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Abstract 

This paper describes a high-performance &pecial-purpose system, the Cube-3 machine, for 
displaying and manipulating high-resolution volumetric datasets in real-time. Cube-3 will allow 
scientists, engineers, and biomedical researchers to interactively visualize and investigate their 
static high-resolution sampled, simulated, or computed volumetric dataset . Furthermore, once 
acquisition devices or mechanisms are capable of acquiring a complete high-resolution dynamic 
dataset in real-time, Cube-S, tightly coupled with them, will be capable of delivering real-time 4D 
(spatial-temporal) volume visualization, a task currently not possible with present technologie&. 

1 Introduction 

Visualization of scientific, engineering, or biomedical multidimensional data h as become a key tech
nology in computer science and in the related applications. Often the natural or computational 
objects or phenomena being studied are spatially or temporally volumetric. Unlike traditional 
computer graphics techniques, which represent 3D objects as geometric surfaces and edges ap
proximated by polygons and lines, volume data are 3D entities that may have information inside 
them. These volumetric entities might not consist of surfaces and edges at all, or they may be too 
voluminous to be represented geometrically. 

Volume visualization is concerned with the representation, manipulation, and rendering of vol
umetric data [12J. A volumetric dataset is typically represented as a 3D regular grid of voxels 
(volume elements), each is a quantum unit of volume that has a value(s) associated with it rep
resenting some property of the object or phenomenon. This 3D" dataset is commonly stored in 
a regular Cubic Frame Buffer (CFB), which is a large 3D array of voxels (e.g., 128M voxels for 
5123

) and is being displayed on raster screen using a direct volume rendering technique [15J, [12J. 
Alternatively, the dataset may be represented as a sequence of cross-sections or as an irregular grid. 

Applications of volume visualization include sampled, simulated, and computed datasets in 
confocal microscopy, astro- and geophysical measurements and analysis, molecular structures, finite 
element models, computational fluid dynamics, and 3D reconstructed medical data, to name just 
a few (see [12] Chapter 7). As with other display methods of 3D objects, the provision of visual 
cues and dynamic data manipulation is essential for the understanding of the 3D dataset. Real
time volume visualization rates, typically defined to be more than 10 frames per second, make 
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object manipulation a natural way for the understanding of 3D static data. Furthermore, in many 
dynamic applications, real-time visualization is a necessary component of an integrated acquisition
visualization system. Examples are the real-time analysis of an in-vivo specimen under a confocal 
microscope or the real-time study of in-situ fluid flow or crack formation in rocks under Computed 
Microtomography (CMT). 

The main objective of the proposed Cube-3 architecture is to develop a real-time volume visu
alization system that will support these type of applications. The availability of such a system will 
revolutionize the way scientists, engineers, and biomedical personnel conduct their studies. 

2 System Overview 

Figure 1 depicts the overall organization of two real-time volume visualization environments. The 
host computer controls the entire environment and runs the Cube software. The acquisition device 
is either a sampling device such as a confocal microscope, microtomograph, ultrasound, MRI or CT 
scanner that produces 2D cross sections or 3D reconstructed volume, or a computer running either 
a simulation model (e.g., computational fluid dynamics) or synthesizing (voxelizing) a voxel-based 
geometric model from a display list (e.g., CAD) [12]. The sampled, simulated, or computed datasets 
are either a sequence of cross sections, a regular 3D reconstructed volume, or an irregular sample 
that can be converted into a regular volume. All these formats can be maintained and archived 
by the filing module of the Cube software. The Cube-3 machine accepts either a equence of cross 
sections or a 3D regular volume. 

<a) 
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(b) 

3D Input 
Device 

Figure 1: Volume Visualization Environments. 

Figure 1 (a) shows an environment in which the acquisition and reconstruction stage will be 
performed in several seconds to several minutes (depending on the acquisition device), while the 
visualizat ion and manipulation will be running on the Cube-3 machine in true real-time. Figure 1 
(b) shows the ultimate environment, in which Cube-3 is tightly-coupled with the real-time acquisi
tion device to create an integrated acquisition-visualization system that would allow the real-time 
4D (spatial-temporal) visualization of dynamic systems. 

In a ddition to controlling the Cube-3 volume visualization engine the host machine also runs 
the Cube software system, called VolVis [3], which is currently under development at Stony Brook, 
and complements the Cube-3 machine hardware. 

