
VHD L Based Design of Graphics ASI Cs

M. White, G. J . Dunnett , P. F. Lister, R. 1. Grimsdale·

Abstract

The design of graphics ASICs for geometry and rasterisation processing has traditionally
involved the use of schematic design entry whereby functional blocks are netlisted and in­
stantiated on the schematic. This methodology is fine at the top most hierarchical levels of
a design but becomes tedious and error prone at the lower gate levels. Often these designs
are targetted at custom ASICs through the use of silicon compiler technology. Unfortu­
nately, this is an expensive and risky approach to implementing these ASICs, particularly
for University research laboratories where a.dditional funding may not be ava,ilable to cover
non-recurring engineering costs, such as multiple mask runs, which may be needed due to
design errors. This paper presents an alternative to these traditional approachs. A new
approach, top down ASIC design with logic synthesis and optimisation targetting FPGA
ASICs, is presented . We demonstrate through some examples of our texturing and scan
conversion hardware the benefits of this new approach .

1 Introduction

The VLSI and Computer Graphics Research Group at Sussex have been primarily involved in
semi-custom VLSI ASIC design of both graphics geometry and rasterisation hardware [7, 6, 5].
However, this semi-custom VLSI design has still traditionally involved large non-recurring engi­
neering (NRE) costs, long prototype delivery times, and inherent risks which are unacceptable
in our research environment . Ideally, we require all the benefits of full or semi-custom circuits,
i.e. high density and speed, with low cost, low risk, low prototype time and a quick route to
silicon. Further, in our research environment it is difficult to build up and keep the experience
required to successfully ca.rry through full or semi-custom masked designs . This implies even
greater costs and has led us to consider alternative routes to silicon.

This paper discusses our current approach to designing graphics hardware without the com­
plexities of targetting mask based ASICs. It sets out our views on the use of VHDL, logic
synthesis and optimisation as a design strategy for targetting field programmable gate arrays
(FPGAs). We conclude with some examples from our current texturing and shading hardware
designs.

2 Top Down ASIC D esign with Logic Synthesis and Optimi­
sation

Top down ASIC design requires a consistent high level design definition and specification medium.
This requirement is satisfied by a high level hardware description language (HD L) . There are
many to choose from, the two most common being VHDL and Verilog. Technology vendors often

·VLSI and Computer Graphics Research Group , School of Engineering, University of Sussex, Falmer, Brighton,
BNl 9QT, England .

24

http://www.eg.org
http://diglib.eg.org

have their own HDLs too, e.g. Altera ha.ve AHDL. '''le have chosen to adopt the IEEE 1076
VHDL standard [1J. Designs can be quickly defined in VHDL and proved through simulation.
Tedious gate level implementations can be eliminated by using logic synthesis to automatically
convert the VHDL to a generic gate level. Logic optimisation can then optimise and ma.p this
generic netlist to a target technology. Microarchitectural selection during the optimisation phase
allows the designer to optimise for area and speed tradeoffs before ta,rgetting the technology.
There are many advantages to using this top down approach:

• Advantages of top down ASIC design

VHDL provides a consistent and portable design medium

Designs are quickly defined, VHDL can be used in specification and implementation

Synthesis rapidly creates the gate level description

Designers productivity dramatically increases

VHDL allows the designer to focus on higher level abstract functionality rather than
tedious gate level implementation

Automatic VHDL generation from parameterised logic blocks , e.g. Autologic Blocks

Design process is technology independent

Design decisions and architectural tradeoffs made independent of technology

Retargetting technologies is easy, e.g. gate array ASICs, FPGA ASICs , PLDs, etc.

Design changes easily and rapidly made, e.g. data,path widths .

Production schedules only affected by time taken to modify VHDL due to automated
synthesis and optimisation.

Inherent documentation with VHDL

This top down ASIC design strategy is illustrated in figure 1. We now present a brief overview
of the VHDL modelling, logic synthesis a,nd optimisatioll parts of this strategy.

2.1 VHDL O ver v iew

VHDL is a hardware description language supporting many of the features available in high
level programming languages . Components can be described using constructs such as CASE,

IF-THEN - ELSE, LOOP, functions and subroutine calls. Concurrel~t execution of statements sim­
plifies the modelling of components. Once components have been created they can be instan­
tiated into other VHDL models in an object oriented style. This offers designers real scope for
component reuse.

2.1.1 Entity Description

A VHDL component model comprises an entity a,nd a,rchitecture description . The compo­
nents interface description-signa.l names , directions and types-is declared in the VJIDL en­
tity. Generic paramet,f'rs such as time delays can also be supplied in the entity description . For
example:

I
't

Design
Entry t

+ Optimisation
and Targetting

Compilation
t

t
Partition, Place

and Route

Simulation
t

FPGA
t Programming

Synthesis

I

Figure 1: Design strategy incorporating VHDL design entry, simulation , synthesis, optimisation
and FPGA targetting

ENTITY mux16 IS
PORT (x, Y IN yord16;

s IN bit;
z OUT yord16

) ;

GENERIC (delay
END mux16;

time);

describes the interface for a 2:1 16 bit wide multiplexer, which can be para.rneterised with a
variable propa.gation delay.

