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Abstract

The design of graphics ASICs for geometry and rasterisation processing has traditionally
involved the use of schematic design entry whereby functional blocks are netlisted and in-
stantiated on the schematic. This methodology is fine at the top most hierarchical levels of
a design but becomes tedious and error prone at the lower gate levels. Often these designs
are targetted at custom ASICs through the use of silicon compiler technology. Unfortu-
nately, this is an expensive and risky approach to implementing these ASICs, particularly
for University research laboratories where additional funding may not be available to cover
non-recurring engineering costs, such as multiple mask runs, which may be needed due to
design errors. This paper presents an alternative to these traditional approachs. A new
approach, top down ASIC design with logic synthesis and optimisation targetting FPGA
ASICs, is presented. We demonstrate through some examples of our texturing and scan
conversion hardware the benefits of this new approach.

1 Introduction

The VLSI and Computer Graphics Research Group at Sussex have been primarily involved in
semi-custom VLSI ASIC design of both graphics geometry and rasterisation hardware [7, 6, 5].
However, this semi-custom VLSI design has still traditionally involved large non-recurring engi-
neering (NRE) costs, long prototype delivery times, and inherent risks which are unacceptable
in our research environment. Ideally, we require all the benefits of full or semi-custom circuits,
i.e. high density and speed, with low cost, low risk, low prototype time and a quick route to
silicon. Further, in our research environment it is difficult to build up and keep the experience
required to successfully carry through full or semi-custom masked designs. This implies even
greater costs and has led us to consider alternative routes to silicon.

This paper discusses our current approach to designing graphics hardware without the com-
plexities of targetting mask based ASICs. It sets out our views on the use of VHDL, logic
synthesis and optimisation as a design strategy for targetting field programmable gate arrays
(FPGAs). We conclude with some examples from our current texturing and shading hardware
designs.

2 Top Down ASIC Design with Logic Synthesis and Optimi-
sation
Top down ASIC design requires a consistent high level design definition and specification medium.

This requirement is satisfied by a high level hardware description language (HDL). There are
many to choose from, the two most common being VHDL and Verilog. Technology vendors often
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have their own HDLs too, e.g. Altera have AHDL. We have chosen to adopt the IEEE 1076
VHDL standard [1]. Designs can be quickly defined in VHDL and proved through simulation.
Tedious gate level implementations can be eliminated by using logic synthesis to automatically
convert the VHDL to a generic gate level. Logic optimisation can then optimise and map this
generic netlist to a target technology. Microarchitectural selection during the optimisation phase
allows the designer to optimise for area and speed tradeoffs before targetting the technology.
There are many advantages to using this top down approach:

¢ Advantages of top down ASIC design

— VHDL provides a consistent and portable design medium

— Designs are quickly defined, VHDL can be used in specification and implementation
— Synthesis rapidly creates the gate level description

— Designers productivity dramatically increases

— VHDL allows the designer to focus on higher level abstract functionality rather than
tedious gate level implementation

— Automatic VHDL generation from parameterised logic blocks, e.g. Autologic Blocks
— Design process is technology independent

— Design decisions and architectural tradeoffs made independent of technology

— Retargetting technologies is easy, e.g. gate array ASICs, FPGA ASICs, PLDs, etc.
— Design changes easily and rapidly made, e.g. datapath widths.

— Production schedules only affected by time taken to modify VHDL due to automated
synthesis and optimisation.

Inherent documentation with VHDL

This top down ASIC design strategy is illustrated in figure 1. We now present a brief overview
of the VHDL modelling, logic synthesis and optimisation parts of this strategy. -

2.1 VHDL Overview

VHDL is a hardware description language supporting many of the features available in high
level programming languages. Components can be described using constructs such as CASE,
IF-THEN-ELSE, LOOP, functions and subroutine calls. Concurrent execution of statements sim-
plifies the modelling of components. Once components have been created they can be instan-
tiated into other VHDL models in an object oriented style. This offers designers real scope for
component reuse.

2.1.1 Entity Description

A VHDL component model comprises an entity and architecture description. The compo-
nents interface description—signal names, directions and types—is declared in the VHDL en-
tity. Generic parameters such as time delays can also be supplied in the entity description. For
example:
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Figure 1: Design strategy incorporating VHDL design entry, simulation, synthesis, optimisation
and FPGA targetting

ENTITY mux16 IS
PORT (x, y : IN wordi6;

s : IN bit;
z : OUT wordié
]
GENERIC (delay : time);
END muxi6;

describes the interface for a 2:1 16 bit wide multiplexer, which can be parameterised with a
variable propagation delay.