3 Cube-3 Architecture 

Figure 2 shows a block diagram of the Cube-3 machine hardware. Cube-3 is a highly-parallel 
pipelined architecture. The CFB is a 3D memory organized in n memory modules, each with n 2 

voxels and its own independent dual-access and addressing unit. A special 3D skewed organization 
enables the conflict-free access to any beam (i.e., a ray parallel to a main axis) of n voxels (see 



Section 3.1). In order to generate a parallel or perspective projection, each Projection Ray Plane 
(PRP) is handled separately, generating a complete scan-line of pixels for each PRP (see Section 
3.2). 
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Figure 2: Cube-3 Architecture Overview. 
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The PRP is fetched beam after beam conflict free from CFB and stored in the 2D skewed buffer 
(2DSB), which is organized as a 2D skewed memory. Actually, quadruple 2DSBs are used to support 
interpolation and compositing, gray-level shading, and pipelining. The Fast Bus allows the fast de
skewing and alignment of a beam from the CFB modules into the 2DSB modules (see Section 3.3). 
Each projection ray is then fetched conflict-free from the 2D SB and placed at the leaves of the Ray 
Projection Cone (RPC). The RPC is a folded binary tree that performs interpolation and shading 
calculations at the leaves and generates in parallel and in a pipelined fashion the associated pixel 
using a variety of projection schemes on the cone nodes (see Sections 3.4 and 3.5). The resulting 
pixel is being post-shaded, splatted, and 2D transformed to be stored in the 2D frame-buffer (see 
Section 3.6). 

The next sub-sections describe several aspects of the system in more detail. 

3.1 Parallel Cubic Frame Buffer Organization 

A special 3D skewed organization of the n 3 voxel CFB enables conflict-free access to any beam 
of n voxels [13], [11]. The CFB consists of n memory modules, each with n 2 voxels and its own 
independent access and addressing unit. A voxel with space coordinates (x, y, z) is being mapped 
onto the k-th module by: 

k=(x+y+z)modn o ::; k, x, y, z ::; n - 1 (1) 

Since two coordinates are always constant along any beam, the third coordinate guarantees that 
one and only one voxel from the beam resides in anyone of the .. modules. The internal mapping 
(i,j) within the module is given by: i = x, j = y. 

V/hen scanning the CFB beam after beam for viewing, the internal order of the modules along 
the beams is changing. Actually the module index, which is the distance of a voxel along a beam 
from the viewing position (i.e., the voxel depth), is either incrernented or decremented by 1 (modulo 
n) when moving to the next voxel or beam. Consequently, even the simple arithmetic involved in 
the memory scheme of Equation 1 is avoided during the bulky viewing process and only a trivial 
incremental step is used instead. Equation 1 is employed, however, when accessing a single voxel, 
a single beam, or a segment of it. 

This skewing scheme has successfully been employed in Cube-1 [13] and Cube-2 [4], first and 
second generation prototype architectures built at SUNY Stony Brook. They employ a sequence of 
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n Processing Units (PUs) which team up to generate the first opaque projection along a beam of 
n voxels in O(log n) time, using a Voxel Multiple-Write Bus (VMWB) (7], (l3]. Consequently, the 
time necessary to generate an orthographic projection of n2 pixels is only O( n 2 log n), rather than 
the conventional O(n3 ) time. However, in this technique projections can be generated from only a 
finite number of predetermined directions and not from any arbitrary direction (5]. 

3.2 Architecture for Arbitrary Viewing 

\Ve propose here a new architecture, as an extension of the Cube-2 orthographic projection m ech
anism. The new architecture also processes rays instead of voxels, but, unlike Cube-2, the rays 
are not necessarily parallel to a main axis. Furthermore, the entire system works in a pipeline 
fashion, and thus a ray is processed in a constant time, enabling arbitrary parallel and perspective 
projection in a t ime complexity of O(n2 ) . 

All the rays belonging to the same scan line of the 2D frame-buffer reside on the same plane, 
termed the Projection Ray Plane (PRP) .. For every parallel and perspective projection, all the PRPs 
can be made parallel to one major axis by fixing a degree of freedom in specifying the projection 
parameters. For example, in parallel projection the projection plane can be rotated about the 
viewing axis which is performed by the pixel processing unit after projection. Since there is no 
direct way to fetch arbitrary discrete rays from the CFB conflict free, a whole PRP of beams (which 
are now parallel to an axis) is instead fetched in n cycles, beam after beam, and stored in a 2D 
temporary buffer called the 2D Skewed Buffer (2DSB). 