2.1.2 Architecture Description

The functionality or structural implementation of a component is given in the architecture
description. A component can have many architectures, specifying different levels of abstraction,
however all architectures sha,re a common entity description. The following example shows both
structural and behavioural models for the multiplexer above .

ARCHITECTURE structure OF mux16 IS
COMPONENT mux8 PORT (a, b : IN yord8; s
END COMPONENT;

BEGIN
ml : mux8

PORT MAP (x(15 DOWNTO 8) , y(15 DOWNTO
m2 : mux8

PORT MAP (x(7 DOWNTO 0) , y(7 DOWNTO
END structure;

ARCHITECTURE behaviour OF mux16 IS

26

IN bit; c OUT yord8);

8) , s, z(15 DOWNTo 8)) ;

0) , s, z(7 DOWNTO 0)) ;

BEGIN
mymux16:
PROCESS (x, y, s)
BEGIN

IF s = '0' THEN
z <= x AFTER delay ;

ELSE
z <= Y AFTER delay;

END IF;
END PROCESS mymux16;

END behaviour;

The structure architecture instantiates two 8 bit multiplexers to build the 16 bit multi­
plexer. The port ma.p contruct specifies the connectivity. In the second architecture body a
PROCESS statement is used to force sequential execution of its in scope statements. These in­
structions are executed once each time a.ny of the signals x, y or s change state. These signals
form the sensitivity list for the process. Signal assignments (denoted by <= ca.n be specified
to occur at some future time in the simula.tion, as shown here with the AFTER clause. This
timing information is ignored by the synthesis process because it has no meaning to the final
technology. When the mux16 component is bound to other components in a.nother VHDL file
the architecture to use can be specified. It is beyond the scope of this paper to describe VHDL
in any more detail, the reader is referred to the many texts available [10, 4].

2.2 Synthesis

To synthesise VHDL certain guidelines need to be followed . Style, syntax, modeling and design
methods are some of these guidelines. Guidelines are needed because a subset of VHDL is
commonly used for synthesis. This is required because there are certain elements of VHDL that
are not possible to synthesise for obvious reasons, e.g. textio, while loops, generics, etc. In
general the designer will have modelled in behavioural VHDL. This is not synthesisable, so the
next step is to decompose this behavioural model into a synthesis able model. This synthesisable
model need not go down as far as the structural level described above. The synthesisable model
is referred to as a register transfer level (RTL) model. In fact, this RTL model is highly readable
and in many cases the designer will opt to only write VHDL in this style.

Before synthesis begins global and process constraints are set . These include setting the
type of flip flops use, state encoding schemes, carry look ahead . This ena.bles the designer to
make arch itectural tradeoffs early in the design cycle. The synthesis process examines the RTL
description for mappable constructs and produces a. generic gate level netlist. Parts of the VHDL
will be sensitive to clock edges, which explicitly requires latche~. Alternatively varia.bles and
signals may imply physical storage is required. Here the synthesiser will insert storage elements
into the generic gate-list.

A synthesiser vill also understand a subset of arithmetic operations such as addition, sub­
traction and multiplication. From examining the operands a synthesiser will be able to build
logic with the appropriate da.ta-widths. Signed and unsigned versions can be built a.gajn by
examining the number ranges in use. Typically the arithmetic units can be globally optimised
by specification of the degree of carry look a.head to use. This is very useful because it moves
some of the architectural tra.deoff decisions even higher up the design strategy.

Other VHDL contructs which can be mapped into hardware include the when and case
statements, which result in synthesis of multiplexers. Also , it is possible to synthesise for loops .

It is both possible for the synthesis process to produce gates like confetti for some compo­
nents while for others produce a gate level description that defies optimisation. For example,
a synthesised register is much the same as the optimised version. A synthesised ALU can run
to 37 pages of schematics-approximately 7 or 8 thousand gates-an area optimisation reduces
this to about a thousand gates.

2.3 Opt imisation

Once the synthesis process has completed the gate list generated must be optimised and mapped
to the target technology. Target timing constraints such as clock cycle and input arrival and
output setup times must be specified before optimisation is performed . The design can then be
optimised, typically for speed, or area, or both. Further, optimisation can be specified to respect
hierarchy in the design, or to flatten the design and perform global optimisation. Hierarchy is
easily expressed within the VHDL model by the use of BLOCK statements. Optimisation for area
will involve the following steps:

• Re-use of logic. Repeated logic will be recognised and eliminated. Logic such as adders
will be re-used many times.

• Logic factoring. Serial implementations will be created by compressing random-logic into
the minimum number of gates. Transduction is used to remove the redunda.nt logic.

• Use of macro-cells. When possible the optimiser will substitute ASIC vendor macrocells
which tend to be optimised for the target technology.

For speed optimisa.tion, gates are examined in turn and replaced with equiva.lent logic with
shorter gate delays (gate sizing). Capacitive loads are considered in each case and gate drives are
sized accordingly. Additionally controllability factoring is performed. Controllability factoring
determines which input signals to a section of logic contribute most to the final circuit output
and ensures that these signals do not lie on the critical path for that logic.

