
Direct Visualization of Quadrics

Laporte H.
Nyiri E.
Froumentin A1.
Chaillou C.

ABSTRACT
Today, most of the powerful graphic systems are based on 3D-triangle display meth
ods. However, this approach generates well-known problems, like the low quality of
contours and shading, and the necessity to have large amounts of primitives to dis
play complex scenes. A way to solve these problems is to use higher level primitives,
among which a very interesting one is the quadric surface. We study here direct
visualization of quadric surfaces (quadrics for short) .
Although we study all the rendering process, we focus on the scan conversion stage.
First, we present mathematical and modeling backgrounds where we show that a
quadric surface can easily be rendered in scan-line. Then we give the general algorithm
and details about the difficult part, i.e. the bounding plane algorithm. A functional
description of a scan converting processor is proposed, using a modular approach.
In the last part , we give a hardware implementation of each module and the whole
processor. We also do an estimation of the silicon cost . The conclusion is that our
quadric patch scan converter can actually be realized.

1.1 Introduction

Today, machines dedicated to image synthesis use polygons as display primitives. There
are several reasons to this. First polygons (and more particularly triangles) are very simple
shapes so complexity is low and few calculations are required to render them (i.e. bilinear
interpolation). Furthermore there are lots of optimized algorithms and special purpose
components for scan conversion. Today the most efficient machines are able to compute
more than one million Gouraud shaded triangles per second [5J.

Nevertheless drawbacks exist. We can point out the problems of approximated contours
(because of the tessellation of modeling primitives such as B-spline or Bezier patches) and
the fact that a huge number of triangles is necessary to r~present a scene.

To avoid these drawbacks, using higher level primitives is promising. A few attempts
have been made especially in the Pixel-Plane 5 machine [4J. Our goal is to go further
in this way. Using quadric surfaces seems interesting as they are defined by a quadratic
implicit equation, depths and normal vectors are easily computed for scan-line Z-buffer
algorithms.

However this alternative to the facet involves important modifications. The complete
study is devided into two parts. The first part deals with modeling problems. The second
one considers the rendering pipeline, mainly including host requirements, anti-aliasing,
texture mapping and of course direct visualization. This paper only discusses direct visu
alization issues .

In the first part of this paper, we present the quadric and the modeling background.
Then, visualization algorithms are given . In the third part , we propose a complete func
tional description. In the end, we study hardware implementation and estimate the VLSI
cost.

44

http://www.eg.org
http://diglib.eg.org

Laporte H., Nyiri E., Froumentin M., ChaiIlou C.

1.2 Quadric Surfaces

1.2.1 Presentation

A quadric is a 3D surface defined by the implicit equation:

Q(x,y,z) = ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0 (1.1)

For each couple (x, y) we can easily find the back and front depths (z) where the quadric
is present (if any):

z = F1(x,y) ± VF2(x ,y)

where (c::j: 0)

F1() - -e + -f +-i x,y - k X '?;;Y :k
F2(x y) = e2 -4ac x 2 + f2-4bc 2 + ef-2Cdxy + ei-2cg x + fi-2chy + i2_4cj

, 4c2 4c2 Y 2c2 22 2c2 4c2

(1.2)

(1.3)

If F2(x, y) is positive, then the quadric intersects the line defined by x,y an parallel to
the z-axis.

The coordinates of the normal at (x,y,z) are the partial derivatives of Q(x,y,z) :

{

N X = ~(x, y, z) = 2ax + dy + ez + g
NY = ~(x,y,z) = 2by + dx + f z + h

NZ = $£ (x) y) z) = 2cz + ex + f y + i
The depth values are used in the Z-buffer and the normal vector for shading.

1.2.2 Modeling background

(1.4)

Usually, quadrics are used as volumes, within a Constructive Solid Geometry environ
ment. But CSG is not well-suited for real-time rendering. Therefore, an approach based
on quadric surfaces has to be considered to define a Z-buffer graphics system. A "Quadric
Patch" is then defined including the surface and bounding planes. Recent studies [6, 3]
show that using the Bernstein-Bezier representation for quadrics simplifies the construc
tion of piecewise quadratic surfaces with GO or G1 continuity. This representation uses
tetrahedra as bounding volumes. Then, four bounding planes a.ppear to be necessary.

Parallel works at the LIFL include, on one hand, modeling with quadric patches as
primitive, on the other hand, "quadric tesselation" algorithms, i.e. algorithms which con
vert complex primitives like B-spline surfaces into a mesh of quadric patches.

