps
thus avoiding starvation. Such access mechanisms are said
to be using wait-free synchronisation.

In this paper we propose an efficient wait-free algorithm
which allows concurrent access to a shared IC by all threads
without using any locks or critical sections. We take this ap-
proach and compare it with two other mechanisms which
share the irradiance cache among threads on a shared mem-
ory system. The first is based on traditional locking tech-
niques and locks the shared IC every time a thread accesses
it, both for reading and writing. The second is a local copy
method which avoids concurrent access control by maintain-
ing a local IC, per thread, and merging at the end of each
frame.

With the advent of multicore systems and the ever increas-
ing number of processors available within these systems, ef-
ficient access to shared data structures becomes an impor-
tant issue, with the potential to strongly influence the ren-
derer performance. Efficient sharing of the irradiance cache
in multithreaded systems is mandatory in order to achieve
high efficiency levels, since computed irradiance values be-
come readily available to all threads, thus avoiding work
replication. This is specially relevant because utilisation of
the irradiance cache has increased significantly over the last
few years, e.g., as a stand-alone algorithm for computing
indirect (ir)radiance [SKDM05, TL04, KGPB05], as an ac-
celeration data structure for rendering participating media
phenomena [JDZJ08] or used in conjunction with photon
mapping [Jen01]. This paper’s contributions are the pro-
posal of an efficient wait-free algorithm for sharing the ir-
radiance cache among rendering threads on shared memory
systems and a comparison of the proposed algorithm’s effi-
ciency with two traditional data access control mechanisms:
a lock-based approach and a local copy one.

This paper is structured as follows. In the next section we
present related work. In Section 3, we present the algorithms
for the three data access control mechanisms. In section 4 we
compare results and, finally, in Section 5 we conclude and
describe possible future work.

2. Related Work

2.1. Shared Irradiance Cache

The IC is an acceleration data structure which caches in-
direct diffuse irradiance samples within the framework of
a distributed ray-tracing algorithm [War88]. Initial samples,
sparsely distributed over the scene, are calculated by densely
sampling the hemisphere and the result is cached in the IC.
Whenever a new indirect value is required the irradiance
cache is first consulted. If one or more samples fall within the
user-defined search radius of the indirect diffuse value to be

computed, the result is extrapolated from the samples using
a weighted averaging strategy. In order to accelerate range
searches, performed to locate valid samples within the IC,
an octree is incrementally built every time a new sample is
added; writing to the cache requires both storing the new in-
direct diffuse irradiance value and updating the octree topol-
ogy. Ward et al. [War88] demonstrated that the irradiance
cache offers an order of magnitude improvement in overall
computational time over traditional unbiased Monte Carlo
integration. Performance is improved even further when ren-
dering animations of static scenes, since the indirect diffuse
irradiance remains constant.

In parallel systems each rendering process (or thread)
might evaluate new indirect diffuse irradiance values and add
them to the IC. In order to increase efficiency, the IC must be
shared among all processes, thus avoiding replicated work,
where one process evaluates an irradiance value that might
already have been evaluated by another process. The IC be-
comes a shared data structure, thus requiring some sharing
mechanism assuring that all processes can access the avail-
able data, that the data is not corrupted and that overheads
do not compromise efficiency.

In distributed memory systems, such as clusters of work-
stations, each node has its own address space, resulting on
multiple copies of the shared data structure that are regularly
synchronised. The standard Radiance distribution [War94]
supports a parallel renderer over a distributed system using
the Network File System for concurrent access of the irra-
diance cache; this has been known to lead to contention and
may result in poor performance when using inefficient file
lock managers. Koholka et al. [KMG99] broadcast irradi-
ance cache values amongst processors after every 50 sam-
ples calculated at each slave. Robertson et al. [RCLL99] pre-
sented a centralised parallel version of Radiance whereby
the calculated irradiance cache values are sent to a master
process whenever a threshold is met. Each slave then col-
lects the values deposited at the master by the other slaves.
[DSC06] propose restricting diffuse irradiance evaluations
to a subset of the available processors and synchronizing the
IC among these at a higher frequency than with the remain-
ing processors.