Parts of the logic optimisation can be performed using the generic representation of the
circuitry. This is particlllarly true of area optimisation. To map generic gates to ASIC vendor
supplied macrocells or to reduce propagation delays for performance optimisation an optimiser
will use signature analysis. This is analogous to peep-hole optimisation used in programming
language compilers. Subcircuits i~l the design are selected and the truth tables for these peep­
holes are constructed. Equivalent subcircuits provided in the technology libraries are then
substituted using a technology rule database.

3 Field P rogrammable Gate Array A SICs

The market for FPGA ASICs, commonly referred to as just EPGAs, is expected to increase
substantially over the next few years. Along with gate arrays ASICs, FPGA are expected to
take a major share of the semiconductor market [12]. Further, the size and speed of these FPGA
is increasing, making them more attractive for large designs. Consider also that programmable
crossbar switches are now available [8, 3]. We thus have the potential to design reconfigurable
system architectures for a wide variety of applications. These applications include but are not
limited to, gate array ASIC emulation, prototyping gate array ASICs, but more importantly
FPGAs offer viable production alternatives for smaller designs. For us in particular, they offer
the potential for research into reprogrammable graphics a.rchitectures . These reprogrammable
architectures will allow tradeoffs in terms of cost, size, speed, etc. and provide some of the
flexibility that is currently enjoyed by microprocessor based architectures.

28

3.1 Estimating an FPGA design fit

Vendors tend to advertise the density of their FPGAs in terms of gate and flip flop counts. The
gate counts are generally taken to be gate array equivalents. Quantifying FPGA density in this
way is difficult and cail be confusing for the design engineer. In general these gates and flip flop
counts bear no resembla.nce to gate or flip flop utilisation rates. This problem is addressed by the
the PREP [9] consortium whose goal is to clarify vendors claims using a selection of benchmarks.
Utilisation depends on the FPGA architecture aJld on specific designs to be implemented.

Table 1 gives an estimate of how many how many Xilinx 4013 FPGAs it might take to
implement a Goura.ud shadeI' ASIC simila.r in complexity to the IMAGE chip [5]. A detailed
discussion on estimating a design fit for FPGAs can be found in [14] . Briefly, this involves
counting up the ma.crocell usage , checking design I/O against FPGA I/O and a1 alysing the
designs delays along critical paths .

Logic Blocks I Xilinx XC4013 (CLB)

Decoders 280
CTU 12
FS NLcon troIler 24
R.egisters 2556
Multiplexers 500
Add/Sub 141
ALU 800
Corn para.tor 292

Total U,,[s 4478
Equivalent. Gates 98516
Usable Gates 62692
FPGA Count 12

Table 1: Size est imates for a Gouraud shading architecture

For the Xilinx XC4013 FPGA we can see that the total number of CLBs required for this
design is approximately 4478. The ma..ximum number of CLBs for an XC4013 is 576. Therefore,
we are into mult.iple FPGA designs. Ea.ch Xilinx CLB is equivalent to about 22 gates and from
Xilinx benchma.rks an a.verage of 14 gates per CLB are used [2] . This is a. utilisation rate of
64%. Considering that a gate is worth about 2 .. 5 transistors, then we are looking for a device
with 22x4478x2.5xO.64 = 157G25 transistors. This equates to approximately 62692 used gates.
Using t his utilisation ra.te wc ca.n see that this design will req~lire about 12 XC4013 FPGAs.
Manual place and route a.nd other tricks may reduce this FPGA count. Further, by sometime
next year the XC4020 should be available which should reduce the FPGA count down to about
8 or less.

This FPGA count ana.lysis is based on our Pixel Parameter Interpolator (PPI) tech nology
used for implementing the Gouraud shadeI' [15J. As such the PPI data.pa.ths are not optimised
leading in some cases to excess CLB usage. The IMAGE chip has about 130000 tra.nsistors, so
this design is about 20000 larger. Although the fun ctionality is the same this increased size can
be accounted for by the generalisation of the Pa.ra.meter Register Unit and Parameter Formatting
Unit of this PPI based design. Optimising the datapath bit widths could lead to a. five XC4020
FPGA solution by sometime next year. v\c consider that a. Goura.ud shader implemented on five

FPGA ASIC is an acceptable alternative to a single masked gate array ASIC solution. Analysis
of the designs critical paths suggest a 20 MHz system performance will be a.chieved.

4 Examples of Logic Synthesis and Optimisation

We illustrate here some early results of our logic synthesis and optimisation attempts. We use
MGCs Falcon Framework version 8.2 with Autologic VHDL, Autologic Blocks and Autologic,
etc. This is a very large concurrent engineering environment that not only provides the top
down ASIC design approach discussed above but also with a multitude of other tools integrated
into the design environment, e.g. PCB board tools, simulation tools, etc. The first example is
part of our STEP architecture and the second is parts of our PPI architecture.