2.1.2 Architecture Description

The functionality or structural implementation of a component is given in the architecture
description. A component can have many architectures, specifying different levels of abstraction,
however all architectures share a common entity description. The following example shows both
structural and behavioural models for the multiplexer above.

ARCHITECTURE structure OF mux16 IS
COMPONENT mux8 PORT (a, b : IN word8; s : IN bit; c : OUT word8);
END COMPONENT; ;
BEGIN
ml : mux8
PORT MAP (x(15 DOWNTO 8), y(15 DOWNTO 8), s, z(15 DOWNTO 8));
m2 : mux8
PORT MAP (x( 7 DOWNTO 0), y( 7 DOWNTO 0), s, z( 7 DOWNTO 0));
END structure;

ARCHITECTURE behaviour OF mux16 IS



BEGIN
mymux16:
PROCESS (x, y, s)
BEGIN
IF s = 0’ THEN
z <= x AFTER delay;
ELSE
z <= y AFTER delay;
END IF;
END PROCESS mymux16;
END behaviour;

The structure architecture instantiates two 8 bit multiplexers to build the 16 bit multi-
plexer. The port map contruct specifies the connectivity. In the second architecture body a
PROCESS statement is used to force sequential execution of its in scope statements. These in-
structions are executed once each time any of the signals x, y or s change state. These signals
form the sensitivity list for the process. Signal assignments (denoted by <= can be specified
to occur at some future time in the simulation, as shown here with the AFTER clause. This
timing information is ignored by the synthesis process because it has no meaning to the final
technology. When the mux16 component is bound to other components in another VHDL file
the architecture to use can be specified. It is beyond the scope of this paper to describe VHDL
in any more detail, the reader is referred to the many texts available [10, 4].

2.2 Synthesis

To synthesise VHDL certain guidelines need to be followed. Style, syntax, modeling and design
methods are some of these guidelines. Guidelines are needed because a subset of VHDL is
commonly used for synthesis. This is required because there are certain elements of VHDL that
are not possible to synthesise for obvious reasons, e.g. textio, while loops, generics, etc. In
general the designer will have modelled in behavioural VHDL. This is not synthesisable, so the
next step is to decompose this behavioural model into a synthesisable model. This synthesisable
model need not go down as far as the structural level described above. The synthesisable model
is referred to as a register transfer level (RTL) model. In fact, this RTL model is highly readable
and in many cases the designer will opt to only write VHDL in this style.

Before synthesis begins global and process constraints are set. These include setting the
type of flip flops use, state encoding schemes, carry look ahead. This enables the designer to
make architectural tradeoffs early in the design cycle. The synthesis process examines the RTL
description for mappable constructs and produces a generic gate level netlist. Parts of the VHDL
will be sensitive to clock edges, which explicitly requires latches. Alternatively variables and
signals may imply physical storage is required. Here the synthesiser will insert storage elements
into the generic gate-list.

A synthesiser will also understand a subset of arithmetic operations such as addition, sub-
traction and multiplication. From examining the operands a synthesiser will be able to build
logic with the appropriate data-widths. Signed and unsigned versions can be built again by
examining the number ranges in use. Typically the arithmetic units can be globally optimised
by specification of the degree of carry look ahead to use. This is very useful because it moves
some of the architectural tradeoff decisions even higher up the design strategy.

Other VHDL contructs which can be mapped into hardware include the when and case
statements, which result in synthesis of multiplexers. Also, it is possible to synthesise for loops.