We are not aware of any publication describing a data
access control mechanism for sharing the irradiance cache
among rendering threads in a shared memory parallel sys-
tem. This is, to the extent of our knowledge, the first work
explicitly addressing and evaluating this issue.

2.2. Synchronisation

Traditionally, access control to shared data structures is
maintained through either lock-based mechanisms or block-
ing which ensure safe access to critical sections of code.
Such mechanisms serialise access to the shared data struc-
ture (both reads and writes), thus incurring intolerable per-
formance penalties when this is frequently accessed, as

c© The Eurographics Association 2009.

58

P. Dubla, K. Debattista, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Cache

would be the case with the shared IC. Furthermore, when
using locks, contention will increase with the degree of con-
currency, thus, rather than scaling, lock-based approaches
will perform worse as the number of concurrent threads
increases. Blocking threads typically requires a horizontal
context switch which is too computationally expensive on
modern operating systems to be used for frequent access to
critical sections.

An alternative method of synchronisation is the use of
lock-free structures and algorithms, which rely on atomic
conditional primitives to protect shared data structures from
unsafe concurrent access [DVC03]. Lock-free synchronisa-
tion dispenses critical sessions, thus avoiding deadlocks and
the serialisation of concurrent tasks. These algorithms may
be either nonblocking or wait-free. Non blocking algorithms
are guaranteed to terminate in finite time, but they are based
on retries, which can result in unpredictable delays and star-
vation. Wait-free algorithms, on the other hand, are guaran-
teed to complete in a fixed number of steps which means
they remove deadlock, improve fault tolerance, are immune
to the priority inversion problem and avoid starvation when
accessing the shared data structure.

The construction of wait-free algorithms requires the use
of powerful atomic primitives which are executed as a sin-
gle instruction, without any interruption, on modern archi-
tectures. We show pseudo code (Listings 1 and 2) for the
two atomic instructions, compare and swap (CAS) and fetch
and add (XADD), that we will be using for our wait-free IC.

1 atomic XADD(address location)
2 {
3 int value = ∗location;
4 ∗location = value + 1;
5 return value
6 }

Listing 1: Fetch and Add

1 atomic CAS(address location, value cmpVal, value newVal)
2 {
3 if (∗location == cmpVal) {
4 ∗location = newVal;
5 return true;
6 } else return false;
7 }

Listing 2: Compare and swap

3. Algorithms

In this section the algorithms for the three evaluated data
access control mechanisms are presented. To begin with we
show a traditional single-threaded irradiance cache with no
access control in Listing 3. In the subsequent sections we
demonstrate how the traditional approach can be modified
to enable the different access control algorithms.

1 IrradianceCache IC;
2

3 ComputeIndirectDiffuse() {
4 //get irradiance from IC if there are valid records

5 inIC = IC.getIrradiance ();
6 if (!inIC) { // no valid records found

7 // compute it by sampling the hemisphere

8 ICsample = ComputeIrradianceRT ();
9 // insert new IC sample into the octree

10 IC.insert (ICsample);
11 }
12 }
13

14 IrradianceCache::getIrradiance() {
15 <Traverse the octree searching for valid records>
16 if (found) return true;
17 else return false;
18 }
19

20 IrradianceCache::insert (ICsample) {
21 // recursively traverse the octree

22 // starting at root

23 IC.root.insert (ICsample);
24 }
25

26 ICNode::insert (ICSample) {
27 if (correct insertion node) {
28 IClist.Add (ICsample);
29 } else {
30 // go deeper in the octree

31 xyz = EvaluateOctant();
32 if (children[xyz] == NULL)
33 children[xyz] = new ICNode ();
34 children[xyz].insert (ICsample);
35 }
36 }
37

