
A VLSI-Design for fast Vector Normalization

Gilnter Knittel
Wilhelm-Schickard-Institut fUr Infonnatik - Graphisch-Interaktive Systeme (WSIIGRIS)

Universitat Ttibingen

Abstract

Auf der Morgenstelle 10, D-72076 Tilbingen
email: knittel@goya.gris.informatik.uni-tuebingen.de

The design of a vector normalizer is described . It is an integral part of our graphics subsystem
for scientific visualization, but will be of great use for speeding up any computer graphics ar
chitecture.
In the actual design, the circuitry handles 3D-vectors with 33 bit two's complement compo
nents. The components of the normalized vectors are computed as 16 bit two's complement
fixed-point numbers. Due to the overall pipeline architecture, the chip accepts one 3D-vector
and produces one normalized vector each clock.
To normalize a 3D-vector, three square operations, two additions, one square root operation
and three divisions must be performed. The target clock frequency is 50 MHz, by which the
performance of the chip rates at 450 MOPS.
A single-chip VLSI implementation is currently in work, simulation results will be available by
the end of the third quarter '93. We use Mentor 8.2 tools on HP 700 workstations and Toshiba's
TC160G Gate Array technology.

Keywords: graphics hardware, arithmetic accelerator, real-time Phong shading

1 Introduction
Most computer graphics algorithms require fast and frequent vector normalizations. For exam
ple, the well-known Phong illumination model [8uiT75]

1= IAka C + IL (kdC (GNLN) +ks(GNHN) n) (simplified)' (1)

calculates the light intensity I of a point on an object surface according to four unit vectors:
->

o the surface normal GN ,

o the normalized vector LN in ~ection of the light source and

o the so-called halfway v~ctor H N' which in turn is the normalized sum of LN and

the normalized vector V N in direction of the observer.

Applications aiming at virtual reality, e.g., the graphics subsystem for volume rendering devel
oped at WSIIGRIS [Knit93], must provide perspective projection and non-parallel light, that is,
none of the vectors is constant. Unfortunately, normalizing a vector presents a great compu
tational expense (especially the square root operation) and, moreover, (1) has to be evaluated
several millions of times each second.
This was the motivation to develop a high-speed single-chip vector normalizer. The large num
ber of vectors to be processed sequentially permits the use of a moderately deep pipeline
structure without any performance penalty. For the square root function , an algorithm was
adapted which computes one result bit per stage and uses only a small circuitry within each
stage. The architecture of the chip is scalable with respect to speed and required chip space
(by placing more or less functional units into a single pipeline stage) or precision (by adding
the appropriate number of stages and operand bits) .

* lA: ambient light, IL: light coming from the light source , ka,kd,ks: ambient, diffuse and specular
reflection coefficients, C: color of the object, n: specular reflection exponent

http://www.eg.org
http://diglib.eg.org

2 Architectural Overview
~he circuitry described on the following pages accepts the c~mponents of a 3D-vector

V = {vx;vy;v,) and produces its associated normalized vector N = {nx;ny;nz}.

SQUARE

ROOT

UNIT
COMPONENT

T+--+-------.------+---,

DIVIDE

UNIT
DIVIDE DIVIDE

UNIT UNIT

2

The block diagram shows the deep but regular
pipeline structure of the chip. The boxes with
the small filled triangle represent registers. The
register structure within the pipe lined units
(square root unit and divide unit) has been om
mitted for clarity, but will be explained in later
sections.
Operands which skip certain functional units
must travel through pipeline registers (FIFOs)
to maintain synchronization. Thus, FIFO mem
ories must also be placed onto the ch ip.
There are no feedbacks or functional units for
exception handling required, by which the con
trol structure becomes extremely simple .
There is an additional valid flag which travels
along with each vector and a small circuitry to
mask the clock. Besides that, the chip has just
to be clocked.
The excessive pipeline structure relies on a
great number of vectors to be processed se
quentially, as is the case in most computer
graphics applications and especially in the al
gorithms used in our voxel subsystem. Thus,
the pipeline will always be filled and so operate
at maximum efficiency.
We assume a global space of 32 bit extent in
each direction, that is

31 < < 31 -2 _x,Y,z_2 -1. (2)

Therefore, the input operands are expected to
be 33 bit two's complement integers. Smaller
operands must be sign-extended to 33 bits.
The components of the normalized vector are
computed as 16 bit two's complement fixed
point numbers

-15 o .
n = -no X 2 + L nj xi. (3)

j =-1

Thus, the chip has 147 I/O - pins (excluding
control-, test- and clock-terminals).
We will now describe all functional units in
dataflow order in details, e.g . by Boolean equa
tions or by schematic drawings. For each func
tional unit, a coarse gate count estimation will
be given .

