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ABSTRACT 
Today, most of the powerful graphic systems are based on 3D-triangle display meth
ods. However, this approach generates well-known problems, like the low quality of 
contours and shading, and the necessity to have large amounts of primitives to dis
play complex scenes. A way to solve these problems is to use higher level primitives, 
among which a very interesting one is the quadric surface. We study here direct 
visualization of quadric surfaces (quadrics for short) . 
Although we study all the rendering process, we focus on the scan conversion stage. 
First, we present mathematical and modeling backgrounds where we show that a 
quadric surface can easily be rendered in scan-line. Then we give the general algorithm 
and details about the difficult part, i.e. the bounding plane algorithm. A functional 
description of a scan converting processor is proposed, using a modular approach. 
In the last part , we give a hardware implementation of each module and the whole 
processor. We also do an estimation of the silicon cost . The conclusion is that our 
quadric patch scan converter can actually be realized. 

1.1 Introduction 

Today, machines dedicated to image synthesis use polygons as display primitives. There 
are several reasons to this. First polygons (and more particularly triangles) are very simple 
shapes so complexity is low and few calculations are required to render them (i.e. bilinear 
interpolation). Furthermore there are lots of optimized algorithms and special purpose 
components for scan conversion. Today the most efficient machines are able to compute 
more than one million Gouraud shaded triangles per second [5J. 

Nevertheless drawbacks exist. We can point out the problems of approximated contours 
(because of the tessellation of modeling primitives such as B-spline or Bezier patches) and 
the fact that a huge number of triangles is necessary to r~present a scene. 

To avoid these drawbacks, using higher level primitives is promising. A few attempts 
have been made especially in the Pixel-Plane 5 machine [4J. Our goal is to go further 
in this way. Using quadric surfaces seems interesting as they are defined by a quadratic 
implicit equation, depths and normal vectors are easily computed for scan-line Z-buffer 
algorithms. 

However this alternative to the facet involves important modifications. The complete 
study is devided into two parts. The first part deals with modeling problems. The second 
one considers the rendering pipeline, mainly including host requirements, anti-aliasing, 
texture mapping and of course direct visualization. This paper only discusses direct visu
alization issues . 

In the first part of this paper, we present the quadric and the modeling background. 
Then, visualization algorithms are given . In the third part , we propose a complete func
tional description. In the end, we study hardware implementation and estimate the VLSI 
cost. 
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1.2 Quadric Surfaces 

1.2.1 Presentation 

A quadric is a 3D surface defined by the implicit equation: 

Q(x,y,z) = ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0 (1.1) 

For each couple (x, y) we can easily find the back and front depths (z) where the quadric 
is present (if any): 

z = F1(x,y) ± VF2(x ,y) 

where (c::j: 0) 

F1( ) - -e + -f +-i x,y - k X '?;;Y :k 
F2(x y) = e2 -4ac x 2 + f2-4bc 2 + ef-2Cdxy + ei-2cg x + fi-2chy + i2_4cj 

, 4c2 4c2 Y 2c2 22 2c2 4c2 

(1.2) 

(1.3) 

If F2(x, y) is positive, then the quadric intersects the line defined by x,y an parallel to 
the z-axis. 

The coordinates of the normal at (x,y,z) are the partial derivatives of Q(x,y,z) : 

{ 

N X = ~(x, y, z) = 2ax + dy + ez + g 
NY = ~(x,y,z) = 2by + dx + f z + h 

NZ = $£ (x) y) z) = 2cz + ex + f y + i 
The depth values are used in the Z-buffer and the normal vector for shading. 

1.2.2 Modeling background 

(1.4) 

Usually, quadrics are used as volumes, within a Constructive Solid Geometry environ
ment. But CSG is not well-suited for real-time rendering. Therefore, an approach based 
on quadric surfaces has to be considered to define a Z-buffer graphics system. A "Quadric 
Patch" is then defined including the surface and bounding planes. Recent studies [6, 3] 
show that using the Bernstein-Bezier representation for quadrics simplifies the construc
tion of piecewise quadratic surfaces with GO or G1 continuity. This representation uses 
tetrahedra as bounding volumes. Then, four bounding planes a.ppear to be necessary. 