38 ICList::Add (ICsample) {
39 // insert new record in head of list

40 IClist.records[head++] = ICsample;
41 }

Listing 3: Traditional sequential IC

3.1. Lock-Based Irradiance Cache (LCK)

The lock-based access control algorithm locks the IC when-
ever a read or write is made to it. However, the code respon-
sible for hemisphere sampling, ComputeIrradianceRT(), is
not a critical region (Listing 4 lines 4 - 6, 12 - 14), thus al-
lowing concurrent evaluation of irradiance. The major disad-
vantage of the LCK approach is that it serialises all accesses,
both reads and writes, to the shared IC. As the number of
threads increases, contention will also increase, preventing
performance to scale with the degree of parallelism. Table
1 shows that the overhead associated with locks (time spent
waiting to enter critical regions summed over all threads) in-
creases substantially when going from two to eight threads.

1 ComputeIndirectDiffuse()
2 {
3 //get irradiance from IC if there are valid records

4 IC.lock();

c© The Eurographics Association 2009.

59

P. Dubla, K. Debattista, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Cache

5 inIC = IC.getIrradiance ();
6 IC.unlock();
7

8 if (!inIC) { // no valid records found

9 // compute it by sampling the hemisphere

10 ICsample = ComputeIrradianceRT ();
11 // insert new IC sample into the octree

12 IC.lock();
13 IC.insert (ICsample);
14 IC.unlock();
15 }
16 }

Listing 4: Lock-based IC

3.2. Local-Write Irradiance Cache (LW)

An alternative approach is to have a global IC readable by
all threads and an additional local IC per thread; each thread
writes only on its local IC but reads from both. At certain
predefined execution points, such as the end of a frame, the
local ICs are sequentially merged onto the global IC. This
form of synchronisation uses an end of frame as a barrier,
effectively this is a blocking approach to synchronisation.

The major drawback of this approach is that it does not
allow for any sharing within a single frame, thus resulting
in work replication; this is reflected in Table 1, where the
LW algorithm has a much higher IC sample count than the
other two approaches. The time taken to sequentially merge
the caches is not significant, as can be seen in the overheads
section of Table 1 (at least up to eight threads). Additionally,
memory consumption is dictated by the number of threads
being used and the complexity of the octree itself.

1 IrradianceCache IClocal[number threads], ICglobal;
2

3 ComputeIndirectDiffuse()
4 {
5 //get irradiance from IC if there are valid records

6 inIC = ICglobal.getIrradiance ();
7

8 if (!inIC)
9 inIC = IClocal[current thread].getIrradiance ();

10

11 if (!inIC) { // no valid records found

12 // compute it by sampling the hemisphere

13 ICsample = ComputeIrradianceRT ();
14 // insert new sample into the local cache

15 IClocal[current thread].insert (ICsample);
16 }
17 }

Listing 5: Local-Write IC

3.3. Wait-Free Irradiance Cache (WF)

The wait-free algorithm does not rely on any critical sec-
tions to both read and write to the shared IC. When adding
samples to an IC node the atomic XADD operator (Listing

6 line 24) is used, returning a unique index into the list of
records, which ensures that samples are never over-written;
simultaneously, the private index to the next free position is
incremented. While it may seem the data structure remains
at an inconsistent state this does not happen since Irradi-
anceCache::getIrradiance() does not use head as a stopping
condition; rather all elements of IClist are initialised to
NULL and searching stops when a NULL pointer is found.
Thus elements which have not been properly inserted into
the data structure will never be used.

When adding a new child node to the octree, the new
subtree is built using a temporary pointer. When fully built,
the subtree is attached to the octree using the CAS operator
(Listing 6 line 14). If the relevant child still does not exist,
indicated by the pointer still being NULL, then CAS com-
pletes successfully. If, however, another thread wrote to the
same child, then CAS will fail and this thread will discard
both the created subtree and the associated sample after util-
ising it for the current computation. As can be seen in Table
1 the number of discarded samples is minimal, amounting to
no more than 0.3% of the total samples.