1.3 Algorithms

The algorithm works in scan-line, using the formu las given in 1.2.1. Note that the pro
jection of the patch is displayed inside the projection of the bounding box. Shading (true
Phong shading can be used [9]) and Z-buffer operations are post~processed.

1.3.1 General algorithm

Assuming that ZPl, ZP2, ZP3, ZP4 are the plane depths and NXBASE, NYBASE,
NZBASE are intermediate results for the normal component computation (see 1.4.3) the
algorithm is:

Initialize zone
FOR each line DO

initialize line
FOR each point DO

Compute Fl, F2, ZF, ZB, NXBASE, NYBASE, NZBASE , ZP1, ZP2, ZP3, ZP~

Execute boundary-plane algorithm {described belo~}
compute NX, NY, NZ

END
END

1.3.2 Boundary-plane algorithm

For visualization, a boundary-plane is used as follows: the plane cuts 3D space into two
pa.rts. If the qua.dric is in the correct half-space we keep it, else we cut it. To determine
which half space is the correct one we use the z-coordinate of the normal vector to the
plane (called GP). The main task is to compare quadric depths (ZF is the front depth
and ZB is the back one) with plane depths (called ZP) and to select the correct depth.
To perform this, we use two flags (called EF and EB), one for each quadric depth. A
value of one means that the depth is able (i.e. not eliminated by a cut into the quadric
due to a boundary plane) and of course a value of zero means that the depth is unable.
At the beginning of the algorithm they are both set to one. Then we cut the quadric with
the four boundary planes. In the end, there are th~ee possibilities. EB = EF = 0 means
that the whole quadric is eliminated so we need ZM AX (the maximum depth value). If
EF = 1 then we keep ZF (no matter what the value of EB is). If EF = 0 and EB = 1
then we keep Z B .

Figure 1.1 shows in 2D a quadric patch with one front plane and one back plane.

back plane

EF=O EF=1

EB=1 EB=1

quadric patch

front plane

FIGURE 1.1. General diagram

Notice that Z' is the depth which is used to compute the normal coordinates whereas
ZOUT is the output depth . If ZOUT = Z.M AX Z' has no meaning and the normal
vector neither.

{initialization}
EF=l; EB=l;
FOR each plane i DO

{Cutting-plane algorithm}
IF CPi=O {perpendicular plane}

46

END

Laporte H., Nyiri E., Froumentin M., Chaillou C.

IF ZPi<O
EF=O; EB=O

ELSE IF CPi<O {front plane}
IF ZPi>ZB

EF=O; EB=O;
ELSE IF ZPi>ZF

EF=O;
ELSE {back plane} IF ZPi<ZF

EF=O; EB=O;
ELSE IF ZPi<ZB

EB=O;

{selection of the right depth}.
IF EF=1 Z'=ZF ELSE Z'=ZB
IF (EF=O and EB=O) ZOUT=ZMAX ELSE ZDUT=Z'

1.4 Functional description

Our aim is to define a processor for quadric surface calculations. After studying the
mathematical basis and the algorithms the next step is a functional description of this
processor. First we present a general description and then we give details about each of
its modules.

1.4.1 General description

,,,-re present in figure 1.2 the general dia.gram corresponding to the algorithm given in 1.3.1.
In this figure, the bounding plane module corresponds to the algorithm given in 1.3.2

Boundary

Planes

Quadric

Nonnal

--':>

FIG URE 1.2. General diagram

1.4.2 Quadric Depth and Plane Depth Modules

To Z-Buffer

To Post· Shadcr

Figure 1.3 shO\ s the ZF and ZB depth calculations which are performed using formulas
given in 1.2.l.

The computa.tion of the depth of a single plane is given by a linear expression. It is a
basic computation, hence we do not describe it.

1.4.3 Quadric normal module

The normal vector coordinates are computed in two steps . The first one is the calcula.
tion of the three linear expressions that we call the NXBASE, NYBASE and NZBASE
components, assuming that N X BASE = 2ax + dy + g, NY BASE = 2by + dx + hand

Fl(x,y) ZB

HOST

F2(x,y) ZF

FIGURE 1.3. Quadric depth diagram

NZBASE = ex + fy + i.
The second step is then: NX = NXBASE + e x Z', NY = NYBASE + f x Z',

NZ = NZ BASE + 2c x Z' where Z' is wether ZF or ZB depending on flags EF and
EB. Notice that as we can either see the inner side or the outer side of the quadric, we
have to change the orientation of the normal if it is the back one. We just have to change
the sign of NX, NY and NZ if EF = 0 and EB = 1.

