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Abstract 

The design of graphics ASICs for geometry and rasterisation processing has traditionally 
involved the use of schematic design entry whereby functional blocks are netlisted and in­
stantiated on the schematic. This methodology is fine at the top most hierarchical levels of 
a design but becomes tedious and error prone at the lower gate levels. Often these designs 
are targetted at custom ASICs through the use of silicon compiler technology. Unfortu­
nately, this is an expensive and risky approach to implementing these ASICs, particularly 
for University research laboratories where a.dditional funding may not be ava,ilable to cover 
non-recurring engineering costs, such as multiple mask runs, which may be needed due to 
design errors. This paper presents an alternative to these traditional approachs. A new 
approach, top down ASIC design with logic synthesis and optimisation targetting FPGA 
ASICs, is presented . We demonstrate through some examples of our texturing and scan 
conversion hardware the benefits of this new approach . 

1 Introduction 

The VLSI and Computer Graphics Research Group at Sussex have been primarily involved in 
semi-custom VLSI ASIC design of both graphics geometry and rasterisation hardware [7, 6, 5]. 
However, this semi-custom VLSI design has still traditionally involved large non-recurring engi­
neering (NRE) costs, long prototype delivery times, and inherent risks which are unacceptable 
in our research environment . Ideally, we require all the benefits of full or semi-custom circuits, 
i.e. high density and speed, with low cost, low risk, low prototype time and a quick route to 
silicon. Further, in our research environment it is difficult to build up and keep the experience 
required to successfully ca.rry through full or semi-custom masked designs . This implies even 
greater costs and has led us to consider alternative routes to silicon. 

This paper discusses our current approach to designing graphics hardware without the com­
plexities of targetting mask based ASICs. It sets out our views on the use of VHDL, logic 
synthesis and optimisation as a design strategy for targetting field programmable gate arrays 
(FPGAs). We conclude with some examples from our current texturing and shading hardware 
designs. 

2 Top Down ASIC D esign with Logic Synthesis and Optimi­
sation 

Top down ASIC design requires a consistent high level design definition and specification medium. 
This requirement is satisfied by a high level hardware description language (HD L) . There are 
many to choose from, the two most common being VHDL and Verilog. Technology vendors often 
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have their own HDLs too, e.g. Altera ha.ve AHDL. '''le have chosen to adopt the IEEE 1076 
VHDL standard [1J. Designs can be quickly defined in VHDL and proved through simulation. 
Tedious gate level implementations can be eliminated by using logic synthesis to automatically 
convert the VHDL to a generic gate level. Logic optimisation can then optimise and ma.p this 
generic netlist to a target technology. Microarchitectural selection during the optimisation phase 
allows the designer to optimise for area and speed tradeoffs before ta,rgetting the technology. 
There are many advantages to using this top down approach: 

• Advantages of top down ASIC design 

VHDL provides a consistent and portable design medium 

Designs are quickly defined, VHDL can be used in specification and implementation 

Synthesis rapidly creates the gate level description 

Designers productivity dramatically increases 

VHDL allows the designer to focus on higher level abstract functionality rather than 
tedious gate level implementation 

Automatic VHDL generation from parameterised logic blocks , e.g. Autologic Blocks 

Design process is technology independent 

Design decisions and architectural tradeoffs made independent of technology 

Retargetting technologies is easy, e.g. gate array ASICs, FPGA ASICs , PLDs, etc. 

Design changes easily and rapidly made, e.g. data,path widths . 

Production schedules only affected by time taken to modify VHDL due to automated 
synthesis and optimisation. 

Inherent documentation with VHDL 

This top down ASIC design strategy is illustrated in figure 1. We now present a brief overview 
of the VHDL modelling, logic synthesis a,nd optimisatioll parts of this strategy. 

2.1 VHDL O ver v iew 

VHDL is a hardware description language supporting many of the features available in high 
level programming languages . Components can be described using constructs such as CASE, 

IF-THEN - ELSE, LOOP, functions and subroutine calls. Concurrel~t execution of statements sim­
plifies the modelling of components. Once components have been created they can be instan­
tiated into other VHDL models in an object oriented style. This offers designers real scope for 
component reuse. 

2.1.1 Entity Description 

A VHDL component model comprises an entity a,nd a,rchitecture description . The compo­
nents interface description-signa.l names , directions and types-is declared in the VJIDL en­
tity. Generic paramet,f'rs such as time delays can also be supplied in the entity description . For 
example: 
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Figure 1: Design strategy incorporating VHDL design entry, simulation , synthesis, optimisation 
and FPGA targetting 

ENTITY mux16 IS 
PORT (x, Y IN yord16; 

s IN bit; 
z OUT yord16 

) ; 

GENERIC (delay 
END mux16; 

time); 

describes the interface for a 2:1 16 bit wide multiplexer, which can be para.rneterised with a 
variable propa.gation delay. 