The atomic primitives used in most wait-free algorithms
still need a memory barrier in order to ensure out-of-order
execution does not corrupt the shared data structure. Typi-
cally a memory barrier precedes the use of atomic primitives
such as CAS and XADD. This can often be expensive since
out-of-order execution typically accounts for an increase in
performance. In our wait-free algorithm we keep memory
barriers to a minimum by only calling them for when insert-
ing IC samples into the octree and not when accessing the
cache for interpolation. In this way the much more frequent
IC interpolation requests do not entail any overheads over
the serial methods.

The wait-free approach ensures that the single shared IC
can be accessed concurrently by all threads, and, as can be
seen in Listing 6, requires little changes in the code from a
traditional sequential irradiance cache. As we shall show in
the next section, this results in faster execution times both
when interpolating and creating IC samples and also it does
not suffer the larger memory requirements of the LW ap-
proach.

1 ICNode::insert (ICSample) {
2 if (correct insertion node)
3 IClist.Add (ICsample);
4 else { // go deeper in the octree

5

6 xyz = EvaluateOctant();
7 if (children[xyz]==NULL) {
8 temp = new ICNode()
9 temp.insert (ICsample);

10 // Update new branch into the octree

11 // This only occurs on the first level of

12 // recursion subsequent levels just insert

13 // normally.

14 if (!CAS (children[xyz], NULL, temp))

c© The Eurographics Association 2009.

60

P. Dubla, K. Debattista, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Cache

15 free temp;
16 }
17 else

18 children[xyz].insert (ICsample);
19 }
20 }
21

22 ICList::Add (ICsample) {
23 // get index of new sample in node list

24 int index = XADD (&head);
25 IClist.records[index] = ICsample;
26 }

Listing 6: Wait-Free IC

4. Results

All presented results have been generated on an 8-core (dual
quad-core) Intel Xeon machine running at 2.5GHz with 8
gigabytes of RAM, using our own interactive ray tracer. Ex-
periments were run under CentOS 4 with the code being
compiled with ICC 9.0. The renderer utilised does not make
use of packetisation or SIMD operations except for the ray-
bounding volume intersection test used when traversing the
acceleration data-structure, which is a BVH implementation
based on [WBS07]. Five different scenes (Figure 4) were
utilised in the experiments. These scenes were picked to pro-
vide a range of geometric complexity, physical dimensions
and lighting conditions. All scenes were rendered at a reso-
lution of 600×400.

4.1. Still images

Table 1 provides results for one, two, four and eight threads
with the time taken to calculate the frame, the number of
IC samples generated, overheads associated with each algo-
rithm and speed-up. Results for one thread were obtained us-
ing the traditional sequential approach (TRA) and speed-up
is computed with respect to these results. For the lock-based
approach (LCK) we report as an overhead the aggregate time
spent to enter critical regions summed over all threads. For
local-write (LW) the reported overhead is the time taken to
sequentially merge all local caches into the global one at the
end of the frame, for wait-free(WF) it is the number of sam-
ples discarded. Each image was calculated with an empty
irradiance cache to show a worst-case scenario with maxi-
mal irradiance calculations occurring. Graphs of all this data
are presented in Figure 1; the left Y-axis and the accompa-
nying line graph shows the instanteous framerate (reciprocal
of time taken to render the frame) while the right Y-axis and
the bar graph shows the speed-up compared to the traditional
single-threaded irradiance cache with no access control.

LW performs and scales worse than the two other algo-
rithms. This is because no sharing is actually occurring since
only one frame is rendered and merging of the local caches
only happens at the end of the frame. Each thread must eval-
uate all irradiance samples that project into its assigned tiles

of the image plane, leading to much work replication as can
be seen by the number of evaluated irradiance samples.

The performance difference between LCK and WF be-
comes evident as the number of threads increases. The ag-
gregated time waiting for locks increases with the number of
threads, resulting on a major performance loss. The wait-free
algorithm scales much better because it does not serialise
neither writes nor reads to the shared data structure. For a re-
duced number of threads LCK performs similar to WF since
most of the time is spent evaluating new irradiance samples,
which is not a critical region of the code. As the number of
threads increases, more range searches are performed; since
these are serialised in LCK, a performance penalty arises.