1.4.4 Bounding-plane Module

For each plane, we have five criteria: sign of ZPi - ZF, sign of ZPi - ZB, sign of CPi
(which is the z-coordinate of the plane normal), flag (CPi = O?) and sign of ZPi . To
perform the first two tests , we need to compute the differences ZPi - ZF and ZPi - ZB.
Then we determine the EF and EB flags. Besides we can add sign of F2(x,y) which
indicates wether the quadric is present or not. Then we can do the selection to obtain Z'
and ZOUT.

1.5 Hardware implementation

Figure 1.4 presents the general diagram of our processor. To estimate its cost, we take
figures from the ES2 SOL01400 ECPD15 library [10]. From this library we construct
basic cells that we can see in the table 1.1. Then we describe each functional block we
need and finally we evaluate the quadric processor.

Consider the data width: to avoid precision problems we use 24-bit wide integers for
the depths and l6-bit wide integer for the normal coordinates.

The unit for all the figures is the transistor.

TABLE 1.1. Basic Cells

Cell Transistors

24-bit register without clear 24 x 26 = 624

24-bit registe r with clear 24 X 32 = 768

24-bit adder 24 x 36 = 864

48 bit-to-24 bit multiplexer 24 x 14 = 336

24-b it tristate inverter 24x8 = 192

1.5.1 The EPl and EP2 elementary processors

48

Laporte H., Nyiri E., Froumentin M., Chaillou C.

Fl(x,y)
EFl ~ ____________ ~

F2(x,y)
SRE En f---~

a ZP2
EPI

~ZP4
Ul--I-+-+~

ZB

ZF

Z'

~X

X

X

sgn(F2(x,y»

NZBASE

E

ZMAX
----o~

FIGURE lA. Quadric patch processor: general diagram

RAMI RAM2

HOST

FIG URE 1.5 . EPl implementa t ion diagram

NYOUT

NZOUT

ZOUT

These two cells use a forward differencing technique [1] . The EP1 computes a linear
expression: Fl(x, y) = Ax + By + C. At each line, we compute By + C by adding B(y-
1) + C, which is the result of the preceding line, a.nd B . Then at each pixel we add the

TABLE 1.2. EPl cost

Cell Transistors

1 24-bit register with clear 768

1 24-bit adder 864
2 multiplexers 2x336 = 672
2 tristate inverters 2x192 = 384

RAM 1428

TOTAL 4116

preceding result, which is A(x -1) + By + C, and A; then we obtain the required result:
Ax+By+C.

The calculation part of the EP1 is only an adder and a register. We use two RAMs.
While the first one is loaded from the .host, the second one is used for the computation.
When a patch is converted into pixels, the two RAMs are swapped.To manage this feature
we need twoinultiplexers and two tristate inverters . Figure 1.5 and Table 1.2 give the
implementation and the cost of the EPl.

48

RAM2

HOST
4

FIGURE 1.6. EP2 implementation diagram

TABLE 1.3 . EP2 cost

Cell Transistors

5 24-bit register with clear 5x768 = 3840

4 24-bi t adder 4x864 = 3456

4 multiplexers 4x336 = 1344

4 tristate inverters 4 x 192 = 768

RAM 5712

TOTAL 15120

The EP2 computes a quadratic expression: F2(x, y) = Ax2 + By2 + Cxy + Dx + Ey+ F.
First assume that F2(x, y) = Ax2+Px+Q with P(y) = Cy+D and Q(y) = By2+Ey+F.

50

Laporte H., Nyiri E., Froumentin M., Chaillou C.

Because the computation of F2(x, y) and Q (y) is the same, we only present here how to
compute Q(y): assuming that Q(y + 1) = Q(y) + 2By + E + B with R(y) = 2By + E - B
and R(y + 1) = R(y) + 2B, we have Q(y + 1) = Q(y) + R(y + 1). Therefore, we can easily
compute incrementally Q(y) and then F2(x y).

The EP2 is implemented with 2 calculation cells (see 1.6). As the expression is quadratic
we work with 48-bit integers and six word RAMs. Assuming that we cannot compute a
48-bit addition in one cycle clock we use two pipelined 24-bit adders for each cell. At the
end of the computation, we use a synchronization register . The EP2 cost is gi ven in table
1.3.