4.1 The Sussex Texture Processor

A current project is to design and build texture mapping hardware to augment the functionality
of the IMAGE chip [5]. The specification of the Sussex TExture Processor) (STEP) requires
mipmap based texture filtering [16]. The mipmap approach uses multiple copies of the texture
image prefiltered to lower levels of detail. In our implementation, these levels are stored con­
secutively in texture memory. Computation of the texel address for each pixel is one of the
tasks of the texture memory management unit (TMlvIU) in STEP. The inputs to the TMMU
are texture coordinates supplied on two 10-bit busses, and the level of detail required, supplied
on a 4-bit bus. The base address for the mipmap pyramid is stored internally by the TMMU,
and is updated whenever the texture environment changes. The TMMU synthesises the address
using the following equation:

a = b + J(l) + tg(l) + s (1)

Where, a is the computed address, b is the base address for the mipmap, l is the required
level of detail, fO is a function returning the level offset, and s, t are texture coordinates in the
range O .. f(l), gO is a function returning the side-length of each level.

The level and texture coordinates are provided to the TMMU on each rising clock edge. The
TMMU selects either the incoming level or a user supplied level-of-detail according to the state
of the ismipmap control bit . The address synthesis proceeds as indicated in 1. The use of a
barrel shifter to perform the multiply operation simplifies the process l . Also, true addition of
the s coordinate is not necessary and can be replaced with a unit selecting bits from either s or
tg(l). The RTL VHDL code implementing this functionality is shown in figure 3 in appendix C.

4.1.1 Optimisation of the Offset Generator

The offset of any level in memory from the mipmap base addres~ is found by summing together
the sizes of all levels preceeding the required level. Our classification treats levell as a 512 X .512
image, level 2 as a 256 x 256 ima.ge, etc. In general level n has size 2l0 - n X 21O - n . The offset
for level q is given as:

q-1
o = L 22(10-i) (2)

i=l

When examined in a. binary notation , these sums are seen to be strings of 01 repeated level
times and padded to the right with zeroes to create a 20-bit word . The offset can therefore be

I Mipmap texture images are always 2; X 2; ill size

30

created by generating these words keyed by the incoming level vaIue. The VHDL code shown
in figure 3, see appendix A.2, shows this in the block offsetGen.

The synthesised logic for this block is most complicated. Large numbers of random gates
are used to encode the offset from the level. The 400 or so gate design is fa,r from optimal and is
purely combinatorial. Area optimisa,tion applied to the synthesised circuitry produces a much
improved design, see figure 9 in appendix C. The optimiser spots that many bits are always zero
and eliminates these from the logic; also that feedback can be used to further reduce the gate
count. Speed optimisation might eliminate this feedback a,nd increase the area size accordingly.

The major advantage of this a,pproach for the design of the offset generation sub-unit is that
larger mipmaps can be accomodated by changing the source code, a.lld different distributions
of texture image levels in memory can be explored quickly. The time consuming process of
netlisting gates is totally eliminated .

4.2 Pixel Parameter Interpolator

Common to scan conversion is the need to incrementally linearly interpolate arbitrary vertex
parameters across primitives such as triangles [13]. Work at Sussex has focussed on generalising
this requirement so that any vertex parameter can be interpolated. This has led to the design
of the PP!. Figu re 10 In appendix D illustrates the second level hierarchy of the PP!. The first
level is the chip or ASIC defini t ion.

We can see that the PPI is composed of a control and timing unit, some decoding logic
and a bank of general purpose Parameter Interpolation Units (PIU). Each PIU has the same
structure, except the edge, window and depth units which have dedicated data, paths. The rest
are identical.

4.2.1 Parameter Interpolator Unit

It is useful to consider as an example, of the power of using VHDL descriptions over gate level
descriptions, the PIU which is the core of the PP!. This has been implemented in the traditional
way, using schematic capture and instantiation of library parts from our generi library called
GENLIB. This library is available in other CAD tools besides Mentor Graphics and thus provides
some degree of portability. However, the PIU for depth interpolation requires 48 bit data
paths. Unfortunately, these da,ta paths require multiplexers and an adder/subtra,ctor. This
leads to tediolls gate level implementations because GENLIB does not have a parameterisable
multiplexer. Thus, the 2:1 48 bit wide multiplexers ha.ve to be implemented by netlisting 48
2:1 single bit wide multiplexers. Even, more tedious is the fact that GENLIB only contains
single bit full a.dders and half adders . Thus, the adder/subtra.ctor has to be Ilctlisted in the
same manner. However, architectural tra.deoffs make this process even more time consuming,
e.g. ripple carry, carry look ahea,d, etc. imply more effort in creating models .

One solution is to invest in another library but this is costly. ' It is far simpler to model these
components in VHDL. Appendix 13 details these netlisted components and the equivalent VHDL
models in figures 4, 5, 6 a,nd 7.

4.2.2 Parameter Forrnatting Unit

The Parameter Formatter Unit (PFU) has the job of formatting the a.rbitrary vertex pa.rameters
according to the cor resonding id.entification code that accompanies the parameter. Some of these
formatting operations are:

• Pass interpola.ted parameter

• Pass background colour

• Blend interpolated colour with background colour

• Clamp interpolated parameter to zero

• Clamp interpolated parameter to ma..ximum positive number

This leads us to the design of a PFU which incorporates an ALU and a finite state machine
(FSM) to generate the ALU opcodes , see figure 11 in appendix D. For the ALU we have selected
the ALU '181 which is modelled by the Autologic Blocks library. Using this ALU we can see
that we only need to generate 5 opcodes or states to drive this AL U. This means we only have to
design a five state FSM. Mentor Graphics Autologic Blocks has a KISS compiler which enables
rapid design of FSMs. The KISS FSM description is compiled into VHDL code which is further
compiled by the VHDL compiler . However , because this FSM was reasonably simple it was
written directly in VHDL using Mentor graphics synthesis guidelines . Appendix A.l gives the
VHDL code for this particular FSM.