With eight threads we obtain an average speed-up of 6.66
for the WF algorithm, 4.71 for LW and 5.38 for LCK. The
WF algorithm is clearly the fastest with LCK showing com-
parable results with less than 8 threads but showing inferior
scaling as more threads are utilised.

4.2. Animations

Two scenes, Cornell and Conference Room, were selected
and each was rendered, using 8 threads, for 100 frames while
the camera did a 360 degrees rotation around the scene.
Each frame in the sequence re-utilised previously created
cache samples while simultaneously calculating new ones.
This provides an overview of performance when a more bal-
anced mix of evaluation and interpolation is occurring, un-
like the case for the still images. The results for these partic-
ular experiments are displayed in Figures 2 and 3, showing
the time taken to render each of the 100 frames for the Cor-
nell and Conference Room scenes respectively for each of
the three algorithms. For each of the scenes the first frame is
the equivalent of the still images above, where the cache is
totally empty and all the samples needed to be generated.

Clearly, LCK performs worse than LW and WF, except for
the first frame. Since for the remaining frames the IC will not
be empty, many irradiance samples can be reused; but LCK
serialises all range searches performed to locate these sam-
ples, thus severely impacting on performance. WF outper-
forms LW because the former shares irradiance samples im-
mediately without any extra overhead associated with read-
ing, while the latter does not share samples within a frame,
thus resulting on costly extensive evaluations of more indi-
rect diffuse irradiance values. Summarising, LCK is mostly
penalised by reading serialisation, whereas LW is penalised
by work replication.

Excluding the first frame in the Cornell scene we attained
an average of 5.52 FPS for the WF algorithm, 5.03 FPS for
LW and 1.3 FPS for LCK. Even though LCK performed bet-
ter than LW for the first frame, the cost of locking is high
even when doing a mixture of reads and writes and this is re-
flected in its poor performance for the animation. These re-
sults are also reflected in the Conference Room scene where

c© The Eurographics Association 2009.

61

P. Dubla, K. Debattista, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Cache

Cornell

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 4 8Threads

T
im

e
 (

s
)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

S
p

e
e

d
U

p

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

(a) Cornell

Conference Room

0.000

1.000

2.000

3.000

4.000

5.000

6.000

1 2 3 4Threads

T
im

e
 (

s
)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

S
p

e
e

d
U

p

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

(b) Conference Room

Desk

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

1 2 3 4

Threads

T
im

e
 (

s
)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00
S

p
e

e
d

U
p

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

(c) Desk

Office

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 3 4

Threads

T
im

e
 (

s
)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

S
p

e
e

d
U

p

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

(d) Office

Sponza

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

1 2 3 4Threads

T
im

e
 (

s
)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

S
p

e
e
d

U
p

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

(e) Sponza
Figure 1: Still Images: Results for all scenes

Cornell

0

2

4

6

8

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

Frame

F
P

S

LCK

LW

WF

Figure 2: Animation results for Cornell Box

c© The Eurographics Association 2009.

62

P. Dubla, K. Debattista, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Cache

Conference Room

0

1

2

3

4

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Frame

F
P

S

LCK

LW

WF

Figure 3: Animation results for Conference Room

Cornell 1 2 4 8

TRA LCK LW WF LCK LW WF LCK LW WF

Time (s) 3.152 1.633 2.096 1.614 0.863 1.178 0.814 0.656 0.700 0.473
IC samples 3463 2742 4339 2707 2483 4404 2473 2441 4440 2410
Overheads† 0 0.053 0.024 4 0.189 0.018 1 1.370 0.019 7
Speed-up 1.000 1.988 1.548 2.011 3.759 2.756 3.986 4.950 4.640 6.862