1.5.2 The square root extractor (SRE)

01 0 02 1 a b

cm

pin pout
---1r-r+---i--,--t-~

FIGURE 1.7. Square root extractor: array and basic cell

TABLE 1.4. SRE cost
Cell Thansistors

600 computation cells 600x56 = 33600

2423 D-Iatches 2423 x 26 = 62998

TOTAL 96598

The square root processor (figure 1.7) is a cellular array described in [S, 2,7]. It computes
a division where the divider and the result are equal. Each line computes one bit of
the result. The basic cell computes a substraction and a sel~ction (of the result of the
substraction or the predeeding rest).

If n is the bit-width of the result the array is made with n lines, the ith line made with
2xi cells . For n=24 we have 600 cells of 56 transistors each. Notice that a cell is roughly
a full adder and a multiplexer (we will consider that its computation time is the same
a.s tha.t of an adder). Moreover we have to manage the pipeline. First we put a 4S-bit
register between each line of the array (cost: 24*48 = 1152 D-Iatches). But the lines in
the second half of the extractor are larger than 24 cells so we cannot compute one line in
one clock period . That is why we have to use 1271 additional registers (the 'pipelining is
quite complex and we will not explain here these figures). The total number of D-la.tches
is 2423 . The SRE ost is given in table 1.4.

1.5.3 The multiplier

TABLE 1.5. Multiplier cost

Cell Transistors

16x16 adders 16x16x36 = 9216

16x16 D-latches 16x16x26 = 6656

TOTAL 15872

The multiplier is a classical parallel one. However, the normal coordinates are 16-bit
integers so we pick up the 16 most significant bits of Z' which is 24-bit wide. During the
multiplication time we only keep 16 most significant bits of the result which should be a
32-bit integer. The multiplier cost is given in table 1.5.

1.5.4 Depth calculation

For the ZPs we just need four EPl. For the quadric depths we need 1 EP1, 1 EP2, 1 SRE
and 2 adder-registers .

1.5.5 Bounding Planes

sgn(CP) sgn(ZPi-ZF) sgn(ZPi-ZB)

EFi

EBi

(CP=O?)

sgn(ZPi)

FIGURE 1.8. Cutting plane logic

First we need eight 24-bit adder-registers to perform the ZPi-ZF and ZPi-ZB differences.
To describe one "cutting-plane" logic, we have to list all the ca<>es where ZF and/or ZB
have to be unabled . Assuming that sgn(x) = 0 when x positive and sgn(x) = 1 when x
negative.

For Z F and ZB (i.e. when ZOUT = ZMAX): (GP = O?) = 1 and sgn(ZP) = 1,
sgn(GP) = 1 and sgn(ZP - ZB) = 0, sgn(GP) = 0 and sgn(ZP - ZB) = 1.

52

Laporte H., Nyiri E., Froumentin M., Chaillou C.

For ZF only: sgn(CP) = 1 and sgn(ZP - ZF) = O.
For ZB only: sgn(CP) = 0 and sgn(ZP - ZB) = 1.
Vve group these conditions, taking care of the fact that we want to set EF and EB to

zero and not to one (it means only a logic NOT). We obtain the diagram of figure 1.8. The
flag (C P = O?) is supplied by the host. All the cutting plane logics work simultaneously.
We group the result with one 4-input logic AND for EF and another one for EB. Finally
we select Z' and ZOUT.

\Ve need one multiplexer for Z' . The control bit is EF. We need another multiplexer
for ZOUT. The control bit is EF . EB + sgn(F2(x, y)) . The bounding plane control logic
(with the two multiplexers and without adder-registers) is only 76 x 4 + 46 + 672 = 1022
transistors.

1.5.6 Pipelining and control

Vie do not focus here on the control of the processor because it is an external one. Indeed,
the processor is used in a parallel architecture. So a dedicated component controls all
the quadric patch processors. This control could be performed with a automaton or a
micro-programmed circuit .

The pipelining is not very complex, given that each cell in the processor is already
internally pipelined. We only have to add a few registers to synchronize each cell with
the other ones. Table 1.6 shows the scheduling of calculations. The first column gives the
start time and the end time of each step. The following column is the name of the step.
The last one gives the need of extra-storage.