It is both possible for the synthesis process to produce gates like confetti for some compo-
nents while for others produce a gate level description that defies optimisation. For example,
a synthesised register is much the same as the optimised version. A synthesised ALU can run
to 37 pages of schematics—approximately 7 or 8 thousand gates—an area optimisation reduces
this to about a thousand gates. ‘

2.3 Optimisation

Once the synthesis process has completed the gate list generated must be optimised and mapped
to the target technology. Target timing constraints such as clock cycle and input arrival and
output setup times must be specified before optimisation is performed . The design can then be
optimised, typically for speed, or area, or both. Further, optimisation can be specified to respect
hierarchy in the design, or to flatten the design and perform global optimisation. Hierarchy is
easily expressed within the VHDL model by the use of BLOCK statements. Optimisation for area
will involve the following steps:

e Re-use of logic. Repeated logic will be recognised and eliminated. Logic such as adders
will be re-used many times.

o Logic factoring. Serial implementations will be created by compressing random-logic into
the minimum number of gates. Transduction is used to remove the redundant logic.

e Use of macro-cells. When possible the optimiser will substitute ASIC vendor macrocells
which tend to be optimised for the target technology.

For speed optimisation, gates are examined in turn and replaced with equivalent logic with
shorter gate delays (gate sizing). Capacitive loads are considered in each case and gate drives are
sized accordingly. Additionally controllability factoring is performed. Controllability factoring
determines which input signals to a section of logic contribute most to the final circuit output
and ensures that these signals do not lie on the critical path for that logic.

Parts of the logic optimisation can be performed using the generic representation of the
circuitry. This is particularly true of area optimisation. To map generic gates to ASIC vendor
supplied macrocells or to reduce propagation delays for performance optimisation an optimiser
will use signature analysis. This is analogous to peep-hole optimisation used in programming
language compilers. Subcircuits in the design are selected and the truth tables for these peep-
holes are constructed. Equivalent subcircuits provided in the technology libraries are then
substituted using a technology rule database.

3 Field Programmable Gate Array ASICs

The market for FPGA ASICs, commonly referred to as just EPGAs, is expected to increase
substantially over the next few years. Along with gate arrays ASICs, FPGA are expected to
take a major share of the semiconductor market [12]. Further, the size and speed of these FPGA
is increasing, making them more attractive for large designs. Consider also that programmable
crossbar switches are now available [8, 3]. We thus have the potential to design reconfigurable
system architectures for a wide variety of applications. These applications include but are not
limited to, gate array ASIC emulation, prototyping gate array ASICs, but more importantly
FPGAs offer viable production alternatives for smaller designs. For us in particular, they offer
the potential for research into reprogrammable graphics architectures. These reprogrammable
architectures will allow tradeoffs in terms of cost, size, speed, etc. and provide some of the
flexibility that is currently enjoyed by microprocessor based architectures.
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3.1 Estimating an FPGA design fit

Vendors tend to advertise the density of their FPGAs in terms of gate and flip flop counts. The
gate counts are generally taken to be gate array equivalents. Quantifying FPGA density in this
way is difficult and can be confusing for the design engineer. In general these gates and flip flop
counts bear no resemblance to gate or flip flop utilisation rates. This problem is addressed by the
the PREP [9] consortium whose goal is to clarify vendors claims using a selection of benchmarks.
Utilisation depends on the FPGA architecture and on specific designs to be implemented.

Table 1 gives an estimate of how many how many Xilinx 4013 FPGAs it might take to
implement a Gouraud shader ASIC similar in complexity to the IMAGE chip [5]. A detailed
discussion on estimating a design fit for FPGAs can be found in [14]. Briefly, this involves
counting up the macrocell usage, checking design I/O against FPGA I/O and analysing the
designs delays along critical paths.

| Logic Blocks | Xilinx XC4013 (CLB) |
Decoders 280
CTU 12
FSM _controller 24
Registers 2556
Multiplexers 500
Add/Sub 141
ALU 800
Comparator 292
Total LMs 4478
Equivalent Gates 98516
Usable Gates 62692
FPGA Count 12

Table 1: Size estimates for a Gouraud shading architecture

For the Xilinx XC4013 FPGA we can see that the total number of CLBs required for this
design is approximately 4478. The maximum number of CLBs for an XC4013 is 576. Therefore,
we are into multiple FPGA designs. Each Xilinx CLB is equivalent to about 22 gates and from
Xilinx benchmarks an average of 14 gates per CLB are used [2]. This is a utilisation rate of
64%. Considering that a gate is worth about 2.5 transistors, then we are looking for a device
with 222447822.520.64 = 157625 transistors. This equates to approximately 62692 used gates.
Using this utilisation rate we can see that this design will require about 12 XC4013 FPGAs.
Manual place and route and other tricks may reduce this FPGA count. Further, by sometime
next year the XC4020 should be available which should reduce the FPGA count down to about
8 or less.