Desk 1 2 4 8

TRA LCK LW WF LCK LW WF LCK LW WF

Time (s) 3.749 1.971 2.444 1.965 1.104 1.385 1.049 0.753 0.798 0.607
IC samples 3477 3038 4282 2998 2748 4394 2775 2700 4378 2709
Overheads† 0 0.035 0.018 4 0.189 0.021 0 1.259 0.023 8
Speed-up 1.000 1.902 1.534 1.907 3.396 2.707 3.572 4.976 4.696 6.178

Conference Room 1 2 4 8

TRA LCK LW WF LCK LW WF LCK LW WF

Time (s) 4.854 2.460 3.180 2.445 1.283 1.768 1.269 0.786 0.929 0.658
IC samples 3065 2517 3663 2524 2272 3817 2256 2130 3842 2170
Overheads† 0 0.064 0.028 1 0.192 0.021 3 1.127 0.026 3
Speed-up 1.000 1.973 1.526 1.985 3.783 2.745 3.826 6.176 5.223 7.381

Office 1 2 4 8

TRA LCK LW WF LCK LW WF LCK LW WF

Time (s) 2.947 1.474 1.976 1.654 0.895 1.207 0.864 0.650 0.689 0.469
IC samples 2089 1881 2650 1976 1803 3199 1802 1766 3290 1785
Overheads† 0 0.042 0.019 1 0.337 0.018 3 1.397 0.022 1
Speed-up 1.000 1.999 1.491 1.782 3.291 2.442 3.412 4.531 4.276 6.287

Sponza 1 2 4 8

TRA LCK LW WF LCK LW WF LCK LW WF

Time (s) 7.330 3.802 4.672 3.676 2.100 2.563 1.935 1.143 1.505 1.083
IC samples 3357 3113 4166 3113 3032 4286 2958 2929 4379 2942
Overheads† 1 0.046 0.026 1 0.186 0.026 5 1.018 0.028 4
Speed-up 1.000 1.928 1.569 1.994 3.779 2.860 3.707 6.413 4.872 6.766

Table 1: Results for all scenes
†- Overheads are all in seconds except for WF which is number of irradiance samples discarded

(a) Cornell (48k) (b) Conference (190k) (c) Desk (12k) (d) Office (20k) (e) Sponza (66k)
Figure 4: The five scenes utilised in the experiments. The polygon count for each scene is shown in brackets.

c© The Eurographics Association 2009.

63

P. Dubla, K. Debattista, L. Santos & A. Chalmers / Wait-Free Shared-Memory Irradiance Cache

we achieved 3.2 FPS for WF, 2.96 FPS for LW and 1.03 FPS
for LCK. WF performs the best out of the three approaches
displaying, on average, a 9% speed-up over the LW approach
and a 368% speed-up over the LCK approach.

5. Conclusions

We proposed a new wait-free data access control mechanism
for sharing the irradiance cache among multiple rendering
threads on a shared memory parallel system and evaluate it
against two traditional data access algorithms: a lock-based
approach and a local write one. We demonstrate that the pro-
posed approach outperforms the others and scales better with
the number of threads.

The lock-based algorithm serialises all accesses to the
shared data structure, reads included. Range searches per-
formed in the octree to locate valid irradiance samples are
serialised, resulting in performance losses; this problem is
aggravated with the number of threads and the resulting con-
tention. The local write algorithm does not share any irradi-
ance values evaluated within each frame, thus suffering a
performance penalty as a result of work replication. Neither
of these two algorithms scales well as the number of threads
increases.

The wait-free algorithm does not serialise accesses to
the shared data structure and irradiance values are imme-
diately shared among all threads without any overhead as-
sociated with reading. It exhibits the best frame rates for
walkthroughs within static scenes and scales well with the
number of threads, achieving an efficiency between 77% and
92% for 8 threads.