Netlist statisics show the gate equivalence of the PFU after synthesis to be approximately
6500 gate equivalents and after optimisation to be approximately 2000 gate equivalents. Note
that this area optimisation has been done on each instance in the PFU. Optimising instances into
groups has not been done. This may easily lead to 1000 gate equivalents beca.use, for example,
the state machine has not been optimised with the pre-state decoding and ALU181 logic. We
estimate that nine PFUs required for a Gouraud shader will fit on one or two FPGAs.

5 Conclusion

We have presented a new top down ASIC design with logic synthesis and optimisation strategy
which is superior to the old tra.ditional ASIC design strategy. It is superior because above all
it enables the designer to get his product to market in a much shorter time scale due to the
automation of the low level ga.te netlisting. This taken with all the benefits of targetting FPGA
ASICs means the product is more versatile and less risky to produce.

We have adopted this top down strategy at Sussex. So far we have explored VH DL, logic
synthesis and optimisation and remain impressed. ' Vith the exa.mples shown we have demon­
strated the power of VHDL, logic synthesis a.nd optimisation. We believe this is the wa.y forward
and will provide many benefits for graphics ASIC designers .

6 Acknowledgments

This work has been funded partly by the European Commission through the Esprit projects
Spirit and Spectre. We wish to acknowledge all past and present members of the Spirit and
Spectre consortiums for their valuable contributions to our work .

References

[1] The VHDL Reference Ma.nua.l.

[2] ACTEL. The FPGA Design Guide.

[3] APTIX. Aptix the Programmable Interconnect Compa.ny Da.ta Book.

32

[4J Peter J. Ashenden. The VHDL cookbook . ftp from chook.adelaide.edu.au (129.127.8.8),
directory pubjVHDL-Cookbook (a,s bin-hex or apple PostScript) or bears.llcsb.edu in di­
rectory pubjVHDL, Dept . Computer Science , University of Adela.ide, South Australia, July
1990.

[5J Graham Dunnett, Martin White, Paul Lister, Richard Grimsdale, and France Glemot. The
IMAGE chip for high performance 3D rendering. IEEE Computer Gmphics and Applica­
tions, 12(6):41- 52, November 1992.

[6J S. R. Evans , P. F. Lister, R. 1. Grimsdale, and A. D. Timmo. The AIDA Advanced Image
Display A rchilecture.

[7] H. R. Finch, A. Agate, P.F . Lister, and R. 1. Grimsdale. A Multiple Ap1)lica.tion Gmphics
Integrated Circuit MAGIC Il.

[8J I-CUBE. IQ 160 Field Progmmmable I nterconnect Device Data Book.

[9J David Manners. Progra.mmable logic devices are compared for speed and density. Electronics
Weekly, April 1993.

[10] Douglas 1. Perry. VHDL . tvlcGra.w-Hill , 1991.

[I1J Silicon Compiler Systems. Genesil Designel' Volumes I fj 11.

[12J TI. Texa.s Instruments FPGA Applica.tions Ha.ndbook, 1993.

[13] Steve UpstiJ. The RenderMal1 Compa.nion, A Program.mers Guide to Realistic Com.puter
Graphics. Addison WesJey, 1989.

[14] M 'White, G. Dunnett , P. Lister , and R Grimsdale. Field programmable gate arrays­
computer graphics imaging.

[15J Martin White. Deliverable of spirit ta.<;k gh.s, a.celeration of shading and texturing. Tech­
nical report , The University of Sussex, 1993.

[16J 1. Willia.ms. Pyramidal parametrics . A CM Computer Graphics, 17, July 1983.

A Example VHDL Mode ls and Schernatics

A.I VHDL F in ite State Machine

A.2 STEP B ehavioural D escription

B C omparison of PP I GENLIB gate leve l·sch e rna tics and V HDL
equivalents

C Opt im ised Offset G enerator

D P ixel P aran1eter Inter p olator

-Finite St a t e Hachine contcoll.r lor th. ' 181 A.LU.
- Writt e n by Har tin Whit. 2nd Aug U93

LIaRU.Y IEEE:
OSZ IEEE.etd logic 116 •• 011 ;

OS%. IEEE • • td:=loqie:=U64_extens i ons .al l;

- Written by Hareln H1'Iite .. t Hon Aug 2nd 1993

am:n t .. u
PO"" (

depth r1I etd_uloqi c
blend III std uloqic

III .cd : Uloqlc
I N std _uloqic

clk III std_ uloq ic
r e s. t , III std_uloqic
shift -' OUT std uloq i c
.odo OUT s td:u1oqic
colour IN .cd _ uloqic
odg. IN std uloqie
window III Old :uloqic
opeode OCT

std uloqic v.ctor(l OOWMTO 0)

hidde;; Ii std uloq ic
pin.do : IN std:uloqic
I:

DD fsa ;

UCB.ITI.croRK. controller or rSIll IS
type ste t.s is (sO, sI, 52 •• 3 , 54) ;
--P B dae ..
• iqn .. l sta t e : stat.s : .. sO ;
--D.f .. ult to p lUS B d a te
s i 9n .. 1 next .tat. : states : - sO ;

UCI. -

clock :
PRoc:ESS (elk. reset)
UQ:.