TABLE 1.6. Scheduling

Timing Step Extra storage

0/2 F2(x ,y)

2/38 SRE
37/38 Fl(x,y)

38/39 ZF,ZB
39/40 ZP-ZF,ZP-'lB ZF,ZB

40/41 Z',ZOUT Z',ZOUT
41/57 Multiplier 'lOUT

56/57 NXBASE,NYBASE,NZBASE
57/58 NXOUT ,NYOUT ,NZOUT ZOUT

'""le need 2+ 2+ 16+ 1 = 21 extra-registers which costs 21 x 26 x 24 = 13104 transistors.
\"le can also see that the start up of the pipeline is 58 clock cycles.

1.5.7 Hardware cost of the whole processor

All the previous results are gathered in table 1.7.
A few words about these figures: first the total number of transistors needed is big but

not huge. Moreover, the best VLSI-design soft wares can reduce these figures . For example,
the size of our D-laich is 26 transistors which is quite big. We also want to point out that
the cost is paid for the square root extractor and the multipliers . To reduce the size of
the processor, one must work on these two cells .

Let us have a quick comparison with triangles. \\le have designed a classica.l fa.cet
processor in the same condition than the quadric patch processor. Its size is about 35000
transistors, i.e. seven times smaller than the quadric one. Given that we think that a

TABLE 1.7. Processor cost
Cell Transistors

8 EPl 8x4l16 = 32928

1 EP2 15120

1 SRE 96598

3 multipliers 3x 15872 = 47616

13 adder-registers 13x(864+624) = 19344

Bounding-plane logic 1022

P ipelining registers 13104

TOTAL 225732

quadric patch replaces at least ten triangles, this figure is very satisfying.

1.6 Conclusion and future works

The aim of this paper is to prove the feasability of a quadric patch processor. We have first
described the quadric surface and given the scan-conversion algorithms. At that moment
the main difficulty was the bounding of the patch. After a functional description we
have focussed on hardware implementation. With a modular approach, we have described
precisely each cells of the processor and evaluated the silicon cost. After having noticed
that this time, the square root extractor and the three multipliers represent the two thirds
of the circuit, we conclude that the quadric patch processor can actually be realized.

In this study, we have used a rendering software developed on a SUN workstation. Data
come from a modeling software also developed by our team. We have implemented the
algorithms, refined them and evaluated their costs. Of course, we have also implemented
the preparation tasks and the shading. At this time we are writing a program to precisely
emulate the whole processor.

Our goal is to display any kind of scenes, directly using quadric patches. Used with a post
shading unit, we think that better quality is worth higher computation cost. First results
are promising but there is still much to do. The next step is to implement an optimized
algorithm on a DEC-Alpha board. Then we have to study the host requirements, the
shader and then the whole architecture which combines quadrics and facets . Besides,
we have to study quality improvement such as anti-aliasing or texture-mapping. The
definition of the quadric patch processor is the first step toward the design of a new
graphics system, which will improve quality without reducing performances.

54

Laporte H., Nyiri E., Froumentin M., Chaillou C.

1.7 References

[1] S.1. Chang, M. Shantz, and R. Rocchetti. Rendering cubic curves and surfaces with
integer adaptative forward differencing. AC~M Computer Graphics, 1989.

[2] Cowgill D. Logic Equations for a Built-in Square Root Method. IEEE Transactions
on Electronic Computers 1964.·

[3] \Volfgang Dahmen. Smooth Piecewise Quadric SU7jaces, chapter 23. Academic Press,
1989.

[4] Eyles J. Fuchs H., Poulton J. and al. Pixel Plane 5: A Heterogeneous Multiprocessor
Graphics System Using Processor-enhanced Memories. AC!l1 Computer Graphics,
1989.

[5] Silicon Graphics. Reality Engine in visual simulation. Technical report, SGI, 1992.

[6] Baining Guo. Representation of arbitrary shapes using implicit quadrics. The Visual
Computer, 1993.

[7] Majithia J .C. Cellular Array for Extraction of Squares and Square Roots of Binary
Numbers. IEEE Transactions on Computers, 1972.

[8] H. Laporte. Etude et conception d'un composant VLSI dans le cadre du projet IMO
GENE: l'extracteur de racine carree. Master's thesis , University of Lille (France),
1991.

[9] V. Lefevere, C. Chaillou, and M. Meriaux. Low cost hardware for real time Phong
shading. In Proc. of Graphics Interface '92, workshop on local illumination, 1992.

[10] European Silicon Structures. ECPD15 Process Databook. Technical report, ES2,
1989.