2.1.2 Architecture Description 

The functionality or structural implementation of a component is given in the architecture 
description. A component can have many architectures, specifying different levels of abstraction, 
however all architectures sha,re a common entity description. The following example shows both 
structural and behavioural models for the multiplexer above . 

ARCHITECTURE structure OF mux16 IS 
COMPONENT mux8 PORT (a, b : IN yord8; s 
END COMPONENT; 

BEGIN 
ml : mux8 

PORT MAP (x(15 DOWNTO 8) , y(15 DOWNTO 
m2 : mux8 

PORT MAP (x( 7 DOWNTO 0) , y( 7 DOWNTO 
END structure; 

ARCHITECTURE behaviour OF mux16 IS 
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BEGIN 
mymux16: 
PROCESS (x, y, s) 
BEGIN 

IF s = '0' THEN 
z <= x AFTER delay ; 

ELSE 
z <= Y AFTER delay; 

END IF; 
END PROCESS mymux16; 

END behaviour; 

The structure architecture instantiates two 8 bit multiplexers to build the 16 bit multi­
plexer. The port ma.p contruct specifies the connectivity. In the second architecture body a 
PROCESS statement is used to force sequential execution of its in scope statements. These in­
structions are executed once each time a.ny of the signals x, y or s change state. These signals 
form the sensitivity list for the process. Signal assignments (denoted by <= ca.n be specified 
to occur at some future time in the simula.tion, as shown here with the AFTER clause. This 
timing information is ignored by the synthesis process because it has no meaning to the final 
technology. When the mux16 component is bound to other components in a.nother VHDL file 
the architecture to use can be specified. It is beyond the scope of this paper to describe VHDL 
in any more detail, the reader is referred to the many texts available [10, 4]. 

2.2 Synthesis 

To synthesise VHDL certain guidelines need to be followed . Style, syntax, modeling and design 
methods are some of these guidelines. Guidelines are needed because a subset of VHDL is 
commonly used for synthesis. This is required because there are certain elements of VHDL that 
are not possible to synthesise for obvious reasons, e.g. textio, while loops, generics, etc. In 
general the designer will have modelled in behavioural VHDL. This is not synthesisable, so the 
next step is to decompose this behavioural model into a synthesis able model. This synthesisable 
model need not go down as far as the structural level described above. The synthesisable model 
is referred to as a register transfer level (RTL) model. In fact, this RTL model is highly readable 
and in many cases the designer will opt to only write VHDL in this style. 

Before synthesis begins global and process constraints are set . These include setting the 
type of flip flops use, state encoding schemes, carry look ahead . This ena.bles the designer to 
make arch itectural tradeoffs early in the design cycle. The synthesis process examines the RTL 
description for mappable constructs and produces a. generic gate level netlist. Parts of the VHDL 
will be sensitive to clock edges, which explicitly requires latche~. Alternatively varia.bles and 
signals may imply physical storage is required. Here the synthesiser will insert storage elements 
into the generic gate-list. 

A synthesiser vill also understand a subset of arithmetic operations such as addition, sub­
traction and multiplication. From examining the operands a synthesiser will be able to build 
logic with the appropriate da.ta-widths. Signed and unsigned versions can be built a.gajn by 
examining the number ranges in use. Typically the arithmetic units can be globally optimised 
by specification of the degree of carry look a.head to use. This is very useful because it moves 
some of the architectural tra.deoff decisions even higher up the design strategy. 

Other VHDL contructs which can be mapped into hardware include the when and case 
statements, which result in synthesis of multiplexers. Also , it is possible to synthesise for loops . 



It is both possible for the synthesis process to produce gates like confetti for some compo­
nents while for others produce a gate level description that defies optimisation. For example, 
a synthesised register is much the same as the optimised version. A synthesised ALU can run 
to 37 pages of schematics-approximately 7 or 8 thousand gates-an area optimisation reduces 
this to about a thousand gates. 

2.3 Opt imisation 

Once the synthesis process has completed the gate list generated must be optimised and mapped 
to the target technology. Target timing constraints such as clock cycle and input arrival and 
output setup times must be specified before optimisation is performed . The design can then be 
optimised, typically for speed, or area, or both. Further, optimisation can be specified to respect 
hierarchy in the design, or to flatten the design and perform global optimisation. Hierarchy is 
easily expressed within the VHDL model by the use of BLOCK statements. Optimisation for area 
will involve the following steps: 

• Re-use of logic. Repeated logic will be recognised and eliminated. Logic such as adders 
will be re-used many times. 

• Logic factoring. Serial implementations will be created by compressing random-logic into 
the minimum number of gates. Transduction is used to remove the redunda.nt logic. 

• Use of macro-cells. When possible the optimiser will substitute ASIC vendor macrocells 
which tend to be optimised for the target technology. 