3 Naming Conventions
A vector is denoted by an uppercase letter with an arr~w. The components are designated by

the lowercase letter with the indeces x, y and z, e.g. U = {u ;u ;u } . If an operation is ap-
x y z

plied to any component, the index is omitted. The particular bits of a component or a magni-

tude are identified by subscript numbers, e.g. u = {u lS ;u14 ;u I3 " 'uO}' The vector length is

represented by the uppercase letter without any diacritical marks. The bits of squared vari

ables are quoted, e.g. rl = {U' 3 1; U '30'" U' o } .

4 The Sign Unit (Input)
The sign unit at the inputs converts a 33 bit two's complement number v into a 32 bit unsigned
integer a preceded by a sign flag S. Thus, the range is restricted to

32 32
- 2 + 1 ~ v ~ 2 - 1 . (4)

The sign flag is 1 if the number is negative. All sign flags are propagated through the whole
circuit and passed to the sign units at the outputs.
The arithmetic operation is to invert all bits and add 1 if the highest bit is set, otherwise to leave
everything unchanged. Thus:

-
a3 = V32V3 v v

32
(v3 (v2 vv1 vvo) v v

3
v2v 1vO)

=v32v3 v v32 (v3 EB (v2 V V I v vo»

In general:

ap = v32vp v v32 (vpEB (vp_Ivvp_2v " , vVl v vO»

Gate count: 3 .000

5 The Alignment Unit

(5)

(6)

(7)

(8)

(9)

(10)

In order to reduce the width of the arithmetic units, the components of the vector are uniformly
scaled up or down until no component is greater than 215_1 and at least one component is
greater than or equal to 21 4 . Theoretically, no error emerges from this operation since

V X 2
n

V
n - - -r======= - J 2 2 2 - /2 2 2

(vx X 2
n

) + CVyX2n) + (v
z

X2
n

) ~vx+Vy+vz

(11)

However, due to the possible truncation of large vectors, a rounding error might arise. See
Section 14 Error Estimation .
To describe the function of this unit we use the following abbreviations:

SHR 17= (a va va);
X31 Y31 Z3 1

- - -
SHR 16=(a va v a) Aa . Aa A a

x30 Y30 z30 x3 1 Y31 z3 1

SHR 15= Ca va va) Aa Aa Aa Aa A a Aa
X29 Y29 z29 x31 x30 Y31 Y30 z31 z'O '

(12)

(13)

(14)

- - - --
SHO = (a va va) /\ ax /\ . . . /\ a /\ ay /\ ... /\ ay /\ a 7 /\ . ,. /\ a

Z1S
; (16)

X14 Y14 ZJ4 31 x15 31 15 <.31

- - - --
SHLl = (a va va) /\ax /\ . .. /\ax /\ay /\ . .. /\ay /\az /\ ... /\az ;(17)

X13 Y13 z13 31 14 31 14 31 14

- -
SHL14 = (a va va) /\ax /\ . .. /\ax /\ay /\ . . . /\ay /\a 7 /\ • •• /\a z (18) xo Yo zo 31 1 31 1 <.3 1 1

The function of the alignment circuitry is then defined by:

qo = ao /\ SHO v a
1

/\ SHRl v a 2 /\ SHR2 v a3 /\ SHR3 v ... v a 17 /\ SHR17 (19)

q1 = ao /\ SHLl v a 1 /\ SHO v a2 /\ SHRl v a3 /\ SHR2 v . .. v a 18 /\ SHR17 ; (20)

q2 = ao /\ SHL2 v a
1

/\ SHLl v a2 /\ SHO v a 3 /\ SHRI v ... v a 19 /\ SHR17 (21)

q 14 = ao /\ SHL14 v ... v a 13 /\ SHLl v a 14 /\ SHO v a 15 /\ SHRl v .. . (22)

.. . v a31 /\ SHR17 (23)

Gate count: 3 .000

6 The Square Units
Since the input operands are 15 bit integers, the results are 30 bit positive numbers. We use
standard multiplier networks. However, the computing pattern shows some redundancy which
can be exploited to cut the required chip space by one half.
We will demonstrate the scheme for a 6 bit number.