The direction of the viewing ray within the original PRP depends on the observer's viewing 
direction. When a PRP is moved from the CFB to the 2DSB using the Fast Bus, it undergoes 
a 2D shearing (either to the left or to the right) to align all the viewing rays into beams along a 
direction parallel to a 2D axis (e.g. , vertical). See Figure 3. This step is a de-skewing step that 
is accomplished by the arbitrary bus routing. Once the viewing rays are aligned vertically within 
the 2D memory, they can be individually fetched and placed at the leaves of the ray projection 
m echanism. Since there may be up to 2n - 1 parallel viewing rays entering the PRP, the 2DSB 
size is 2n X n voxels. 

Orthogonal 
Beams _ 

/ 
Ray 

./ 
Cubic Frame Buffer 

(CFB ) 

I I 
I I 

I 

20 Skewed Buffer 
(2DS B) 

~ 
~~ 
.~~ 

.~: 

;:~ 

.~, 

~ 
I 
+ 

Ray 

Figure 3: Arbitrary Viewing Mechanism. 
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The 2DSB thus supports conflict-free storage of horizontal beams coming from the CFB and 
conflict-free retrieval of vertical viewing rays. The 2DSB is divided into n modules, each with 2n 
voxels, and is skewed such that any module appears exactly once in every row and every column. 
To achieve thi s, the (i,j) voxel is mapped onto module (i + j) mod 2n in locat ion i (see also [14] 
which is a hardware solution for 90° rotation and mirroring of bitmaps). 



3.3 Modular Fast Bus 

The Fast Bus is an interconnect bus that allows the transfer of data from the n CFB modules to 
the n 2DSB modules in any arbitrary distribution. This enables the arbitrary shearing necessary 
for parallel projections and the de-fanning necessary for perspective projections. A set of fast 
pipelined multiplexers and demultiplexers and a fast multi-channel bus are used to accomplish the 
data transfer speeds necessary for real-time rendering. 

The Fast Bus speeds of 128 nsec per beam/ray will support 25Hz rendering of a 5123 16-bit per 
voxel datasets. This speed has been used by other researchers [17], and technologies and driving 
chip sets already exist for such bus speed requirements, such as the Futurebus+ [2], [20], [16]' [18]. 

3.4 Ray Projection Mechanism 

We propose a pipelined hardware mechanism for ray projection called Ray Projection Cone (RPC) 
that can generate a projection in 0(1) time using a rich variety of projection schemes. The cone is 
a folded (circular) cross-linked binary tree with n leaves which can be dynamically mapped onto a 
tree with its leftmost leaf at any arbitrary end-node on the cone. This allows the processing of a 
ray of voxels starting from any leaf of the cone. This in turn allows the cone to be hard-wired to the 
outputs of the 2DSB modules containing the voxels. Such a configuration eliminates the need for 
a set of n n-to-l switching units or a barrel shifter in the connection. The beginning levels of the 
cone may also be located at the site of the associated modules. The conic structure requires only 
an additional set of configurable interconnections and does not require any additional tree nodes 
over a conventional binary tree. 

The cone accepts as input a set of n voxels along the viewing ray and produces the final value 
for the corresponding pixel. The cone is a hierarchical pipeline of n - 1 primitive computation 
nodes called Voxel Combination Units (VCU) . Each VCU accepts two voxel values as input and 
combines them into an output voxel value in a constant time T. At any given snapshot the cone 
is processing log n rays simultaneously in a pipelined fashion, producing a new pixel color every T 

time units. 
Each VCU is capable of combining its two input voxels in a variety of ways in order to imple

ment viewing schemes, such as first or last opaque projection, maximum or minimum voxel value, 
weighted summation, and compositing projection. A VCU accepts as input two voxel values VL 
and VR (left and cent er or cent er and right inputs), each one consisting of color C, opacity a, and 
the depth index I of the voxel along the ray. The opacity of the voxel is either prestored with every 
voxel or provided through a look-up table of a transfer function at the leaves of the cone. The VCU 
produces an output voxel V' by performing one of the following operations: 

First opaque: if ((XL is opaque) V' = VL 

else 

Maximum value: 

else 

Weighted sum: C' = CL + WkCR 

V' = VR 

V' = VR 

V' = VL 

where W is the weighting factor and k is the cone level. W k is precomputed and preloaded into 
the VCUs. Weighted sum is useful for depth cueing, bright field, and x-ray projections. 