For speed optimisa.tion, gates are examined in turn and replaced with equiva.lent logic with 
shorter gate delays (gate sizing). Capacitive loads are considered in each case and gate drives are 
sized accordingly. Additionally controllability factoring is performed. Controllability factoring 
determines which input signals to a section of logic contribute most to the final circuit output 
and ensures that these signals do not lie on the critical path for that logic. 

Parts of the logic optimisation can be performed using the generic representation of the 
circuitry. This is particlllarly true of area optimisation. To map generic gates to ASIC vendor 
supplied macrocells or to reduce propagation delays for performance optimisation an optimiser 
will use signature analysis. This is analogous to peep-hole optimisation used in programming 
language compilers. Subcircuits i~l the design are selected and the truth tables for these peep­
holes are constructed. Equivalent subcircuits provided in the technology libraries are then 
substituted using a technology rule database. 

3 Field P rogrammable Gate Array A SICs 

The market for FPGA ASICs, commonly referred to as just EPGAs, is expected to increase 
substantially over the next few years. Along with gate arrays ASICs, FPGA are expected to 
take a major share of the semiconductor market [12]. Further, the size and speed of these FPGA 
is increasing, making them more attractive for large designs. Consider also that programmable 
crossbar switches are now available [8, 3]. We thus have the potential to design reconfigurable 
system architectures for a wide variety of applications. These applications include but are not 
limited to, gate array ASIC emulation, prototyping gate array ASICs, but more importantly 
FPGAs offer viable production alternatives for smaller designs. For us in particular, they offer 
the potential for research into reprogrammable graphics a.rchitectures . These reprogrammable 
architectures will allow tradeoffs in terms of cost, size, speed, etc. and provide some of the 
flexibility that is currently enjoyed by microprocessor based architectures. 
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3.1 Estimating an FPGA design fit 

Vendors tend to advertise the density of their FPGAs in terms of gate and flip flop counts. The 
gate counts are generally taken to be gate array equivalents. Quantifying FPGA density in this 
way is difficult and cail be confusing for the design engineer. In general these gates and flip flop 
counts bear no resembla.nce to gate or flip flop utilisation rates. This problem is addressed by the 
the PREP [9] consortium whose goal is to clarify vendors claims using a selection of benchmarks. 
Utilisation depends on the FPGA architecture aJld on specific designs to be implemented. 

Table 1 gives an estimate of how many how many Xilinx 4013 FPGAs it might take to 
implement a Goura.ud shadeI' ASIC simila.r in complexity to the IMAGE chip [5]. A detailed 
discussion on estimating a design fit for FPGAs can be found in [14] . Briefly, this involves 
counting up the ma.crocell usage , checking design I/O against FPGA I/O and a1 alysing the 
designs delays along critical paths . 

Logic Blocks I Xilinx XC4013 (CLB) 

Decoders 280 
CTU 12 
FS NLcon troIler 24 
R.egisters 2556 
Multiplexers 500 
Add/Sub 141 
ALU 800 
Corn para.tor 292 

Total U,,[s 4478 
Equivalent. Gates 98516 
Usable Gates 62692 
FPGA Count 12 

Table 1: Size est imates for a Gouraud shading architecture 

For the Xilinx XC4013 FPGA we can see that the total number of CLBs required for this 
design is approximately 4478. The ma..ximum number of CLBs for an XC4013 is 576. Therefore, 
we are into mult.iple FPGA designs. Ea.ch Xilinx CLB is equivalent to about 22 gates and from 
Xilinx benchma.rks an a.verage of 14 gates per CLB are used [2] . This is a. utilisation rate of 
64%. Considering that a gate is worth about 2 .. 5 transistors, then we are looking for a device 
with 22x4478x2.5xO.64 = 157G25 transistors. This equates to approximately 62692 used gates. 
Using t his utilisation ra.te wc ca.n see that this design will req~lire about 12 XC4013 FPGAs. 
Manual place and route a.nd other tricks may reduce this FPGA count. Further, by sometime 
next year the XC4020 should be available which should reduce the FPGA count down to about 
8 or less. 

This FPGA count ana.lysis is based on our Pixel Parameter Interpolator (PPI) tech nology 
used for implementing the Gouraud shadeI' [15J. As such the PPI data.pa.ths are not optimised 
leading in some cases to excess CLB usage. The IMAGE chip has about 130000 tra.nsistors, so 
this design is about 20000 larger. Although the fun ctionality is the same this increased size can 
be accounted for by the generalisation of the Pa.ra.meter Register Unit and Parameter Formatting 
Unit of this PPI based design. Optimising the datapath bit widths could lead to a. five XC4020 
FPGA solution by sometime next year. v\c consider that a. Goura.ud shader implemented on five 



FPGA ASIC is an acceptable alternative to a single masked gate array ASIC solution. Analysis 
of the designs critical paths suggest a 20 MHz system performance will be a.chieved. 