IJ' r.set - '1' THEM

DO IF :
~"D PROaSS clock :

sta t._tre nsitions :
PRCJCZSS (st .. te, on •• zero, p i n.c:io , blend,

hidden, e dqe, window. dept. h, colour)

next_atat.. <- aO ;
CASE sta te IS

lfImM sO ->
I r (pine&' - ' I' and (edge - 'I' or window .. 'I'

or depth .. '1' or colour - '1'» THEN

-SiJrd 1a.r code to .stat.
I.ND CA..S"£ ;

DID l'ROCISS st.at.e_t.ra ns i t.ions

.ta te outputs:
PRocrSs (state)

""en
CA5Z st.ete :IS

'llHZM .0 ->
opcode (- - 1010- ;
MOde <- '1 ';
sh ift r (- '0 ':

W8.Eli sl-- >
opcode (- -1111" ;
1I0de (- '1' ;
shift._r <- '0';

opcod. <- -1001 ":
1II0C» '1';
shift_r <- '0':

1fH£N s 1 - >
opcodll (.. -1100- ;
mode <- ' l' ;
shift. r (- '0 ':

WK2.H s. -->
opcodll (- -1001- ;
.. 0C» <- '1':
shifto_r '1';

.. NO CASE. :

END PROCESS state_outputs
END controller;

- -pinede - 'I' ..,lIen ..-.e are ineerpol~ting no.cmel triangles, as
--as opposed to lIiddenline t r i lJngles. It is also valid ..,hen
--tile edge of a n hiddenline tritJngle is reached. under tllese
--condieion. the curr.ne inc. erpollJted edge, window, depth or
--colour i. piJ.sed.
next_state <- sO:

ELSIr (pineda - 'I' and edq _ - '0' and wi ndow ... '0 '
a nd depth - '0' ond colour - '0 ') T.Ri:N

--P • •• erbitrary interpolated par_eeer
next .tate <- sO;

nsIr (hidden " 'I' e nd colour - ' 1') THEN

--Hlddenline tri,tfl9'l. and pi.kel l(1$lde so ptJss back.ground colour
next_"ta t.. <- a1 :

nsrr (tero - ' 1 ') TREM
--Pari!Uleter or colour overflo_d
next .tat.e <- s2:

:n.sIr (on. - '1') TR£N
--Par4Jflet.r or oolour und.rflowed
next._st a te <- .l;

:l.LSIr (blend - ' I' end colour - ' 1 ') THEN

--Do. 50t blend of interpole t ed colour end preloeded background colour

nDIT :
1f'IltM sI ->

1flm.: s2 - >
--Si_ilar code to .elJee

wo:r:. s3 - >
--Si.il ar code to .e.te

WB2)I a4 - >

Figure 2: VIIDL finite state machine controller for a PPI fOl'matter

34

- VLSI and Co_put.r Ccaphlc. Ite •• acch Group 199J .
-- Unlver.lty oL SU6.ex.
- All right.. zw.ecved.

Hod.l Tltle: coordAdju.tt lay.c
Date Created: 25/03/')
Author:

Lt'1P.UU' _gc ..J>Ortable ;
OSI. raqcJlOct.ab l e .qdlll_loqic.ALL ;
o n n a. :IS

PORr (
• ,t
ba.eaddr
clk
,,.erlave l
l.vel
lsmipna p
addr

:rw q.illl .tate vector(9 DOW'HT'O 01 :
DI qai"-.tate- vector(l9 DOWNTO 01 ;
Df q' i .. -.tate-;
Df q.i. - .t.ate vector (3 DOW'NT'O 0) :
DI q . ia:.tat.e:veetor() [)OW'Nl'O 0) :
III qsilll stat.a ;
COt' qsiln:st.ate_ veet.orI19 OOW'NTO 0)

) ;

DD as ;
ARCBIftcrou r t.l or a . IS

SIGNAL t.het..vel qsin st a t.e vect.or (3 OOW'NTQ 0) :
SIQtAL level in qs im -state-vector () [)()Wlrf1'() 0) :
SIQQL sin. t. i n qsia -sta te - vect.or (9 OOWNTO 0) :
SIQU.L .hiftalllount qsim - .tate-vect.or l) OOWN'l'O 0):
SIGM.U. .hiltBt qsim-stat.-vector(19 DOWNl'O 0):
SIGNAL bando q.iIn - sc.ote - vee t.or (19 DOWN!'O 0) :
SIGNAL offset , o qSinI-stote-vector(19 DOWNro 0) ;
SIQlAL .e1eetor z qs i ",:,.tate:vector (9 DOWNto 0) ;

ReI1I

l a tchin:
PROCI.SS (elk,

lIE"''''
D' (elk - '1').)ID elk ' l a st va l ue - '0 ' AND elk ' event.) THl:lI

.in <- .: tin < .. t ; 1evelln <- level ;
DID 11' :