2 5 4 3 2) 0 2 ,11, 10 , 0
q = (qs2 +q42 +q3 2 +q22 +q1 2 +q02) = (qlJ2 +Ql02 + ··· +q o2). (24)

The computing pattern is shown in the following table:

Q'11 Q'10 Q'g Q's Q'7 Q'6 Q's q'4 Q'3 q'2 Q'1 Q'o

qsqo Q4qO Q3QO q2qo q1QO Qo

qSq1 Q4q1 q3q1 q2Q1 q1 Q1QO

Qsq2 Q4Q2 q3q2 Q2 q2Q1 Q2QO

QSQ3 Q4q3 q3 Q3q2 q3Q1 q3qO

qsQ4 Q4 Q4q3 q4q2 Q4q1 q4QO

Qs QSq4 qSq3 Qsq2 QSQ1 qsQo

Most elements occur twice and so the table can be reorganize'd:

q'11 q'lO Q'g Q's Q'7 q'6 q's q'4 Q'3 Q'2 Q'1 q'o

qsQo q4QO q3qo Q2qO Q1QO qo

QSQ 1 Q4Q1 Q3Q1 Q2Q1 Q1

QSQ2 Q4Q2 Q3Q2 Q2

QsQ3 Q4Q3 Q3

QSQ4 Q4

Qs

The following circuitry performs this function (Q'o = Qo; q'1 = 0):

4

Gate count: 3.500

7 The L - Unit

L-___ __ q'4

q's

L-_____ q'6

'-------- q' 8

q'g

q'7

HA: Half Adder
FA: Full Adder

This is a standard triple input integer adder. The results are 32 bit integers. The alignment unit
assures that

10000000H 5, Q2 5, BFFD0003H . (25)

Gate count: 3.000

8 The Scale Unit
The components of the vector and the vector length are scaled so that

10000000H 5, r 5, 3FFFFFFFH or (26)

That is, the squared vector length is shifted right two places and each of the components is
shifted right one digit if one of the most significant bits of the squared vector length is set.
The function is then described as follows:

T j = Q 'j /\ Q' 31 /\ Q' 30 v Q 'j + 2 A (Q ' 31 V Q' 30)

tj = Qj/\Q'31 /\Q'30 v Qj + 1 /\ (Q '3 1 v Q '30) for

for

and

Again, truncation errors are subject of consideration (see Section 14 Error Estimation) .
Gate count: 1.500

(27)

(28)

(29)

9 The Square Root Unit
The algorithm is first explained for decimal numbers [GKHK86]. For every two digits of an in
teger, the integer part of the square root has one digit. If the number of digits is odd, a zero
must be placed in front of the integer. The same holds true for decimals, except that a zero
must be appended if necessary. Let us consider the following example.

97126141.70

A BC . 0

We start the calculation with the most significant digit. A is the integer part of the square root
of 97, no matter what follows. Thus, A = 9. The remainder RA = 16.
Now let's consider the next two digits. 10 xA is still an approximation of the square root of

9726. The new remainder RA * = 100 X RA + 26 = 1626.
If we add B, the new square root is (10 x A + B) . By doing so, we increase the square by

2
20 x A x B + B . So we can formulate:

R/ ~ 20 xA xB+B2; (30)

Since 20 x A x B > B2, we will for the moment neglect Ef2. A rough estimation gives:

B = lRA*/20XAJ = 11626/180J = 9; (31)

If this value satisfies (30), we have found B. In this example, however, this is not the case and
therefore we have to decrement B by one. Thus, B = 8. The remainder Aa is given by:

* 2 RB = RA - (20xAxB+B) = 1626- (1440+64) = 122; (32)

Now we are ready for the next two digits. Again, 10 x AB is still an approximation of the square

root of 972641 (Don't get confused with the notation: AB = 98 in this example, whereas

A xB = 72). The new remainder RB* = 100 x RB+41 = 1224l.

We add C to increase the square by 20 x AB x C + c!. So we find:

R / ~ 20 x AB x C + C2
; (33)

Another guesstimate gives:

C = l R/ 120 xAB J = L 12241/1960J = 6 ; (34)

This time (33) is satisfied . The integer part of the root therefore is 986. For the decimals we
can proceed in just the same way:

* 2 Rc=RB -(20xABxC+C) = 12241-(20x98x6+36) =455; (35)

* Rc = 100 x Rc + 70 = 44570 ;

R / ~20xABCxD+D2;

D = l R/ 120 xABC J = l44570/19720J = 2 ;

The final result: J972641.7 :== 986.2 ;

(36)

(37)

(38)

(39)

This procedure can be continued by appending pairs of zeros to the decimals until the required
precision is reached.