Parallel works at the LIFL include, on one hand, modeling with quadric patches as 
primitive, on the other hand, "quadric tesselation" algorithms, i.e. algorithms which con
vert complex primitives like B-spline surfaces into a mesh of quadric patches. 

1.3 Algorithms 

The algorithm works in scan-line, using the formu las given in 1.2.1. Note that the pro
jection of the patch is displayed inside the projection of the bounding box. Shading (true 
Phong shading can be used [9]) and Z-buffer operations are post~processed. 

1.3.1 General algorithm 

Assuming that ZPl, ZP2, ZP3, ZP4 are the plane depths and NXBASE, NYBASE, 
NZBASE are intermediate results for the normal component computation (see 1.4.3) the 
algorithm is: 



Initialize zone 
FOR each line DO 

initialize line 
FOR each point DO 

Compute Fl, F2, ZF, ZB, NXBASE, NYBASE, NZBASE , ZP1, ZP2, ZP3, ZP~ 

Execute boundary-plane algorithm {described belo~} 
compute NX, NY, NZ 

END 
END 

1.3.2 Boundary-plane algorithm 

For visualization, a boundary-plane is used as follows: the plane cuts 3D space into two 
pa.rts. If the qua.dric is in the correct half-space we keep it, else we cut it. To determine 
which half space is the correct one we use the z-coordinate of the normal vector to the 
plane (called GP). The main task is to compare quadric depths (ZF is the front depth 
and ZB is the back one) with plane depths (called ZP) and to select the correct depth. 
To perform this, we use two flags (called EF and EB), one for each quadric depth. A 
value of one means that the depth is able (i.e. not eliminated by a cut into the quadric 
due to a boundary plane) and of course a value of zero means that the depth is unable. 
At the beginning of the algorithm they are both set to one. Then we cut the quadric with 
the four boundary planes. In the end, there are th~ee possibilities. EB = EF = 0 means 
that the whole quadric is eliminated so we need ZM AX (the maximum depth value). If 
EF = 1 then we keep ZF (no matter what the value of EB is). If EF = 0 and EB = 1 
then we keep Z B . 

Figure 1.1 shows in 2D a quadric patch with one front plane and one back plane. 

back plane 

EF=O EF=1 

EB=1 EB=1 

quadric patch 

front plane 

FIGURE 1.1. General diagram 

Notice that Z' is the depth which is used to compute the normal coordinates whereas 
ZOUT is the output depth . If ZOUT = Z.M AX Z' has no meaning and the normal 
vector neither. 

{initialization} 
EF=l; EB=l; 
FOR each plane i DO 

{Cutting-plane algorithm} 
IF CPi=O {perpendicular plane} 
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IF ZPi<O 
EF=O; EB=O 

ELSE IF CPi<O {front plane} 
IF ZPi>ZB 

EF=O; EB=O; 
ELSE IF ZPi>ZF 

EF=O; 
ELSE {back plane} IF ZPi<ZF 

EF=O; EB=O; 
ELSE IF ZPi<ZB 

EB=O; 

{selection of the right depth}. 
IF EF=1 Z'=ZF ELSE Z'=ZB 
IF (EF=O and EB=O) ZOUT=ZMAX ELSE ZDUT=Z' 

1.4 Functional description 

Our aim is to define a processor for quadric surface calculations. After studying the 
mathematical basis and the algorithms the next step is a functional description of this 
processor. First we present a general description and then we give details about each of 
its modules. 

1.4.1 General description 

,,,-re present in figure 1.2 the general dia.gram corresponding to the algorithm given in 1.3.1. 
In this figure, the bounding plane module corresponds to the algorithm given in 1.3.2 

Boundary 

Planes 

Quadric 

Nonnal 

--':> 

FIG URE 1.2. General diagram 

1.4.2 Quadric Depth and Plane Depth Modules 

To Z-Buffer 

To Post· Shadcr 

Figure 1.3 shO\ s the ZF and ZB depth calculations which are performed using formulas 
given in 1.2.l. 

The computa.tion of the depth of a single plane is given by a linear expression. It is a 
basic computation, hence we do not describe it. 