This FPGA count analysis is based on our Pixel Parameter Interpolator (PPI) technology
used for implementing the Gouraud shader [15]. As such the PPI datapaths are not optimised
leading in some cases to excess CLB usage. The IMAGE chip has about 130000 transistors, so
this design is about 20000 larger. Although the functionality is the same this increased size can
be accounted for by the generalisation of the Parameter Register Unit and Parameter Formatting
Unit of this PPI based design. Optimising the datapath bit widths could lead to a five XC4020
FPGA solution by sometime next year. We consider that a Gouraud shader implemented on five



FPGA ASIC is an acceptable alternative to a single masked gate array ASIC solution. Analysis
of the designs critical paths suggest a 20 MHz system performance will be achieved.

4 Examples of Logic Synthesis and Optimisation

We illustrate here some early results of our logic synthesis and optimisation attempts. We use
MGCs Falcon Framework version 8.2 with Autologic VHDL, Autologic Blocks and Autologic,
etc. This is a very large concurrent engineering environment that not only provides the top
down ASIC design approach discussed above but also with a multitude of other tools integrated
into the design environment, e.g. PCB board tools, simulation tools, etc. The first example is
part of our STEP architecture and the second is parts of our PPI architecture.

4.1 The Sussex Texture Processor

A current project is to design and build texture mapping hardware to augment the functionality
of the IMAGE chip [5]. The specification of the Sussex TExture Processor) (STEP) requires
mipmap based texture filtering [16]. The mipmap approach uses multiple copies of the texture
image prefiltered to lower levels of detail. In our implementation, these levels are stored con-
secutively in texture memory. Computation of the texel address for each pixel is one of the
tasks of the texture memory management unit (TMMU) in STEP. The inputs to the TMMU
are texture coordinates supplied on two 10-bit busses, and the level of detail required, supplied
on a 4-bit bus. The base address for the mipmap pyramid is stored internally by the TMMU,
and is updated whenever the texture environment changes. The TMMU synthesises the address
using the following equation:

a=0b+ f(l)+tg(l) + s (1)

Where, a is the computed address, b is the base address for the mipmap, [ is the required
level of detail, f() is a function returning the level offset, and s,t are texture coordinates in the
range 0..f(1), g() is a function returning the side-length of each level.

The level and texture coordinates are provided to the TMMU on each rising clock edge. The
TMMU selects either the incoming level or a user supplied level-of-detail according to the state
of the ismipmap control bit. The address synthesis proceeds as indicated in 1. The use of a
barrel shifter to perform the multiply operation simplifies the process!. Also, true addition of
the s coordinate is not necessary and can be replaced with a unit selecting bits from either s or
tg(1). The RTL VHDL code implementing this functionality is shown in figure 3 in appendix C.

4.1.1 Optimisation of the Offset Generator

The offset of any level in memory from the mipmap base address is found by summing together
the sizes of all levels preceeding the required level. Our classification treats level 1 as a 512 x 512
image, level 2 as a 256 x 256 image, etc. In general level n has size 217" x 219-" The offset
for level q is given as:

g—1
o= 3o gt00-0 @
t==1

When examined in a binary notation, these sums are seen to be strings of 01 repeated level
times and padded to the right with zeroes to create a 20-bit word. The offset can therefore be

"Mipmap texture images are always 2° x 2' in size
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created by generating these words keyed by the incoming level value. The VHDL code shown
in figure 3, see appendix A.2, shows this in the block offsetGen.

The synthesised logic for this block is most complicated. Large numbers of random gates
are used to encode the offset from the level. The 400 or so gate design is far from optimal and is
purely combinatorial. Area optimisation applied to the synthesised circuitry produces a much
improved design, see figure 9 in appendix C. The optimiser spots that many bits are always zero
and eliminates these from the logic; also that feedback can be used to further reduce the gate
count. Speed optimisation might eliminate this feedback and increase the area size accordingly.

The major advantage of this approach for the design of the offset generation sub-unit is that
larger mipmaps can be accomodated by changing the source code, and different distributions
of texture image levels in memory can be explored quickly. The time consuming process of
netlisting gates is totally eliminated.