6

The advantages of this method will become clear if we consider binary numbers. Again the

integer part of the square root has one bit for every pair of bits of the operand. For a better

readability we will denote the square bits as On, that is J2 = {D29;D 28 . . . D O} .

Input operand

Square root

Naturally, the most significant bit T14 can only be 0 or 1 (accordingly, there are only two square

numbers which fit into two bits: 00 and 01) . Thus:

T 14 = D 29 v D 28;

The remainder R 14
[29 .. 28] is calculated according to

14 14
R 29 = D 29 /\ D 28 and R 28 = D 29 /\ D 28 ;

(40)

(41)

The square root of the binary number D 29 D 2J3 D 27D 26 is still approximated by 2 x T14 , the re

mainder R *[29 . . 2 6J is represented by R~;R~:D 27D 26 ·

If we add T 13, the square is increased by 4 x T1 4 X T13 + ~3. So the following relation must

be satisfied :

(42)

* If we assume TI 3 = 1, then R [29 ... 26) ~ 4 X T I4 + 1. (43)

In other words: T I 3 = 1 if the above test passes, else T 13 = O. The new remainder R 13
[29 .. 26J

is com puted by:

13 *J.
R[29 ... 26) = R [29 . .. 26) - 4 x TI4 X T !3- 1 I3;

That is, the remainder is left unchanged in the case T13 = O.

This function is performed by the simple circuitry shown below. The subtractor generates
the flag N(egative , active low) as result bit which also controls the Multiplexer.

R14
29

R~: T 14

0 27 0

(44)

For clarity, we will demonstrate the computation of the next result bit, T12. The new intermedi

ate remainder R*[28 .. . 24] is constructed from R~~R;;R;~D25D24 .

If we add T1:?> the square is increased by 4 x T14 Tl3 X T12 + ~2 .

(45)

Depending on the result of this compare operation, the new remainder is either left unchanged
or

R 12 - R* 4 T T 1 - [8 2) - X 14 13- . [27 .. . 24] 2 .. . 4 (46)

Just as we did for decimal numbers, we can repeat this calculation until the requ ired precision
is obtained.

Note that R;~ and R;~ have been dismissed. They are always O. In general, the remainder

has at most one digit more than the root. This can be shown as follows. Consider the integer

numbers Z and N, where N is the integer part of the square root of Z.

R
~ ______________ +-______ +-____ ~ ____ ~~ N

o

For the remainder R we can formulate:

R ~ CN + 1) 2 - W- - 1 ;

R ~ ~ + 2N + 1 - W- - 1 ;

R~2N;

(47)

(48)

(49)

The block diagram on the next page shows the circuitry for 30 bit integers D{29 .. 0j- Except for
the first one a register is inserted after each stage. The multiplexers and registers at the out
puts of the subtractors have been merged into a single symbol.
In general, for the calculation of the integer part of a square root of a number with N bits (where
N is assumed even), we need NI2 - 1 subtractors, starting with a 4-bit and ending with a
(N12 + 2) - bit subtractor. NI2 - 2 multiplexers are also required, starting with a 3-bit, ending
with a N/2 - bit multiplexer.
In this particular case, the Square Root Unit has 14 stages, 14 subtractors from 4 to 17 bits,
13 multiplexers from 3 to 15 bits and 433 register bits.
Gate count: 6.000.

10 Component FIFO
This is a 14 x 49 bit memory including one valid bit per vector. The components FIFO should
be realized as a register pipeline (as opposed to the usual iall-through" - architecture of
FIFOs), so that the components and the vector length arrive at the same time at the inputs of
the divide units without special control circuitry.
Gate count: 5.000

8

1
°(29 .. 0] 1

° [29 .. 28] J O [27 .. 26J

T14 - R 14
[29 .. 28]

Network T 14

llO. '
~ - / T 13

N
SUB

1
T[14. 13J ~ Y R13

[28 .. 26J ~ I 0[25 .0J ~
T(14 .. 13J

O [25 .. 24J

J
l t., 1

T1 2 \ - / O[23 .0J

N
SUB

1
T[14 .. 12J ~ --l R1 2

(27 .. 24] ~ I O[23 .. 0J ~
T[14 .. 12J

O [23 .. 22J

T

1(.'
Tll \- / 0[2 1..0]