1.4.3 Quadric normal module 

The normal vector coordinates are computed in two steps . The first one is the calcula.
tion of the three linear expressions that we call the NXBASE, NYBASE and NZBASE 
components, assuming that N X BASE = 2ax + dy + g, NY BASE = 2by + dx + hand 



Fl(x,y) ZB 

HOST 

F2(x,y) ZF 

FIGURE 1.3. Quadric depth diagram 

NZBASE = ex + fy + i. 
The second step is then: NX = NXBASE + e x Z', NY = NYBASE + f x Z', 

NZ = NZ BASE + 2c x Z' where Z' is wether ZF or ZB depending on flags EF and 
EB. Notice that as we can either see the inner side or the outer side of the quadric, we 
have to change the orientation of the normal if it is the back one. We just have to change 
the sign of NX, NY and NZ if EF = 0 and EB = 1. 

1.4.4 Bounding-plane Module 

For each plane, we have five criteria: sign of ZPi - ZF, sign of ZPi - ZB, sign of CPi 
(which is the z-coordinate of the plane normal), flag (CPi = O?) and sign of ZPi . To 
perform the first two tests , we need to compute the differences ZPi - ZF and ZPi - ZB. 
Then we determine the EF and EB flags. Besides we can add sign of F2(x,y) which 
indicates wether the quadric is present or not. Then we can do the selection to obtain Z' 
and ZOUT. 

1.5 Hardware implementation 

Figure 1.4 presents the general diagram of our processor. To estimate its cost, we take 
figures from the ES2 SOL01400 ECPD15 library [10]. From this library we construct 
basic cells that we can see in the table 1.1. Then we describe each functional block we 
need and finally we evaluate the quadric processor. 

Consider the data width: to avoid precision problems we use 24-bit wide integers for 
the depths and l6-bit wide integer for the normal coordinates. 

The unit for all the figures is the transistor. 

TABLE 1.1. Basic Cells 

Cell Transistors 

24-bit register without clear 24 x 26 = 624 

24-bit registe r with clear 24 X 32 = 768 

24-bit adder 24 x 36 = 864 

48 bit-to-24 bit multiplexer 24 x 14 = 336 

24-b it tristate inverter 24x8 = 192 

1.5.1 The EPl and EP2 elementary processors 
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Fl(x,y) 
EFl ~ ____________ ~ 

F2(x,y) 
SRE En f---~ 

a ZP2 
EPI 

~ZP4 
Ul--I-+-+~ 

ZB 

ZF 

Z' 

~X 

X 

X 

sgn(F2(x,y» 

NZBASE 

E 

ZMAX 
----o~ 

FIGURE lA. Quadric patch processor: general diagram 

RAMI RAM2 

HOST 

FIG URE 1.5 . EPl implementa t ion diagram 

NYOUT 

NZOUT 

ZOUT 

These two cells use a forward differencing technique [1] . The EP1 computes a linear 
expression: Fl(x, y) = Ax + By + C. At each line, we compute By + C by adding B(y-
1) + C, which is the result of the preceding line, a.nd B . Then at each pixel we add the 



TABLE 1.2. EPl cost 

Cell Transistors 

1 24-bit register with clear 768 

1 24-bit adder 864 
2 multiplexers 2x336 = 672 
2 tristate inverters 2x192 = 384 

RAM 1428 

TOTAL 4116 

preceding result, which is A(x -1) + By + C, and A; then we obtain the required result: 
Ax+By+C. 

The calculation part of the EP1 is only an adder and a register. We use two RAMs. 
While the first one is loaded from the .host, the second one is used for the computation. 
When a patch is converted into pixels, the two RAMs are swapped.To manage this feature 
we need twoinultiplexers and two tristate inverters . Figure 1.5 and Table 1.2 give the 
implementation and the cost of the EPl. 