4.2 Pixel Parameter Interpolator

Common to scan conversion is the need to incrementally linearly interpolate arbitrary vertex
parameters across primitives such as triangles [13]. Work at Sussex has focussed on generalising
this requirement so that any vertex parameter can be interpolated. This has led to the design
of the PPI. Figure 10 In appendix D illustrates the second level hierarchy of the PPI. The first
level is the chip or ASIC definition.

We can see that the PPI is composed of a control and timing unit, some decoding logic
and a bank of general purpose Parameter Interpolation Units (PIU). Each PIU has the same
structure, except the edge, window and depth units which have dedicated data paths. The rest
are identical.

4.2.1 Parameter Interpolator Unit

It is useful to consider as an example, of the power of using VHDL descriptions over gate level
descriptions, the PIU which is the core of the PPI. This has been implemented in the traditional
way, using schematic capture and instantiation of library parts from our generic library called
GENLIB. This library is available in other CAD tools besides Mentor Graphics and thus provides
some degree of portability. However, the PIU for depth interpolation requires 48 bit data
paths. Unfortunately, these data paths require multiplexers and an adder/subtractor. This
leads to tedious gate level implementations because GENLIB does not have a parameterisable
multiplexer. Thus, the 2:1 48 bit wide multiplexers have to be implemented by netlisting 48
2:1 single bit wide muitiplexers. Even, more tedious is the fact that GENLIB only contains
single bit full adders and half adders. Thus, the adder/subtractor has to be netlisted in the
same manner. However, architectural tradeoffs make this process even more time consuming,
e.g. ripple carry, carry look ahead, etc. imply more effort in creating models.

One solution is to invest in another library but this is costly. It is far simpler to model these
components in VHDL. Appendix B details these netlisted components and the equivalent VADL
models in figures 4. 5, 6 and 7.

4.2.2 Parameter Formatting Unit

The Parameter Formatter Unit (PFU) has the job of formatting the arbitrary vertex parameters
according to the corresonding identification code that accompanies the parameter. Some of these
formatting operations are:

¢ Pass interpolated parameter



Pass background colour

L

Blend interpolated colour with background colour

Clamp interpolated parameter to zero

Clamp interpolated parameter to maximum positive number

This leads us to the design of a PFU which incorporates an ALU and a finite state machine
(FSM) to generate the ALU opcodes, see figure 11 in appendix D. For the ALU we have selected
the ALU ’181 which is modelled by the Autologic Blocks library. Using this ALU we can see
that we only need to generate 5 opcodes or states to drive this ALU. This means we only have to
design a five state FSM. Mentor Graphics Autologic Blocks has a KISS compiler which enables
rapid design of FSMs. The KISS FSM description is compiled into VHDL code which is further
compiled by the VHDL compiler. However, because this FSM was reasonably simple it was
written directly in VHDL using Mentor graphics synthesis guidelines. Appendix A.l gives the
VHDL code for this particular FSM.

Netlist statisics show the gate equivalence of the PFU after synthesis to be approximately
6500 gate equivalents and after optimisation to be approximately 2000 gate equivalents. Note
that this area optimisation has been done on each instance in the PFU. Optimising instances into
groups has not been done. This may easily lead to 1000 gate equivalents because, for example,
the state machine has not been optimised with the pre-state decoding and ALU181 logic. We
estimate that nine PFUs required for a Gouraud shader will fit on one or two FPGAs.

5 Conclusion

We have presented a new top down ASIC design with logic synthesis and optimisation strategy
which is superior to the old traditional ASIC design strategy. It is superior because above all
it enables the designer to get his product to market in a much shorter time scale due to the
automation of the low level gate netlisting. This taken with all the benefits of targetting FPGA
ASICs means the product is more versatile and less risky to produce.

We have adopted this top down strategy at Sussex. So far we have explored VHDL, logic
synthesis and optimisation and remain impressed. With the examples shown we have demon-
strated the power of VHDL, logic synthesis and optimisation. We believe this is the way forward
and will provide many benefits for graphics ASIC designers.
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--Finite State Machine controller for the ‘181 ALU. --Similar code to state rero
--Nritten by Martin White 2nd Aug 1593 END CASE ;

-— END PROCESS state_transitions :
LIBRARY IEEE;