."0 'PROCItSS 1atchin ;

dox..ve1 :
PROCZSS (u •• rLev.l. leveUn, i:llll i pn a p)

lIE"'.
OSI. lalllipmap IS

WRE.J '0 ' -> - - not ,. ,Jpnappi. ng, use user s uppli...:/ level
thelAvel <- I.uerLAve1;

WRVf O'I'HERS - >
theLevel <- leve 1 in;

DO CAS£ ;

I.MD PROCESS dolAve 1 ;

---- decode leve J i nto 11 sh i ft _ou nt s h l fcamo un t - lO-l eve l

.hift.decode :
BLOC!<

.hi ftd.codeprocess
PROCLSS « the Level)
gGrM

CAS£ theLevel IS
WHEN "0000· sh ift amount
lfHEN -0001- shiftamo\lnt
.CC

WHE.JI "1001" - > shift_ount
lfR211 OTHI..RS - > shiftalllount

'"1010" :
"1001'" ;

"000l" ;
"0000 " ;

oftli.tGen :
IILOCJt
RCIM

offsetGenProces.

PR0C2SS (thex.. ve l

lIE"'.
C1S.E theLevel IS

WHEN "0000 '" -> offset <- "00000000000000000000"
WHi:lrl "0001" - > offset '"00000000000000000000 ..
lflIlN '"0010" - > oH .. t <- " 0100000000 00000 00000"
WHEN "0011 " - > offset <- "'01010000000000000000"
WHl:.N ·0100" - > off.et <- "0 1010100000000000000"
W'HEN "010 1'" -> offset
WHEN '"OU O" - > off .. t

"01010101000000000000 ..
"010101 01010000000 000 "

WI:IE.N "OlU " - > offset <- "010 1 0101 010100000000"
WHEN "1000 " -> off .. t <- "01010101010101000000"
N"JI£N "1001" - > off •• t <- "01010101010101010000"
1fH£:N OTHERS - > oft.set <- "0 10101010101010 1 0100 ·

END 052 :
.END PROCESS offset.Ce nProc.e s li

END BLOCJI: offset.Cen :

-- - - .Add t he ~s. address t o t he offset. tlh i ch vllr j e" ... i th the level

baseMdO!fset.-'dd:
PRoass (bose"dclr . offse t.)

BEGIN
a nswer : - bas e"ddr + ofh.c.;
bando <- a.n.wer (19 DCloJ'Nt'O 0) ;

END PR0C2SS ba.e"ndOf{.etAdd ;

-- - - We .. a n t to add v-N .. u. v·N Is a va i labl e as .hi ft't " rid u ls .1n .
---- Now. N" 2 \ A i a nd u < N. Therefore IV-NI ha" " .ttrlng of rtt.ros in
--- - it.s 15 b i t.s ... hleh u ... 111 r.place . The additlon can theeetoee hIo
---- i,.pl""..ented wlth . uxe. loe each b it .eJect ing either utj}, vlj} ..

.electorBlo ck :
BLOCX
gCIN

se lectorBlo ekProcess
PRoc:ESS I thelAve1)
82CIN

CASE theLellel I S
wm:::N "0000" ,ulect.or (- " 1111111111" ; -- eJl bits Ira. u
wHE:N ·00 01" - > selector <- " 0111111111- :

.elector <- "0000000001" ;
lfKDC OTRUlS - > •• l.ctor <- "'0000000000":

2ND OSE :
2ND PROCl:SS lielect.orB1ockProe. ss

END 8.LOCX se1eceorBlocJc :

coordBl e nd :
PROCESS (.el ect.oc, shifelt , ~ i n)
B£CI N

FOR j IN 0 ro 9 LOOP

IT select or(j l - ')' 1"HI:N
o (j) <- sin (j) :

ELSE
e lj l <- shlft& t I j l ;

Dm IF :
E.N D LOOP :
a (19 [)OW"Mto 10) <- shift.lt. (19 OOWNt'O 101 :

END PROC£SS coordBlend ;

---- COIIIpu t e Ch. addr fro. p.!Irt i el rtr$ uJt.a a and boSndo

I.WD CASI. ; a ddrGen:
biD PR()(1SS • hift.decodeproce.. 'PR0C2.SS (G • bGndo)

I.tlD BLOC](.hift.deeode VAlUABLE r es ul t : qs ifll_ s t. a t . _ vect.or(19 DOWNTO 0)
BEeIN

resu l t. : - a + bando.;
Wtr n.~d t o . hi ft t left by be t _ e n 0 Gnd 10 positions . addr <- r.s 1.l 1t (l9 DOWNTO 0) ;
To do th I s we "h i lt by 1, 2~ 4, a nd/ or 8 jn the ne e e S.sary :DID PROCESS a c!d rCe n

- --- cOIll~dn. t j on.". . END ct.l :

lII y.hi fe.r :
BLOCIt

-- barrel .shift code d&J eted f or brl eln ess
I.MD B.LOC:Jt !fly.h ifter ;