4 Examples of Logic Synthesis and Optimisation 

We illustrate here some early results of our logic synthesis and optimisation attempts. We use 
MGCs Falcon Framework version 8.2 with Autologic VHDL, Autologic Blocks and Autologic, 
etc. This is a very large concurrent engineering environment that not only provides the top 
down ASIC design approach discussed above but also with a multitude of other tools integrated 
into the design environment, e.g. PCB board tools, simulation tools, etc. The first example is 
part of our STEP architecture and the second is parts of our PPI architecture. 

4.1 The Sussex Texture Processor 

A current project is to design and build texture mapping hardware to augment the functionality 
of the IMAGE chip [5]. The specification of the Sussex TExture Processor) (STEP) requires 
mipmap based texture filtering [16]. The mipmap approach uses multiple copies of the texture 
image prefiltered to lower levels of detail. In our implementation, these levels are stored con­
secutively in texture memory. Computation of the texel address for each pixel is one of the 
tasks of the texture memory management unit (TMlvIU) in STEP. The inputs to the TMMU 
are texture coordinates supplied on two 10-bit busses, and the level of detail required, supplied 
on a 4-bit bus. The base address for the mipmap pyramid is stored internally by the TMMU, 
and is updated whenever the texture environment changes. The TMMU synthesises the address 
using the following equation: 

a = b + J(l) + tg(l) + s (1) 

Where, a is the computed address, b is the base address for the mipmap, l is the required 
level of detail, fO is a function returning the level offset, and s, t are texture coordinates in the 
range O .. f(l), gO is a function returning the side-length of each level. 

The level and texture coordinates are provided to the TMMU on each rising clock edge. The 
TMMU selects either the incoming level or a user supplied level-of-detail according to the state 
of the ismipmap control bit . The address synthesis proceeds as indicated in 1. The use of a 
barrel shifter to perform the multiply operation simplifies the process l . Also, true addition of 
the s coordinate is not necessary and can be replaced with a unit selecting bits from either s or 
tg(l). The RTL VHDL code implementing this functionality is shown in figure 3 in appendix C. 

4.1.1 Optimisation of the Offset Generator 

The offset of any level in memory from the mipmap base addres~ is found by summing together 
the sizes of all levels preceeding the required level. Our classification treats levell as a 512 X .512 
image, level 2 as a 256 x 256 ima.ge, etc. In general level n has size 2l0 - n X 21O - n . The offset 
for level q is given as: 

q-1 
o = L 22(10-i) (2) 

i=l 

When examined in a. binary notation , these sums are seen to be strings of 01 repeated level 
times and padded to the right with zeroes to create a 20-bit word . The offset can therefore be 

I Mipmap texture images are always 2; X 2; ill size 
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created by generating these words keyed by the incoming level vaIue. The VHDL code shown 
in figure 3, see appendix A.2, shows this in the block offsetGen. 

The synthesised logic for this block is most complicated. Large numbers of random gates 
are used to encode the offset from the level. The 400 or so gate design is fa,r from optimal and is 
purely combinatorial. Area optimisa,tion applied to the synthesised circuitry produces a much 
improved design, see figure 9 in appendix C. The optimiser spots that many bits are always zero 
and eliminates these from the logic; also that feedback can be used to further reduce the gate 
count. Speed optimisation might eliminate this feedback a,nd increase the area size accordingly. 

The major advantage of this a,pproach for the design of the offset generation sub-unit is that 
larger mipmaps can be accomodated by changing the source code, a.lld different distributions 
of texture image levels in memory can be explored quickly. The time consuming process of 
netlisting gates is totally eliminated . 

4.2 Pixel Parameter Interpolator 

Common to scan conversion is the need to incrementally linearly interpolate arbitrary vertex 
parameters across primitives such as triangles [13]. Work at Sussex has focussed on generalising 
this requirement so that any vertex parameter can be interpolated. This has led to the design 
of the PP!. Figu re 10 In appendix D illustrates the second level hierarchy of the PP!. The first 
level is the chip or ASIC defini t ion. 

We can see that the PPI is composed of a control and timing unit, some decoding logic 
and a bank of general purpose Parameter Interpolation Units (PIU). Each PIU has the same 
structure, except the edge, window and depth units which have dedicated data, paths. The rest 
are identical. 

4.2.1 Parameter Interpolator Unit 

It is useful to consider as an example, of the power of using VHDL descriptions over gate level 
descriptions, the PIU which is the core of the PP!. This has been implemented in the traditional 
way, using schematic capture and instantiation of library parts from our generi library called 
GENLIB. This library is available in other CAD tools besides Mentor Graphics and thus provides 
some degree of portability. However, the PIU for depth interpolation requires 48 bit data 
paths. Unfortunately, these da,ta paths require multiplexers and an adder/subtra,ctor. This 
leads to tediolls gate level implementations because GENLIB does not have a parameterisable 
multiplexer. Thus, the 2:1 48 bit wide multiplexers ha.ve to be implemented by netlisting 48 
2:1 single bit wide multiplexers. Even, more tedious is the fact that GENLIB only contains 
single bit full a.dders and half adders . Thus, the adder/subtra.ctor has to be Ilctlisted in the 
same manner. However, architectural tra.deoffs make this process even more time consuming, 
e.g. ripple carry, carry look ahea,d, etc. imply more effort in creating models . 