USE IEEE.std logic_1164.all; state_outputs:
USE IEEE.std_logic_1164_extensions.all; PROCESS (state)
BEGIN
-— CASE state IS
~~ Written by Martin White at Mon Aug 2nd 1893 WHEN s0 =>
- opcode <= "1010%;
ENTITY fasm IS mode <= Yy
PORT ( shift_r <= '0°;
depth : IR std_ulogic ; WHEN sl =>
blend : IN std_ulogic : opcode <= “1111%;
one : IN std_ulogic ; mode L L L]
rero : IN std_ulogic ; shift r <= '0’;
clk : IN std_ulogic WHEN s2 =>
reset : IN std_ulogic opcode <= "1001%;
shift r : OUT std_ulogic mode C< MG RS
mode : 00T std_ulogic ; shift r <= ‘0"
colour : IN std_uvlogic : WHEN s3 =>
edge : IN std_ulogic ; opcode <= “1100%;
window : IN std_ulogic ; mode <= *}’;
o] : 00T shift r <= '0‘;
std_ulogic_vector (3 DOWNTO 0) WHEN s4 =>
hidden : IN std_ulogic ; opcode <= "10017;
pineda : IN std_uvlogic mode <» 3%
) : shift r <= '1°;
END fsm ; END CASE
END PROCESS state outputs ;
ARCHITRCTURR controller OF fsm IS END controller;

type states is (s0, sl, s2, 83, sd);

~~Pass B data

signal state : states := s0;

~-Default to pass B data

signal next_state : states := s0;
BEGIN

clock:
PROCESS (clk,reset)
BEGIN
IF reset = "1’ THEN
state <= s0;
ELSIF clk’event and clk = "1’
and clk’last_value = ‘0’ THEN
state <= next_state;
END IF :
END PROCESS clock ;

state_transitions:
PROCESS (state, one, zero, pineda, blend,
hidden, edge, wincow, depth, colour)
BRGIN
next_state <= s0 ;
CASE state IS
WHEN s0 =>
IF (pineda = 1’ and (edge = ‘1’ or window = ‘1’
or depth = "1’ or colour = '1’)) THEN
--Pineda =~ ‘1’ when we are interpolating normal triangles, as
~-as opposed to hiddenline triangles. It is also valid when
--the edge of an hiddenline triangle is reached, under the.
--conditions the current interpolated edge, window, depth or
--colour is passed.
next_state <~ s0;
ELSIF (pineda = '1’ and edge = ‘0’ and window = ‘0°
and depth = ‘0’ and colour = "0‘) THEN
--Pass arbitrary interpolated parameter
next _state <= s0;
ELSIF (hidden = "1’ and colour = ‘1') THEN
--Hiddenline triangle and pixel inside so pass background colour
next_state <= sl;
ELSIF (zero = "1') THEN
~--Parameter or colour overflowed
next_state <= s2;
ELSIF (one = “1') THEN
--Parameter or colour underflowed
next_state <= a3;
ELSIF (blend =1’ and colour = “1’) THEN

--Do a 50% blend of interpolated colour and preloaded background colour »
next_state <= s4;
END IF :

WHEN sl =>
--Similar code to state zero

WHEN s2 =>
--Similar code to state zero

WHEN s3 =>
--Similar code to state zero

WHEN s4 =>

Figure 2: VIIDL finite state machine controller for a PPI formatter
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=~ VLSI and Computer Graphics Research Group 1593. ~=-= decode the level into the texture image offset

-~ University of Sussex. 1
== All rights reserved. offsetGen:
BLOCK
- BRGIN
-~ Model Title: coordAdjust layer offsetGenProcess :
-- Date Created: 25/03/393 ; PROCESS ( thelevel }
-~ Author: Graham Dunnett BEGIN
-— CASE thelevel IS
WHEN "0000" => offset <= "00000000000000000000";
LIBRARY mgc_portable ; WHEN "0001" => offset <= "00000000000000000000";
USE mgc_portable.gsim logic.ALL ; WHEN "0010" => offset <= “01000000000000000000";
ENTITY as IS WHEN "0011" => offset <= "01010000000000000000"
PORT ( WHEN "0100" => offset <= "01010100000000000000"
s,t : IN gsim_state_vector (9 DOWNTO 0) ; WHEN "0101" => offset <= "01010101000000000000~;
baseaddr : IN qsim_state_vector (19 DOWNTO 0) WHEN "0110" => offset <= "01010101010000000000";
clk : IN qsim_state ; WHEN "0111" => offset <=~ "01010101010100000000";
userlevel : IN qsim_state_vector (3 DOWNTO 0) : WHEN "1000" => offset <= "01010101010101000000";
level : I : WHEN "1001" => offset <= "01010101010101010000";
ismipmap : IN _ WHEN OTHERS => offset <= "01010101010101010100";
addr : OOT gsim_state_vector (19 DOWNTO 0) END CASE ;
) ¢ END PROCESS offsetGenProcess :
END as ; END BLOCK offsetGen;