The proposed wait-free data access control mechanism is
both efficient and simple to implement, requiring only mi-
nor modifications to a traditional sequential irradiance cache
implementation. The relevance of efficient, scalable and reli-
able mechanisms to control access to shared data structures
within shared memory systems is ever increasing with the
advent of multi-core systems., which in the near future will
have a degree of concurrency which that is expected to be
larger than that on current machines.

Although the wait-free algorithm has shown good scala-
bility with up to eight threads we would like to investigate
the limits of this trend by running the algorithm on machines
with a larger number of processors sharing the same ad-
dress space. Also the memory organisation might impact on
the performance of the proposed algorithm. The results pre-
sented show, however, that it will always perform better than
the evaluated alternatives.

Utilisation of the irradiance cache within dynamic envi-
ronments, i.e., those where geometry might change between
frames, requires the ability to remove from the shared data
structure records which became invalid. We intend to inves-
tigate and assess wait-free synchronisation algorithms sup-
porting this removal operation.

6. Acknowledgement

This research was partially funded by project IGIDE, PT-
DC/EIA/65965/2006 funded by the Portuguese Founda-
tion for Science and Technology, and UK-EPSRC grant
EP/D069874/2. We thank Greg Ward for the Office and Con-
ference scenes from Radiance package, Marko Dabrovic for
the Šibenik cathedral model. Finally, we thank Stanford’s
Graphics Group for the Bunny model from the Stanford 3D
Repository.

References

[DSC06] DEBATTISTA K., SANTOS L. P., CHALMERS A.: Ac-
celerating the irradiance cache through parallel component-based
rendering. In Eurographics Symp. on Parallel Graphics and Vi-

sualization (2006).

[DVC03] DEBATTISTA K., VELLA K., CORDINA J.: Wait-free
cache-affinity thread scheduling. In IEE Proc. on Software (April
2003), vol. 150, pp. 137–146.

[JDZJ08] JAROSZ, DONNER, ZWICKER, JENSEN: Radi-
ance caching for participating media. ACM Trans. on Computer

Graphics 27, 1 (March 2008).

[Jen01] JENSEN H. W.: Realistic image synthesis using photon

mapping. A. K. Peters, Ltd., 2001.

[KGPB05] KRIVANEK J., GAUTRON P., PATTANAIK S.,
BOUATOUCH K.: Radiance caching for efficient global illumi-
nation computation. IEEE Trans. on Visualization and Computer

Graphics 11, 5 (2005), 550–561.

[KMG99] KOHOLKA R., MAYER H., GOLLER A.: MPI-
parallelized Radiance on SGI CoW and SMP. In ParNum’99:

4th Int. ACPC Conf. (1999), pp. 549–558.

[RCLL99] ROBERTSON D., CAMPBELL K., LAU S., LIGOCKI

T.: Parallelization of radiance for real time interactive lighting vi-
sualization walkthroughs. In ACM/IEEE Supercomputing (1999),
ACM Press, p. 61.

[SKDM05] SMYK M., KINUWAKI S., DURIKOVIC R.,
MYSKOWSKI K.: Temporally Coherent Irradiance Caching for
High Quality Animation Rendering. Computer Graphics Forum

24, 3 (2005), 401–412.

[TL04] TABELLION E., LAMORLETTE A.: An Approximate
Global Illumination System for Computer Generated Films.
ACM Trans. on Graphics 23, 3 (2004), 469–476.

[War88] WARD G.: A ray tracing solution for diffuse interreflec-
tion. Computer Graphics - SIGGRAPH’88 22, 4 (August 1988).

[War94] WARD G.: The radiance lighting simulation and render-
ing. Computer Graphics - SIGGRAPH’94 (1994).

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph. 26, 1 (2007), 6.

[WMG∗07] WALD I., MARK W. R., GÜNTHER J., BOULOS S.,
IZE T., HUNT W., PARKER S. G., SHIRLEY P.: State of the
art in ray tracing animated scenes. In STAR Proceedings of Eu-

rographics 2007 (September 2007), Schmalstieg D., Bittner J.,
(Eds.), pp. 89–116.

c© The Eurographics Association 2009.

64