48 

RAM2 

HOST 
4 

FIGURE 1.6. EP2 implementation diagram 

TABLE 1.3 . EP2 cost 

Cell Transistors 

5 24-bit register with clear 5x768 = 3840 

4 24-bi t adder 4x864 = 3456 

4 multiplexers 4x336 = 1344 

4 tristate inverters 4 x 192 = 768 

RAM 5712 

TOTAL 15120 

The EP2 computes a quadratic expression: F2(x, y) = Ax2 + By2 + Cxy + Dx + Ey+ F. 
First assume that F2(x, y) = Ax2+Px+Q with P(y) = Cy+D and Q(y) = By2+Ey+F. 
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Because the computation of F2( x, y) and Q (y) is the same, we only present here how to 
compute Q(y): assuming that Q(y + 1) = Q(y) + 2By + E + B with R(y) = 2By + E - B 
and R(y + 1) = R(y) + 2B, we have Q(y + 1) = Q(y) + R(y + 1). Therefore, we can easily 
compute incrementally Q(y) and then F2(x y). 

The EP2 is implemented with 2 calculation cells (see 1.6). As the expression is quadratic 
we work with 48-bit integers and six word RAMs. Assuming that we cannot compute a 
48-bit addition in one cycle clock we use two pipelined 24-bit adders for each cell. At the 
end of the computation, we use a synchronization register . The EP2 cost is gi ven in table 
1.3. 

1.5.2 The square root extractor (SRE) 

01 0 02 1 a b 

cm 

pin pout 
---1r-r+---i--,--t-~ 

FIGURE 1.7. Square root extractor: array and basic cell 

TABLE 1.4. SRE cost 
Cell Thansistors 

600 computation cells 600x56 = 33600 

2423 D-Iatches 2423 x 26 = 62998 

TOTAL 96598 

The square root processor (figure 1.7) is a cellular array described in [S, 2,7]. It computes 
a division where the divider and the result are equal. Each line computes one bit of 
the result. The basic cell computes a substraction and a sel~ction (of the result of the 
substraction or the predeeding rest). 

If n is the bit-width of the result the array is made with n lines, the ith line made with 
2xi cells . For n=24 we have 600 cells of 56 transistors each. Notice that a cell is roughly 
a full adder and a multiplexer (we will consider that its computation time is the same 
a.s tha.t of an adder). Moreover we have to manage the pipeline. First we put a 4S-bit 
register between each line of the array (cost: 24*48 = 1152 D-Iatches). But the lines in 
the second half of the extractor are larger than 24 cells so we cannot compute one line in 
one clock period . That is why we have to use 1271 additional registers (the 'pipelining is 
quite complex and we will not explain here these figures). The total number of D-la.tches 
is 2423 . The SRE ost is given in table 1.4. 



1.5.3 The multiplier 

TABLE 1.5. Multiplier cost 

Cell Transistors 

16x16 adders 16x16x36 = 9216 

16x16 D-latches 16x16x26 = 6656 

TOTAL 15872 

The multiplier is a classical parallel one. However, the normal coordinates are 16-bit 
integers so we pick up the 16 most significant bits of Z' which is 24-bit wide. During the 
multiplication time we only keep 16 most significant bits of the result which should be a 
32-bit integer. The multiplier cost is given in table 1.5. 

1.5.4 Depth calculation 

For the ZPs we just need four EPl. For the quadric depths we need 1 EP1, 1 EP2, 1 SRE 
and 2 adder-registers . 

1.5.5 Bounding Planes 

sgn(CP) sgn(ZPi-ZF) sgn(ZPi-ZB) 

EFi 

EBi 

(CP=O?) 

sgn(ZPi) 

FIGURE 1.8. Cutting plane logic 

First we need eight 24-bit adder-registers to perform the ZPi-ZF and ZPi-ZB differences. 
To describe one "cutting-plane" logic, we have to list all the ca<>es where ZF and/or ZB 
have to be unabled . Assuming that sgn( x) = 0 when x positive and sgn( x) = 1 when x 
negative. 

For Z F and ZB (i.e. when ZOUT = ZMAX): (GP = O?) = 1 and sgn(ZP) = 1, 
sgn(GP) = 1 and sgn(ZP - ZB) = 0, sgn(GP) = 0 and sgn(ZP - ZB) = 1. 
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For ZF only: sgn(CP) = 1 and sgn(ZP - ZF) = O. 
For ZB only: sgn(CP) = 0 and sgn(ZP - ZB) = 1. 
Vve group these conditions, taking care of the fact that we want to set EF and EB to 

zero and not to one (it means only a logic NOT). We obtain the diagram of figure 1.8. The 
flag (C P = O?) is supplied by the host. All the cutting plane logics work simultaneously. 
We group the result with one 4-input logic AND for EF and another one for EB. Finally 
we select Z' and ZOUT. 