ARCHITECTURE rtl OF as IS
SIGNAL thelevel gsim_state_vector (3 DOWNTO 0) : 8

SIGNAL levelin : gsim_state_vector (3 DOWNTO 0): -~=~ Add the base address to the offset which varies with the level
SIGNAL sin, tin : gsim_state_vector (9 DOWNTO 0); -
SIGAL shiftamount : gsim_state_vector (3 DOWNTO 0): baseAndOffsetAdd:
SIGNAL shift8t : gsim_state_vector (19 DOWNTO 0); PROCESS ( baseAddr, offset )
SIGNAL bando H _vector (19 DOWNTO 0): VARIABLE answer : gsim_state_vector (19 DOWNTO 0):
SIGNAL offset,a : gsim_state_vector (19 DOWNTO 0); BEGIN
SIQUAL selector : gsim_state_vector (9 DOWNTO 0) : answer := baseAddr + offset;
bando <= answer (19 DOWNTO 0):
BEGIN END PROCRSS baseAndOffsetAdd ;
-=== latch data on rising edge -

We want to add v*N + u. v*N is available as shift8t and u is sin.
Now, N = 2 \* i and u < N. Therefore (v*N) has a string of zeros in
its 1s bits which v will replace. The addition can therefore be
implemented with muxes for each bit selecting either u(j), v(j).

latchin:
PROCESS (clk)
BRGIN

IF (clk = *1" AND clk’last_value = "0’ AND clk’event) THEN

sin <= 8; tin <= t; levelin <= level; selectorBlock :
END IF: BLOCK
END PROCRSS latchin : BEGIN
d selectorBlockProcess :
===~ ismipmap selects which of the two level inputs to use PROCESS ( thelevel )
- BEGIN
dolevel: CASE thelevel IS
PROCESS (userlevel, levelin, ismipmap) WHEN "0000" => selector <= "1111111111%; -- all bits from u
BEGIN WHEN "0001" => selector <= "0111111111%;
CASE ismipmap IS etc
WHEN "0’ => -- not mipmapping, use user supplied level WHEN ~1001" => selector <= "0000000001%;
thelevel <= userlevel: WHEN OTHERS => selector <= "0000000000";
OTHERS => END CASE ;
thelevel <= levelin; END PROCESS selectorBlockProcess ;
END CASE ; END BLOCK selectorBlock :
END PROCESS dolevel ;
coordBlend :
- PROCESS ( selector, shift8t , sin )
---- decode level into a shift amount shiftamount = 10-level BEGIN
- FOR j IN 0 TO 9 LOOP
shiftdecode : IF selector(j) = "1' THEN
BLOCK a(j) <= sin(3):
BEGIN ELSE
shiftdecodeprocess : a(j) <= shift8t(j);
PROCESS ( thelevel ) END IF ;
BEGIN END LOOP ;
CASE thelevel IS a(19 DOWNTO 10) <= shift8t (19 DOWNTO 10):
WHEN ~0000" => shiftamount <= "10107; END PROCESS coordBlend :
WHEN "0001" => shiftamount <= “1001";
etc ——
WHEN “1001" => shiftamount <= “0001"; ~=== Compute the addr from partial results s and bando
WHEN OTHERS => shiftamount <= "0000"; =
END CASE ; addrGen:
END PROCRSS sghiftdecodeprocess : PROCESS ( a , bando )
END BLOCK shiftdecode ; VARIABLE result : gsim_state_vector (19 DOWNTO 0) ;
BEGIN
- result := a + bando;
~ We need to shift t left by between 0 and 10 positions. addr <= result (19 DOWNTO 0):
To do this we shift by 1, 2, 4, and/or 8 in the necessary END PROCESS addrGen !
~ combinations. END rtl;

myshifter:
BLOCK

-~ barrel shift code deleted for briefness
END BLOCK myshifter;