One solution is to invest in another library but this is costly. ' It is far simpler to model these 
components in VHDL. Appendix 13 details these netlisted components and the equivalent VHDL 
models in figures 4, 5, 6 a,nd 7. 

4.2.2 Parameter Forrnatting Unit 

The Parameter Formatter Unit (PFU) has the job of formatting the a.rbitrary vertex pa.rameters 
according to the cor resonding id.entification code that accompanies the parameter. Some of these 
formatting operations are: 

• Pass interpola.ted parameter 



• Pass background colour 

• Blend interpolated colour with background colour 

• Clamp interpolated parameter to zero 

• Clamp interpolated parameter to ma..ximum positive number 

This leads us to the design of a PFU which incorporates an ALU and a finite state machine 
(FSM) to generate the ALU opcodes , see figure 11 in appendix D. For the ALU we have selected 
the ALU '181 which is modelled by the Autologic Blocks library. Using this ALU we can see 
that we only need to generate 5 opcodes or states to drive this AL U. This means we only have to 
design a five state FSM. Mentor Graphics Autologic Blocks has a KISS compiler which enables 
rapid design of FSMs. The KISS FSM description is compiled into VHDL code which is further 
compiled by the VHDL compiler . However , because this FSM was reasonably simple it was 
written directly in VHDL using Mentor graphics synthesis guidelines . Appendix A.l gives the 
VHDL code for this particular FSM. 

Netlist statisics show the gate equivalence of the PFU after synthesis to be approximately 
6500 gate equivalents and after optimisation to be approximately 2000 gate equivalents. Note 
that this area optimisation has been done on each instance in the PFU. Optimising instances into 
groups has not been done. This may easily lead to 1000 gate equivalents beca.use, for example, 
the state machine has not been optimised with the pre-state decoding and ALU181 logic. We 
estimate that nine PFUs required for a Gouraud shader will fit on one or two FPGAs. 

5 Conclusion 

We have presented a new top down ASIC design with logic synthesis and optimisation strategy 
which is superior to the old tra.ditional ASIC design strategy. It is superior because above all 
it enables the designer to get his product to market in a much shorter time scale due to the 
automation of the low level ga.te netlisting. This taken with all the benefits of targetting FPGA 
ASICs means the product is more versatile and less risky to produce. 

We have adopted this top down strategy at Sussex. So far we have explored VH DL, logic 
synthesis and optimisation and remain impressed. ' Vith the exa.mples shown we have demon­
strated the power of VHDL, logic synthesis a.nd optimisation. We believe this is the wa.y forward 
and will provide many benefits for graphics ASIC designers . 
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-Finite St a t e Hachine contcoll.r lor th. ' 181 A.LU. 
- Writt e n by Har tin Whit. 2nd Aug U93 

LIaRU.Y IEEE: 
OSZ IEEE.etd logic 116 •• 011 ; 

OS%. IEEE • • td:=loqie:=U64_extens i ons .al l; 

- Written by Hareln H1'Iite .. t Hon Aug 2nd 1993 

am:n t .. u 
PO"" ( 

depth r1I etd_uloqi c 
blend III std uloqic 

III .cd : Uloqlc 
I N std _uloqic 

clk III std_ uloq ic 
r e s. t , III std_uloqic 
shift -' OUT std uloq i c 
.odo OUT s td:u1oqic 
colour IN .cd _ uloqic 
odg. IN std uloqie 
window III Old :uloqic 
opeode OCT 

std uloqic v.ctor(l OOWMTO 0) 

hidde;; Ii std uloq ic 
pin.do : IN std:uloqic 
I: 

DD fsa ; 

UCB.ITI.croRK. controller or rSIll IS 
type ste t.s is (sO, sI, 52 •• 3 , 54) ; 
--P .... B dae .. 
• iqn .. l sta t e : stat.s : .. sO ; 
--D.f .. ult to p lUS B d a te 
s i 9n .. 1 next .tat. : states : - sO ; 

UCI. -

clock : 
PRoc:ESS (elk. reset) 
UQ:. 