\Ve need one multiplexer for Z' . The control bit is EF. We need another multiplexer 
for ZOUT. The control bit is EF . EB + sgn(F2(x, y)) . The bounding plane control logic 
(with the two multiplexers and without adder-registers) is only 76 x 4 + 46 + 672 = 1022 
transistors. 

1.5.6 Pipelining and control 

Vie do not focus here on the control of the processor because it is an external one. Indeed, 
the processor is used in a parallel architecture. So a dedicated component controls all 
the quadric patch processors. This control could be performed with a automaton or a 
micro-programmed circuit . 

The pipelining is not very complex, given that each cell in the processor is already 
internally pipelined. We only have to add a few registers to synchronize each cell with 
the other ones. Table 1.6 shows the scheduling of calculations. The first column gives the 
start time and the end time of each step. The following column is the name of the step. 
The last one gives the need of extra-storage. 

TABLE 1.6. Scheduling 

Timing Step Extra storage 

0/2 F2(x ,y) 

2/38 SRE 
37/38 Fl(x,y) 

38/39 ZF,ZB 
39/40 ZP-ZF,ZP-'lB ZF,ZB 

40/41 Z',ZOUT Z',ZOUT 
41/57 Multiplier 'lOUT 

56/57 NXBASE,NYBASE,NZBASE 
57/58 NXOUT ,NYOUT ,NZOUT ZOUT 

'""le need 2+ 2+ 16+ 1 = 21 extra-registers which costs 21 x 26 x 24 = 13104 transistors. 
\"le can also see that the start up of the pipeline is 58 clock cycles. 

1.5.7 Hardware cost of the whole processor 

All the previous results are gathered in table 1.7. 
A few words about these figures: first the total number of transistors needed is big but 

not huge. Moreover, the best VLSI-design soft wares can reduce these figures . For example, 
the size of our D-laich is 26 transistors which is quite big. We also want to point out that 
the cost is paid for the square root extractor and the multipliers . To reduce the size of 
the processor, one must work on these two cells . 

Let us have a quick comparison with triangles. \\le have designed a classica.l fa.cet 
processor in the same condition than the quadric patch processor. Its size is about 35000 
transistors, i.e. seven times smaller than the quadric one. Given that we think that a 



TABLE 1.7. Processor cost 
Cell Transistors 

8 EPl 8x4l16 = 32928 

1 EP2 15120 

1 SRE 96598 

3 multipliers 3x 15872 = 47616 

13 adder-registers 13x(864+624) = 19344 

Bounding-plane logic 1022 

P ipelining registers 13104 

TOTAL 225732 

quadric patch replaces at least ten triangles, this figure is very satisfying. 

1.6 Conclusion and future works 

The aim of this paper is to prove the feasability of a quadric patch processor. We have first 
described the quadric surface and given the scan-conversion algorithms. At that moment 
the main difficulty was the bounding of the patch. After a functional description we 
have focussed on hardware implementation. With a modular approach, we have described 
precisely each cells of the processor and evaluated the silicon cost. After having noticed 
that this time, the square root extractor and the three multipliers represent the two thirds 
of the circuit, we conclude that the quadric patch processor can actually be realized. 

In this study, we have used a rendering software developed on a SUN workstation. Data 
come from a modeling software also developed by our team. We have implemented the 
algorithms, refined them and evaluated their costs. Of course, we have also implemented 
the preparation tasks and the shading. At this time we are writing a program to precisely 
emulate the whole processor. 

Our goal is to display any kind of scenes, directly using quadric patches. Used with a post 
shading unit, we think that better quality is worth higher computation cost. First results 
are promising but there is still much to do. The next step is to implement an optimized 
algorithm on a DEC-Alpha board. Then we have to study the host requirements, the 
shader and then the whole architecture which combines quadrics and facets . Besides, 
we have to study quality improvement such as anti-aliasing or texture-mapping. The 
definition of the quadric patch processor is the first step toward the design of a new 
graphics system, which will improve quality without reducing performances. 
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