N
SUB

1
T14 .. 11J ~ Y Rl1

(26 .. 22J 1 I O[21..0J 1
•

T[14 .. 2J R 2
[17 .. 4J °[3 .. 0J

T[14 .. 2J
0 [3 .. 2J

Tl

T[14 .. 1J

T[14 .. 1J
°[1 .. 0J

T[14 .. 0]

Square Root Pipeline

11 The Division Unit
The components t are taken from the component FIFO as 15 bit unsigned integers preceded
by a sign bit. The vector length T arrives as a 15 bit unsigned integer as well. Thus, there are
three unsigned division pipelines, as for example explained in [Hoff82], to be constructed. The
results {mx;my;mz} shall be computed as 15 bit fixed point numbers.

Since 0 :c:;; a :c:;; V, 0.::; m :c:;; 1 . In the first instance we assume that

-14

m = I,111./t
j=o

where m = 1nl . (50)

The algorithm shall be explained by an example where t = 011100111010011 and
T = 100001111010111. The quotient is computed bitwise using 16 bit two's com plement
arithmetic.
mo = 1 if t - T ~ O. The light grey cells contain the sign extensions of the operands. The dark

cell holds the inverted result bit mOo

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit-Position

::s: 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 Component t

+ i~ ::: 0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 2's Compl. of T

~II 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 Remainder 1°, ·[15 .. 0]

If mo = 0, the remainder RO must be corrected by adding T. Then, R-1 = RO
- T12, and

m_I = 1 if R-
1 ~ O. However, the same can be achieved by adding TI2to RD if mo = 0 and

subtracting TI2 from RO if mo = 1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 Bit-Position

.-I 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 Remainder RO[15 .. -1]

+ Q;: 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 TI2

= 11 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 Remainder R-1[14 .. _1]

Note that the result bits can be excluded from further calculation since

IROI = It-l1 :c:;; T; (51)

IR- 1
1 = IIROI- T121:c:;; TI 2 ; (52)

IR-2
1 = IIR- II- T / 41 :c:;; T / 4 and·so forth. (53)

Thus, the width of the required ALUs remains constant throughout the complete pipeline. The
computation is continued in this way until the required precision is reached. The last remainder
is discarded.

10

However, this scheme makes no good use of the avaifable precision . mo is set only in the case
t = T. To increase the precision, we use the following format instead:

- 15

m = ~ m/i. (54)

j =-1

The maximum error is then reduced to 2-15.

For t = T, m is expressed as 0.111111111111111 . This is achieved by assuming mo = 0 and
starting the computation with the operation t - TI2.
The first step is given below:

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 Bit-Position

0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 Component t

+ ::::::I:::~: 0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 2's Compl. of TI2

= m 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 Remainder R-1[14 .. _1j

The circuitry shown on the next side performs this function . Each pipeline stage computes one
result bit. The three division pipelines consume approximately 40.000 gates.

12 The Sign Unit (Outputs)
The sign units at the outputs perform the inverse function as the sign units at the inputs, how
ever, the arithmetic operation is the same. The 15 bit positive components m, which are pre
ceded by a sign flag S, are converted int016 bit two's complement components n.
Again we formulate:

(55)

(56)

(57)

(58)

(59)

110 = S . (60)

Gate count: 1.500

13 Control Structure
If the component FIFO is realized as a register pipeline (as opposed to the usual Ufall -through~

architecture of FIFOs), there is no internal control structure required . All operands travel the
same distance and so the chip just has to be clocked .
Provisions are made to freeze the pipeline. The activation of an external signal masks the
clock. This Circu itry is designed very carefully to avoid spikes on the internal clock lines.
Th e valid flags , one for each stage, must be reset during initialization . The valid flag must be
held active at the inputs whenever a vector is clocked in. Normalized vectors are available as
long as the valid vector output maintains an active state.
"Design-for-Testability" features are also taken into account. We use scan-path flipflops for all
registers to construct one or more scan chains.

•
•

S m[-1 .. -15]

•
•

One of three Division Pipelines

12

T [14 .. 0]

T [14 .. 0]

•
•

14 Error Estimation
Incoming components vare considered to be "true values". The normalization of V without

~ ~

rounding errors will give the exact unit vector N £. We will derive an error vector I1N, so that
~ ~ ~

N = N£ +I1N.