IJ' r.set - '1' THEM 

DO IF : 
~"D PROaSS clock : 

sta t._tre nsitions : 
PRCJCZSS (st .. te, on •• zero, p i n.c:io , blend, 

hidden, e dqe, window. dept. h, colour) 

next_atat.. <- aO ; 
CASE sta te IS 

lfImM sO -> 
I r (pine&' - ' I' and (edge - 'I' or window .. 'I' 

or depth .. '1' or colour - '1'» THEN 

-SiJrd 1a.r code to .stat. 
I.ND CA..S"£ ; 

DID l'ROCISS st.at.e_t.ra ns i t.ions 

.ta te outputs: 
PRocrSs (state) 

""en 
CA5Z st.ete :IS 

'llHZM .0 -> 
opcode ( - - 1010- ; 
MOde <- '1 '; 
sh ift r ( - '0 ': 

W8.Eli sl-- > 
opcode ( - -1111" ; 
1I0de ( - '1' ; 
shift._r <- '0'; 

opcod. <- -1001 ": 
1II0C» '1'; 
shift_r <- '0': 

1fH£N s 1 - > 
opcodll ( .. -1100- ; 
mode <- ' l' ; 
shift. r (- '0 ': 

WK2.H s. --> 
opcodll ( - -1001- ; 
.. 0C» <- '1': 
shifto_r '1'; 

.. NO CASE. : 

END PROCESS state_outputs 
END controller; 

- -pinede - 'I' ..,lIen ..-.e are ineerpol~ting no.cmel triangles, as 
--as opposed to lIiddenline t r i lJngles. It is also valid ..,hen 
--tile edge of a n hiddenline tritJngle is reached. under tllese 
--condieion. the curr.ne inc. erpollJted edge, window, depth or 
--colour i. piJ.sed. 
next_state <- sO: 

ELSIr (pineda - 'I' and edq _ - '0' and wi ndow ... '0 ' 
a nd depth - '0' ond colour - '0 ') T.Ri:N 

--P • •• erbitrary interpolated par_eeer 
next .tate <- sO; 

nsIr (hidden " 'I' e nd colour - ' 1') THEN 

--Hlddenline tri,tfl9'l. and pi.kel l(1$lde so ptJss back.ground colour 
next_"ta t.. <- a1 : 

nsrr (tero - ' 1 ' ) TREM 
--Pari!Uleter or colour overflo_d 
next .tat.e <- s2: 

:n.sIr (on. - '1') TR£N 
--Par4Jflet.r or oolour und.rflowed 
next._st a te <- .l; 

:l.LSIr (blend - ' I' end colour - ' 1 ') THEN 

--Do. 50t blend of interpole t ed colour end preloeded background colour 

nDIT : 
1f'IltM sI -> 

1flm.: s2 - > 
--Si_ilar code to .elJee 

wo:r:. s3 - > 
--Si.il ar code to .e.te 

WB2)I a4 - > 

Figure 2: VIIDL finite state machine controller for a PPI fOl'matter 
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- VLSI and Co_put.r Ccaphlc. Ite •• acch Group 199J . 
-- Unlver.lty oL SU6.ex. 
- All right.. zw.ecved. 

Hod.l Tltle: coordAdju.tt lay.c 
Date Created: 25/03/') 
Author: 

Lt'1P.UU' _gc ..J>Ortable ; 
OSI. raqcJlOct.ab l e .qdlll_loqic.ALL ; 
o n n a. :IS 

PORr ( 
• ,t 
ba.eaddr 
clk 
,,.erlave l 
l.vel 
lsmipna p 
addr 

:rw q.illl .tate vector(9 DOW'HT'O 01 : 
DI qai"-.tate- vector(l9 DOWNTO 01 ; 
Df q' i .. -.tate-; 
Df q.i. - .t.ate vector (3 DOW'NT'O 0) : 
DI q . ia:.tat.e:veetor() [)OW'Nl'O 0) : 
III qsilll stat.a ; 
COt' qsiln:st.ate_ veet.orI19 OOW'NTO 0) 

) ; 

DD as ; 
ARCBIftcrou r t.l or a . IS 

SIGNAL t.het..vel qsin st a t.e vect.or (3 OOW'NTQ 0) : 
SIQtAL level in qs im -state-vector () [)()Wlrf1'() 0) : 
SIQQL sin. t. i n qsia -sta te - vect.or (9 OOWNTO 0) : 
SIQU.L .hiftalllount qsim - .tate-vect.or l) OOWN'l'O 0): 
SIGM.U. .hiltBt qsim-stat.-vector(19 DOWNl'O 0): 
SIGNAL bando q.iIn - sc.ote - vee t.or (19 DOWN!'O 0) : 
SIGNAL offset , o qSinI-stote-vector(19 DOWNro 0) ; 
SIQlAL .e1eetor z qs i ",:,.tate:vector (9 DOWNto 0) ; 

ReI1I 

l a tchin: 
PROCI.SS (elk, 

lIE"'''' 
D' (elk - '1' ).)ID elk ' l a st va l ue - '0 ' AND elk ' event.) THl:lI 

.in <- .: tin < .. t ; 1evelln <- level ; 
DID 11' : 