Figure 3: VHDL Code For The Offset Genera.tor

Figure 4: Schema.tic of a. 2:1 4,' bi t wide multiplexer based on Genlib parts

36

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_1164_extensions.al1;

Written by LL_to_VHDL at Fri Ju1 2 10:02:05 1993
Parameterized Generator Specification to VHDL Code

LogicLib generator called : MULTIPLEXER
Passed Parameters are:

tinst name = muxO
parameters are:

type = SIMPLE
W = 48
numin = 2
SW = 1
bus mask 0
comp_ out NO

- - muxO Entity Description
entity muxO is

port (

) ;

INO: in std_ulogic_vector(47 downto 0);
1Nl: in std_ulogic_vector(47 downto 0);
SEL: in std_ulogic_vector(O downto 0);
DOUT: out std_ ulogic_vector(47 downto 0)

end muxO;

-- muxO Architecture Description
architecture rtl of muxO is

begin
muxO_Process: process(INO,IN1,SEL)

variable iaddress : integer range 0 to 1;
variable state: std_ulogic_vector(47 downto 0);

begin
iaddress := to_Integer ('0' & SEL,O) ;
case iaddress is

when 0 =>
state := INO;

when 1 =>
state := 1Nl;

when others =>
state (OTHERS => 'X ') ;

end case;

Assign outputs
DOUT <= state;

end process muxO Process;
end rtl;

Figure 5: VnDL version of 2:1 48 bit wide multiplexer

Figure G: Schematic of a 48 bit wide add er/subtract.or based Oil Genlib part.s

38

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_1164_extensions.all;

Written by LL_to_VHDL at Tue
Jul 27 15:45:57 1993
Parameterized Generator
Specification to VHDL Code

LogicLib generator called:
ARITHMETIC
Passed Parameters are :

tinst name = add sub
parameters are:

type = ADDSUB
W = 48
look = 16
carry in = YES
carry out = YES
ov YES
It YES
gt YES
eq NO

-- add_sub Entity Description
entity add_sub is

port (

) ;

A: in std_ulogic_vector
(47 downto 0);

B: in std_ulogic_vector
(47 downto 0) ;

D: out std_ulogic_vector
(47 downto 0);

CIN,SUB: in std_ulogic;
COUT,GT,LT,OV: out std_ulogic

end add_sub;

-- add sub Architecture Description
architecture rtl of add sub is

signal pre_OV
signal pre_EQ
signal pre_ LT

: std_ ulogic_ v ector
(48 downto 0);

std_ulogic;
std_ulogic;
std_ulogic;

variable a_ext,b_ext
: std_ulogic_vector(48 downto 0);

variable carry_ext
: std_ulogic_vector(l downto 0);

variable msb : integer;
begin

-- zero extend inputs to
-- include carry bit
a ext := '0' & A;

if (SUB = '1') then
b ext ' 0' & not B;

else
b ext ' 0' & B;

end if;
carry_ext := '0' & CIN;

-- ADD SUB
fct out := a ext + b ext

+ carry_ext;

-- Assign to signal for use
-- outside process
pre_D <= fct_out;

Calculate overflow bit
if (a_ext (47) = b_ext(47)

and fct_out(47)
= not a_ext(47 » then

p re_OV <= '1';
else

pre_OV <= '0 ';
end if;

end process ARITHMETIC_Process;

-- Assign the outputs
D <= pre_D(47 downto 0);

-- Assign flags
COUT <= pre_D(48);
pre_EQ <= ' l'

when (pre_D(47 downto 0)
= "0000000000000000000000000
00000000000000000000000 ")

else ' 0' ;
pre_LT <=. (pre_OV xor pre_D (47»;
GT <= not pre_EQ and not pre_LT;
LT <= pre_LT;
OV <= pre_OV;

begin end rtl;
ARITHMETIC Process :
process (A,B,CIN,SUB)

variable fct out
std_ulogic_vector(48 downto 0) ;

Figure 7: VHDL version of a. 48 bit wide adder/subtractor

Figu re 8: Synt.hesised Offset Genera.tor

40

Figure 9: Optimised Offset Generator

ill

Figll rc 10 : Pi xcl P a ra l1l cter In 1.c rp ola to r 2nd le\'(>] h iera reil ,V

42

... - ",J\JlO' r---- 'U'-""" ,*" In(S 0 _, Id..

IGOd..
'--- '=~ .--

. 1
:..!:-- 1Cl .. C- 1I'U"tIG

-~ ..
InO 0 - h F.N~' ~ 100b4

t-- Mmucnc '~_I

... - ":-""" :lr....tw-n'aT4lt

t--~ 2> ... IN ""''' "- ,ay..
JC1 ,~.

"[/- ~"'~""'~_"'.~I -~
In(:l1 0 =1'

cWe-O,.l\ (31 0)

- ~ .-r-..-lJ"e1

I
Id

c lnD I I I
" ... ;:--• ., J

ril"" - .-
In • • dIII

~JF'
.. - -" hi " ... _ I

V .. - fS M ..
I

~ .
-clll:

'----
~ ~M.

-' ~ r:--
C:li
(D_lS ! 11

I F.: !1
: -t- DI H: t;

1;-:1
13:' .
~~ILko:

.

Figure 11 : Pa.rameter Formatting Unit