Compositing C' CL + (1 - aL)CR 

a aL + Cl - aL )aR 
where the first level VCUs compute Cl = ClaI, assuming the values are gray-levels or RGB. 

This is the parallel implementation of the front-to-back (or back-to-front) compositing [15]. 
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Similarly last opaque, minimum value projection, and sum (x-ray) projection can be imple
mented. The cone can support a richer set of projection paradigms and a larger variety of shading 
techniques, and by using a pipelined organization, it has the potential of supporting higher projec
tion speeds. 

The VCUs will be implemented in VLSI where three VCUs will be incorporated into one chip. 
A single set of three VCUs, representing a three node subcone, can be arranged in a planar organi
zation such as to maximize space and wiring efficiency [1]. The leaves of the ray projection cone are 
more complex nodes, supporting trilinear interpolation and gray-level gradient computation and 
segmentation based on transfer functions [15] . 

3.5 Fast 3-D Interpolation 

When sampling in non-grid locations along the ray for compositing [15], the sampled value is 
trilinearly interpolated from the values of the eight voxels (called a cube) around the sample point. 
Note that this kind of sampling does not necessarily require a regular isotropic dataset and slice 
data can be accommodated as well. 

A 3D interpolation unit computes the interpolated data values of the samples on the projection 
ray when it traverses through the volume data. Suppose the relative 3D coordinate of a sample 
point within a cube with respect to the corner voxel closest to the origin is (a, b, c) and the data 
values associated with the corner voxels of the cube are Pijk, where i, j, k = 0 or 1, then the 
interpolated data value associated with the sample point, Pabe, is computed through a tri-linear 
interpolation process as follows: 

Pabc Pooo X (1- a)(l - b)(l - c) + PlOo X a{l - b)(l - c) + 
POlO X (1- a)b(l - c) + POOl X (1 - a)(l - b)c + 
P lO1 X a(l - b)c + POll X (1 - a)bc + 
P1l 1 X abc + PHO X ab(l - c) (2) 

A brute-force implementation of this formula requires about 13 multiplications and 20 additions 
for each sampled point that is not a voxel. We solve this problem by making the observation that 
a tri-linear interpolation is actually equivalent to a linear interpolation followed by two bi-linear 
interpolations, and by replacing time-consuming arithmetic operations with a table look-up. 

From Equation 2, it is clear that the only part that allows pre-computation is the intermediate 
values involving a, b, and c. By substituting two bi-linear interpolations and a linear interpola
tion for a tri-linear interpolation, the look-up table size shrinks to 64 KBytes. The price we pay 
for this design decision is that two more multiplications are needed than the straightforward tri
linear interpolation design. Fortunately, the performance overhead associated with these additional 
multiplications can be minimized by exploiting parallelism and pipelining. 

To a first approximation, a parallel multiplier is nothing more than a two-dimensional array of 
single-bit carry-save adders. Therefore, it is possible to integrate a multiplication and an addition 
operation by inserting an extra row of carry-save adders. Moreover, one can pipeline multiple 
multiply-add operations through such an augmented parallel multiplier to reduce the hardware 
cost . Consequently, it becomes feasible to implement the entire 3D-interpolation function in one 
chip and because of the highly pipelined structure the targeted 128 nsec cycle time is comfortably 
within the reach of this design. 



3.6 Volumetric Shading Mechanisms 

A prominent object-based volumetric shading method is gray-level gradient shading [9]. It uses 
the gradient of the data values (gray-level values) as a measure for surface inclination. More 
formally, denote by V the gray-level function. The normal is obtained from the gradient vector by 

( ~~ , ~~ , ~~). The partial derivatives are approximated (in voxel space) by the differences between 

the gray values of the current voxel and its immediate neighbors. 
Cube-3 has four 2DSB memories that store three active consecutive RPRs, the current RPR and 

one just above and one just below, as well as an inactive RPR which is concurrently being loaded 
from the CFB. The central voxel and up to 26 neighboring voxels (9 from each PRP) needed for 
the gray-level calculation, or the 8 voxels surrounding the current sample, may then be extracted 
and transferred in parallel for processing in the interpolation units. 