Figure 3: VHDL Code For The Offset Generator



4T O

===
UEE +7— o

|

1

A

1 11

e

o
E

3,
= j

i

ﬂl—
—

Ot s v

Figure 4: Schematic of a 2:1 48 bit wide multiplexer based on Genlib parts
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library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic_1164 extensions.all;

-~ Writtentbyehliito VADL ateFri fUuls 2 710:02:0551993
-— Parameterized Generator Specification to VHDL Code

-— LogicLib generator called: MULTIPLEXER
-— Passed Parameters are:

- tinst name = muxO

S parameters are:

e type = SIMPLE

- W = 48
- numin = 2
s SW =1

-- mux0 Entity Description
entity mux0 is
port (
INO: in std ulogic_vector (47 downto 0);
INl: in std ulogic_vector (47 downto 0);
SEL: in std_ulogic_vector (0 downto 0);
DOUT: out std ulogic_vector (47 downto 0)
);
end mux0;

-— mux0 Architecture Description
architecture rtl of muxO is

begin
mux0_Process: process (INO, IN1, SEL)
variable iaddress : integer range 0 to 1;

variable state : std ulogic_vector (47 downto 0);

begin
iaddress := to_Integer(’0’ & SEL,0);
case iaddress is
when 0 =>

state := INO;
when 1 =>
state := IN1;
when others =>
state := (OTHERS => 'X');

end case;

—-— Assign outputs
DOUT <= state;
end process mux0_Process;
end rtl;

Figure 5: VHDL version of 2:1 48 bit wide multiplexer
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Figure 6: Schematic of a 48 bit wide adder/subtractor based on Genlih parts
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library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic_1164 extensions.all;

variable a_ext,b_ext
std_ulogic_vector (48 downto 0);
variable carry ext
: std _ulogic_vector (1l downto 0);

—— variable msb : integer;

-- Written by LL_to VHDL at Tue
— Jul 27515245557 1993

-— Parameterized Generator

-— Specification to VHDL Code

-- LogicLib generator called:
—-— ARITHMETIC

-- Passed Parameters are:

e tinst name = add_sub

e parameters are:

- type = ADDSUB

e W = 48

== look = 16

= carryin = YES

— carryout = YES

. ov = YES
— lt = YES
- gt = YES
- eq = NO

-- add_sub Entity Description
entity add sub is
port (
A: in std_ulogic_vector
(47 downto 0);
B: in std ulogic_vector
(47 downto 0);
D: out std ulogic_vector
(47 downto 0);
CIN,SUB: in std_ulogic;
COUT,GT, LT,OV: out std ulogic
)i
end add_sub;

-- add_sub Architecture Description
architecture rtl of add sub is
signal pre D : std ulogic_vector
(48 downto 0);
signal pre_ OV : std ulogic;
signal pre EQ : std ulogic;
signal pre LT : std_ulogic;
begin
ARITHMETIC_Process:
process (A, B, CIN, SUB)
variable fct_out

: std_ulogic_vector (48 downto 0);

begin
-- zero extend inputs to
-- include carry bit
a ext =_t00T% A;
if (SUB = ‘1’) then
b ext = ’'0’ & not B;
else
biext :=.'0" & B;
end if;
carry ext := "0’ & CIN;
-—- ADDSUB
fct out o= cteXt b ext

+ carry_ ext;

-- Assign to signal for use
-- outside process
pre.D <= fet ount;:

-- Calculate overflow bit
if (a_ext(47) = b_ext (47)
and fct_out (47)
= not a_ext(47)) then
pre OV <= '1’';
else
pre OV <= '0*;
end if;
end process ARITHMETIC Process;

-- Assign the outputs
D <= pre D (47 downto 0);

-- Assign flags
COUT <= pre_D(48);
pre EQ <= 1’
when (pre D (47 downto 0)
= "0000000000000000000000000
00000000000000000000000")
else '0°;
pre_LT <= (pre_OV xor pre D (47));
GT <= not pre EQ and not pre_ LT;
LT <= pre LT;
OV <= pre 0OV;

end rtl;

Figure 7: VHDL version of a 48 bit wide adder/subtractor
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Figure 8: Synthesised Offset Generator
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Figure 10: Pixel Parameter Interpolator 2nd level hierarchy
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Figure 11: Parameter Formatting Unit