."0 'PROCItSS 1atchin ; 

dox..ve1 : 
PROCZSS (u •• rLev.l. leveUn, i:llll i pn a p ) 

lIE"'. 
OSI. lalllipmap IS 

WRE.J '0 ' -> - - not ,. ,Jpnappi. ng, use user s uppli...:/ level 
thelAvel <- I.uerLAve1; 

WRVf O'I'HERS - > 
theLevel <- leve 1 in; 

DO CAS£ ; 

I.MD PROCESS dolAve 1 ; 

---- decode leve J i nto 11 sh i ft _ou nt s h l fcamo un t - lO-l eve l 

.hift.decode : 
BLOC!< 

.hi ftd.codeprocess 
PROCLSS « the Level ) 
gGrM 

CAS£ theLevel IS 
WHEN "0000· sh ift amount 
lfHEN -0001- shiftamo\lnt 
.CC 

WHE.JI "1001" - > shift_ount 
lfR211 OTHI..RS - > shiftalllount 

'"1010" : 
"1001'" ; 

"000l" ; 
"0000 " ; 

oftli.tGen : 
IILOCJt 
RCIM 

offsetGenProces. 

PR0C2SS ( thex.. ve l 

lIE"'. 
C1S.E theLevel IS 

WHEN "0000 '" -> offset <- "00000000000000000000" 
WHi:lrl "0001" - > offset '"00000000000000000000 .. 
lflIlN '"0010" - > oH .. t <- " 0100000000 00000 00000" 
WHEN "0011 " - > offset <- "'01010000000000000000" 
WHl:.N ·0100" - > off.et <- "0 1010100000000000000" 
W'HEN "010 1'" -> offset 
WHEN '"OU O" - > off .. t 

"01010101000000000000 .. 
"010101 01010000000 000 " 

WI:IE.N "OlU " - > offset <- "010 1 0101 010100000000" 
WHEN "1000 " -> off .. t <- "01010101010101000000" 
N"JI£N "1001" - > off •• t <- "01010101010101010000" 
1fH£:N OTHERS - > oft.set <- "0 10101010101010 1 0100 · 

END 052 : 
.END PROCESS offset.Ce nProc.e s li 

END BLOCJI: offset.Cen : 

-- - - .Add t he ~s. address t o t he offset. tlh i ch vllr j e" ... i th the level 

baseMdO!fset.-'dd: 
PRoass ( bose"dclr . offse t. ) 

BEGIN 
a nswer : - bas e"ddr + ofh.c.; 
bando <- a.n.wer (19 DCloJ'Nt'O 0) ; 

END PR0C2SS ba.e"ndOf{.etAdd ; 

-- - - We .. a n t to add v-N .. u. v·N Is a va i labl e as .hi ft't " rid u ls .1n . 
---- Now. N" 2 \ A i a nd u < N. Therefore IV-NI ha" " .ttrlng of rtt.ros in 
--- - it.s 15 b i t.s ... hleh u ... 111 r.place . The additlon can theeetoee hIo 
---- i,.pl""..ented wlth . uxe. loe each b it .eJect ing either utj}, vlj} .. 

.electorBlo ck : 
BLOCX 
gCIN 

se lectorBlo ekProcess 
PRoc:ESS I thelAve1 ) 
82CIN 

CASE theLellel I S 
wm:::N "0000" ,ulect.or ( - " 1111111111" ; -- eJl bits Ira. u 
wHE:N ·00 01" - > selector <- " 0111111111- : 

.elector <- "0000000001" ; 
lfKDC OTRUlS - > •• l.ctor <- "'0000000000": 

2ND OSE : 
2ND PROCl:SS lielect.orB1ockProe. ss 

END 8.LOCX se1eceorBlocJc : 

coordBl e nd : 
PROCESS ( .el ect.oc, shifelt , ~ i n ) 
B£CI N 

FOR j IN 0 ro 9 LOOP 

IT select or( j l - ')' 1"HI:N 
o ( j ) <- sin ( j) : 

ELSE 
e lj l <- shlft& t I j l ; 

Dm IF : 
E.N D LOOP : 
a (19 [)OW"Mto 10) <- shift.lt. ( 19 OOWNt'O 101 : 

END PROC£SS coordBlend ; 

---- COIIIpu t e Ch. addr fro. p.!Irt i el rtr$ uJt.a a and boSndo 

I.WD CASI. ; a ddrGen: 
biD PR()(1SS • hift.decodeproce.. 'PR0C2.SS ( G • bGndo ) 

I.tlD BLOC]( .hift.deeode VAlUABLE r es ul t : qs ifll_ s t. a t . _ vect.or(19 DOWNTO 0 ) 
BEeIN 

resu l t. : - a + bando.; 
Wtr n.~d t o . hi ft t left by be t _ e n 0 Gnd 10 positions . addr <- r.s 1.l 1t (l9 DOWNTO 0 ) ; 
To do th I s we "h i lt by 1, 2~ 4, a nd/ or 8 jn the ne e e S.sary :DID PROCESS a c!d rCe n 