We have developed [6] a hardware design for the implementation of an image-based post-shading 
method termed congradient shading. In this method the surface normal is obtained from the depth 
gradient vector where the partial derivatives are approximated (in pixel space) by the differences 
between the depth values of the current pixel and its immediate neighbors in the depth buffer [8]. 
The post-shading is performed as part of the pixel processing unit. 

An alternative image-based post-shading method is the context-sensitive shading method [22], 
[23], [21], which is based on a mechanism for discontinuity detection, which divides the image space 
into contexts each of which is a surface segment that exhibits a high level of uniformity, that is, 
it is a continuous surface (CO continuity) with a gradually changing tangent (Cl continuity). The 
hardware implementation of the context-sensitive shading [21J is slightly more complex than that 
of the congradient shading. 

We have developed and analyzed several volumetric shading techniques in an attempt to address 
the problem of image quality in volume rendering. Our initial observation, which is shared by 
others [10]' is that more than one technique is necessary for the same image component, for different 
components, for different images, or different applications, and that blending of the colors calculated 
by several methods at each pixel results in superior quality images [21], [19]. Consequently, Cube-3 
supports a large variety of shading techniques and schemes. 

3.7 Parallel Input 

Emerging real-time scanning devices, such as computed microtomograph, confocal microscops, or 
ultrasound scanners, will be able to acquire data at very high rates. Similarly, computers and 
especially supercomputers can generate in real-time large volumetric datasets through simulation 
or modeling. In order to transfer the huge amounts of data from the acquisition device to the CFB 
in real-time, an efficient, reliable and fast input system will be developed and implemented. We 
assume that the acquisition (and reconstruction) device will supply the data in parallel channels in 
the skewed order of the CFB . 

To achieve high input performance of multiple 5123 datasets ' per second we propose the use 
of parallel high speed optical links to connect the acquisition device and Cube-3. Providing more 
than gigabit per second transfer bandwidth, these optical links provide a reliable and fast interface 
to Cube-3. We plan to use the Gazelle optical interfaces, currently supporting 1 gigabit p er second 
transfer rate. These interfaces are in use in our department for the implementation of a high 
performance eager-sharing system. Assuming, for example, 16 dual-ported CFB modules per CFB
board for a total of 32 CFB-boards and one optical link per board, it would be possible to load 8 
MBytes on each board at least 25 times per second. This assumes 32 corresponding output ports 
on the acquisition device. 
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4 Summary 

The Cube-3 machine is a full-scale, high-resolution 5123 16-bit per voxel hardware prototype of 
a highly-parallel, pipelined, real-time volume visualization engine. It has the following capabili
ties: viewing from any perspective and parallel direction, specifying the projection type (e.g., first 
opaque, max value, x-ray, compositing), shading, sectioning and slicing, programmable color seg
mentation and thresholding, and controlling translucency, which are supported by the hardware 
and can be performed in real-time. 

In addition, the following functions run in software, not necessarily in real-time: data acqui
sition, 3D reconstruction, voxelizing synthetic models, filing and database handling, loading the 
Cube-3 machine, transforming (translation, scaling, and rotation), manipulating (voxel-by-voxel 
operations, e.g., 3D filtering) the dataset, and probing and measurements (e.g., distance, surface, 
volume), and 3D interaction for direct and natural interaction and navigation. 

We have simulated the Cube-3 architecture in C and in Verilog, and have designed the general 
layout of the 5123 16-bit voxel prototype implementation. Current design calls for a system with 49 
boards, 16 CFB-boards with about 100 chips per board (for 32 3D memory modules per board), 32 
2D-boards with about 115 chips per board (for 16 2D memory modules per board), and one master 
board. This board layout and chip count may change depending on off-the-shelf chip availability, 
pin count and package size for the custom-designed chips, bus interface technology, and real estate 
on the boards. 