The sign units at the inputs operate precision conserving, that is

a = Ivl . (61)

Depending on their size, the operands are possibly right shifted and truncated by the align
ment unit and the scale unit. For Simplicity, let's assume that the error I1t is defined by

- 1 ::; I1t ::; 0 . (62)

Due to this discretization of the components, a change in direction of the normalized vector
~ ~

might occur. Instead of the vector V = {v ; v ; v } , the vector T = {t ; t ;t} is normal-x y Z x y z

ized. Provided this computation is carried out accurately, the maximum deviation occurs for

T = {V . ·O·O} and I1t = I1t = -1 where V . = 21 4 . (63)
mln ' , y Z mln

The error vector MD is then defined by:

MD = {0;_ 2- 14;_2- 14
} where

-5 MD =8, 63x10 . (64)

Any other permutation of the components in (63) and (64) yields the same result for MD '
~

However, there might be an error in T, so that T is not scaled properly. We have to distinguish
two cases:

1.) There was no shift operation in the scale unit.
~

T2 is the true squared length of T. However, the limited precision of the square root unit causes
a truncation error 11 T. For simplicity, we assume that

-1 ::; 11 T::; 0 . (65)

2.) The scale unit performed a right shift operation .

The squared vector length is divided by 4 and the two LSBs are discarded. After this operation,
the range of T2 is given by

10000000 H ::; i- ::; 2 F F F 4000 H

and therefore, the truncation error of T2 can be neglected. So it can be said that
222

i- = C;) + (;) + (~z) .
On the other hand,

(66)

(67)

(68)

Taking the truncation error of the square root unit into account, the resulting error 11 T is then
given by

- 1 ::; 11 T ::; 0.5 x Jj . (69)

For a given 11 T, the resulting vector length M is given by:

M =
(T + I1D 2

T I1T = -- = 1 - - . (70)
T + I1T T

For the moment we assume that the divide units operate at infinite precision. Then the error
--»

vector Ms is given by:

Ms = sxM where
c: -15 - 14

-..J3 x2 ~s ~2 . (71)

The maximum truncation error of the divide units is _2-15 for each component. This produces
-"

an additional error vector M T' given by:

--» -15 - IS -15
MT = {-2 . .. 0;-2 .. . 0;-2 .. _O}

The error vector I'1N is then defined by:

I'1N = MD + Ms + MT '

We assume further that MD ~ Ms'

The error vector of maximum magnitude is finally given by:

I'1N = {±2-14;_3 x 2- 15 ;-3 x 2- 15
} and

- 4
I'1N = 1.43 x 10 ,

(72)

(73)

(74)

or any permutation of the components. The sign units at the outputs again operate precision
conserving.

15 Design Complexity
The total number of gates needed for the functional units is approximately 70.000. Assuming
a 50% array utilization, which should be achievable in consideration of the regular structure of
the chip, a 140.000 gates master is needed.

16 Conclusion
We presented a single-chip VLSI solution to one of the essential tasks in computer graphics,
the normalization of vectors. This approach is superior over other hardware solutions such as
look-up tables or micro-programmed ALUs, because it achieves maximum speed at minimum
costs. Advances in VLSI technology can directly be exploited to increase clock frequency and
to place multiple vector normalizers along with additional functional units onto a single chip,
so that a complete Phong shader with a generation rate of 100M pixel/s will be feasible as a
single-chip device in the near future .

17 Acknowledgments

This work is supervised by Prof. Strasser and is part of the advanced graphics accelerator
project at WSI/GRIS, University of Tuebingen, supported partially by the CEC's ESPRIT pro
gramme. Claus Oreischer, who is currently implementing the design, gave valuable sugges
tions and provided the gate counts. Thanks to Andreas Schilling for many helpful discussions.

18 References
[SuiT75] Phong Bui-Tuong, "Illumination for Computer-Generated Pictures", CACM,

Vol. 18, No. 6, June 1975, pages 311-317
[GKHK86]

[Hoff82]

[Knit93]

S. Gottwald, H. Kustner, M. Hellwich and H. Kastner (Edts.), "Handbuch der
Mathematik", Such und Zeit Verlagsgesellschaft, 0-5000 Koln, 1986, pages 44-
45
Rolf Hoffmann, "Rechenwerke und Mikroprogrammierung", Oldenbourg Ver
lag, 0-8000 MOnchen, 1982, pages 85-96
GGnter Knittel, "VERVE - Voxel Engine for Real-time Visualization and Exam
ination", presented at the Eurographics Conference 93, Barcelona, September
6-10, 1993

14