- --- cOIll~dn. t j on.". . END ct.l : 

lII y.hi fe.r : 
BLOCIt 

-- barrel .shift code d&J eted f or brl eln ess 
I.MD B.LOC:Jt !fly.h ifter ; 

Figure 3: VHDL Code For The Offset Genera.tor 



Figure 4: Schema.tic of a. 2:1 4,' bi t wide multiplexer based on Genlib parts 
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library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_1164_extensions.al1; 

Written by LL_to_VHDL at Fri Ju1 2 10:02:05 1993 
Parameterized Generator Specification to VHDL Code 

LogicLib generator called : MULTIPLEXER 
Passed Parameters are: 

tinst name = muxO 
parameters are: 

type = SIMPLE 
W = 48 
numin = 2 
SW = 1 
bus mask 0 
comp_ out NO 

- - muxO Entity Description 
entity muxO is 

port ( 

) ; 

INO: in std_ulogic_vector(47 downto 0); 
1Nl: in std_ulogic_vector(47 downto 0); 
SEL: in std_ulogic_vector(O downto 0); 
DOUT: out std_ ulogic_vector(47 downto 0) 

end muxO; 

-- muxO Architecture Description 
architecture rtl of muxO is 

begin 
muxO_Process: process(INO,IN1,SEL) 

variable iaddress : integer range 0 to 1; 
variable state: std_ulogic_vector(47 downto 0); 

begin 
iaddress := to_Integer ('0' & SEL,O) ; 
case iaddress is 

when 0 => 
state := INO; 

when 1 => 
state := 1Nl; 

when others => 
state (OTHERS => 'X ') ; 

end case; 

Assign outputs 
DOUT <= state; 

end process muxO Process; 
end rtl; 

Figure 5: VnDL version of 2:1 48 bit wide multiplexer 



Figure G: Schematic of a 48 bit wide add er/subtract.or based Oil Genlib part.s 
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library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_1164_extensions.all; 

Written by LL_to_VHDL at Tue 
Jul 27 15:45:57 1993 
Parameterized Generator 
Specification to VHDL Code 

LogicLib generator called: 
ARITHMETIC 
Passed Parameters are : 

tinst name = add sub 
parameters are: 

type = ADDSUB 
W = 48 
look = 16 
carry in = YES 
carry out = YES 
ov YES 
It YES 
gt YES 
eq NO 

-- add_sub Entity Description 
entity add_sub is 

port ( 

) ; 

A: in std_ulogic_vector 
(47 downto 0); 

B: in std_ulogic_vector 
(47 downto 0) ; 

D: out std_ulogic_vector 
(47 downto 0); 

CIN,SUB: in std_ulogic; 
COUT,GT,LT,OV: out std_ulogic 

end add_sub; 

-- add sub Architecture Description 
architecture rtl of add sub is 

signal pre_OV 
signal pre_EQ 
signal pre_ LT 

: std_ ulogic_ v ector 
(48 downto 0); 

std_ulogic; 
std_ulogic; 
std_ulogic; 

variable a_ext,b_ext 
: std_ulogic_vector(48 downto 0); 

variable carry_ext 
: std_ulogic_vector(l downto 0); 

variable msb : integer; 
begin 

-- zero extend inputs to 
-- include carry bit 
a ext := '0' & A; 

if (SUB = '1') then 
b ext ' 0' & not B; 

else 
b ext ' 0' & B; 

end if; 
carry_ext := '0' & CIN; 

-- ADD SUB 
fct out := a ext + b ext 

+ carry_ext; 

-- Assign to signal for use 
-- outside process 
pre_D <= fct_out; 

Calculate overflow bit 
if (a_ext (47) = b_ext(47) 

and fct_out(47) 
= not a_ext(47 » then 

p re_OV <= '1'; 
else 

pre_OV <= '0 '; 
end if; 

end process ARITHMETIC_Process; 

-- Assign the outputs 
D <= pre_D(47 downto 0); 

-- Assign flags 
COUT <= pre_D(48); 
pre_EQ <= ' l' 

when (pre_D(47 downto 0) 
= "0000000000000000000000000 
00000000000000000000000 " ) 

else ' 0' ; 
pre_LT <=. (pre_OV xor pre_D (47»; 
GT <= not pre_EQ and not pre_LT; 
LT <= pre_LT; 
OV <= pre_OV; 

begin end rtl; 
ARITHMETIC Process : 
process (A,B,CIN,SUB) 

variable fct out 
std_ulogic_vector(48 downto 0 ) ; 

Figure 7: VHDL version of a. 48 bit wide adder/subtractor 



Figu re 8: Synt.hesised Offset Genera.tor 
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Figure 9: Optimised Offset Generator 



ill 

Figll rc 10 : Pi xcl P a ra l1l cter In 1.c rp ola to r 2nd le\'(>] h iera reil ,V 
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Figure 11 : Pa.rameter Formatting Unit 