5 Acknowledgements 

This work was partially supported by the National Science Foundation under grant MIP 88-05130. 
The authors would like to thank all the members of the Cube-3 team that contributed to this 
research, especially Reuven Bakalash, Robert Pacheco, and Adam Xuejun. Special thanks are due 
to Tzi-cker Chiueh for proposing the fast interpolation mechanism. 

References 

[1] G.S . Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin/Cummings Publishing 
Company, 1989. 

[2] W. Andrews. 32-bit buses contend for designer's attention. Computer Design, 28(11):78- 96, 
November 1989. 

[3] R. Avila, L. Sobierajski, and A. Kaufman. Towards a comprehensive volume visualization 
system. In Visualization '92 Proceedings, pages 13-20. IEEE Computer Society Press, October 
1992. 

[4] R. Bakalash, A. Kaufman, R. Pacheco, and H . Pfister. An extended volume visualization 
system for arbitrary parallel projection. In Advances in Computer Graphics Hardware, V, 
Proceedings of the 1992 Eurographics Workshop on Graphics Hardware, 1992. 

[5] D. Cohen and A. Kaufman. A 3D skewed memory organization for conflict free ray casting. 
Tr 92.09.11, Department of Computer Science, State Univeristy of New York at Stony Brook, 
September 1992. 

[6] D. Cohen, A. Kaufman, R. Bakalash, and S. Bergman. Real-time discrete shading. The Visual 
Computer, 6(1):16-27, February 1990. 



[7] R. Gemballa and R. Lindner. The multiple-write bus technique. IEEE Computer Graphics & 
Applications, 2(7):33-41, September 1982. 

[8] D. Gordon and R. A. Reynolds. Image space shading of 3-dimensional objects. Computer 
Vision, Graphics, and Image Processing, 29 :361-376, 1985. 

[9] K. H. Hoehne and R. Bernstein. Shading 3D-images from CT using gray-level gradients. IEEE 
Transactions on Medical Imaging, MI-5(1):45-47, March 1986. 

[10] K. H. Hoehne, M. Bomans, A. Pommert, M. lliemer, C. Scruers, U. Tiede, and G. Wiebecke. 
3D-visualization of tomograpruc volume data using the generalized voxel model. The Visual 
Computer, 6(1):28- 37, February 1990. 

[11] A. Kaufrnan. The CUBE 3D workstation. EG Workshop on Graphics Hardware, August 1986. 

[12] A. Kaufrnan. Volume Visualization. IEEE Computer Society Press Tutorial, Los Alamitos, 
CA, 1990. 

[13] A. Kaufrnan and R. Bakalash. Memory and processing architecture for 3D voxel-based imagery. 
IEEE Computer Graphics & Applications, 8(6):10-23, November 1988. 

[14] C. Korenfeld. The Image Prism: A device for rotating and mirroring bitmap images. IEEE 
Computer Graphics 8 Applications, 7(5) :21-30 May 1987. 

[15] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics 8 Applications, 
8(5):29-37, May 1988. 

[16] J . Martinez. BTL transceivers enable high-speed bus designs. EDN, 37:107, August 1992. 

[17] S. Molnar, J. Eyles, and J. Poulton. Pixelflow: High-speed rendering using image composition. 
Computer Graphics, 26(2):231-240, July 1992. 

[18] National Semiconductor. Transceiver crup set gets BTL treatment . Electronic Engineering, 
63(4):11-12, April 1991. 

[19] I. Spector, A. Kaufman, R. Yagel, and R. Bakalash. 3D visualization of actin cytoskeleton. 
Annual Meeting of the American Society of Cell Biology, December 1990. 

[20] D.M. Taub. Clockless synchronization of distributed concurrent processes. In IEEE Proceed
ings, volume 139, pages 88-91, January 1992. 

[21] R. Yagel, D. Cohen, and A. Kaufman. Context sensitive normal estimation for volume imaging. 
Tr 90.05.15, Department of Computer Science, State Univeristy of New York at Stony Brook, 
May 1990. . 

[22] R. Yagel, D. Cohen, and A. Kaufman. Context sensitive normal estimation for volume imaging. 
In N.M. Patrikalakis, editor, Scientific Visualization of Physical Phenomena, pages 211-234. 
Springer-Verlag, 1991. 

[23] R. Yagel, D. Cohen, and A. Kaufman. Normal estimation in 3D discrete space. The Visual 
Computer, pages 278- 291, June 1992. 

80 


