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The design of a vector normalizer is described . It is an integral part of our graphics subsystem 
for scientific visualization, but will be of great use for speeding up any computer graphics ar
chitecture. 
In the actual design, the circuitry handles 3D-vectors with 33 bit two's complement compo
nents. The components of the normalized vectors are computed as 16 bit two's complement 
fixed-point numbers. Due to the overall pipeline architecture, the chip accepts one 3D-vector 
and produces one normalized vector each clock. 
To normalize a 3D-vector, three square operations, two additions, one square root operation 
and three divisions must be performed. The target clock frequency is 50 MHz, by which the 
performance of the chip rates at 450 MOPS. 
A single-chip VLSI implementation is currently in work, simulation results will be available by 
the end of the third quarter '93. We use Mentor 8.2 tools on HP 700 workstations and Toshiba's 
TC160G Gate Array technology. 
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1 Introduction 
Most computer graphics algorithms require fast and frequent vector normalizations. For exam
ple, the well-known Phong illumination model [8uiT75] 

1= IAka C + IL (kdC (GNLN) +ks(GNHN) n) (simplified)' (1) 

calculates the light intensity I of a point on an object surface according to four unit vectors: 
-> 

o the surface normal GN , 

o the normalized vector LN in ~ection of the light source and 

o the so-called halfway v~ctor H N' which in turn is the normalized sum of LN and 

the normalized vector V N in direction of the observer. 

Applications aiming at virtual reality, e.g., the graphics subsystem for volume rendering devel
oped at WSIIGRIS [Knit93], must provide perspective projection and non-parallel light, that is, 
none of the vectors is constant. Unfortunately, normalizing a vector presents a great compu
tational expense (especially the square root operation) and, moreover, (1) has to be evaluated 
several millions of times each second. 
This was the motivation to develop a high-speed single-chip vector normalizer. The large num
ber of vectors to be processed sequentially permits the use of a moderately deep pipeline 
structure without any performance penalty. For the square root function , an algorithm was 
adapted which computes one result bit per stage and uses only a small circuitry within each 
stage. The architecture of the chip is scalable with respect to speed and required chip space 
(by placing more or less functional units into a single pipeline stage) or precision (by adding 
the appropriate number of stages and operand bits) . 

* lA: ambient light, IL: light coming from the light source , ka,kd,ks: ambient, diffuse and specular 
reflection coefficients, C: color of the object, n: specular reflection exponent 

http://www.eg.org
http://diglib.eg.org


2 Architectural Overview 
~he circuitry described on the following pages accepts the c~mponents of a 3D-vector 

V = {vx;vy;v,) and produces its associated normalized vector N = {nx;ny;nz}. 
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The block diagram shows the deep but regular 
pipeline structure of the chip. The boxes with 
the small filled triangle represent registers. The 
register structure within the pipe lined units 
(square root unit and divide unit) has been om
mitted for clarity, but will be explained in later 
sections. 
Operands which skip certain functional units 
must travel through pipeline registers (FIFOs) 
to maintain synchronization. Thus, FIFO mem
ories must also be placed onto the ch ip. 
There are no feedbacks or functional units for 
exception handling required, by which the con
trol structure becomes extremely simple . 
There is an additional valid flag which travels 
along with each vector and a small circuitry to 
mask the clock. Besides that, the chip has just 
to be clocked. 
The excessive pipeline structure relies on a 
great number of vectors to be processed se
quentially, as is the case in most computer 
graphics applications and especially in the al
gorithms used in our voxel subsystem. Thus, 
the pipeline will always be filled and so operate 
at maximum efficiency. 
We assume a global space of 32 bit extent in 
each direction, that is 

31 < < 31 -2 _x,Y,z_2 -1. (2) 

Therefore, the input operands are expected to 
be 33 bit two's complement integers. Smaller 
operands must be sign-extended to 33 bits. 
The components of the normalized vector are 
computed as 16 bit two's complement fixed
point numbers 

-15 o . 
n = -no X 2 + L nj xi. (3) 

j =-1 

Thus, the chip has 147 I/O - pins (excluding 
control-, test- and clock-terminals). 
We will now describe all functional units in 
dataflow order in details, e.g . by Boolean equa
tions or by schematic drawings. For each func
tional unit, a coarse gate count estimation will 
be given . 



3 Naming Conventions 
A vector is denoted by an uppercase letter with an arr~w. The components are designated by 

the lowercase letter with the indeces x, y and z, e.g. U = {u ;u ;u } . If an operation is ap-
x y z 

plied to any component, the index is omitted. The particular bits of a component or a magni-

tude are identified by subscript numbers, e.g. u = {u lS ;u14 ;u I3 " 'uO}' The vector length is 

represented by the uppercase letter without any diacritical marks. The bits of squared vari

ables are quoted, e.g. rl = {U' 3 1; U '30'" U' o } . 

4 The Sign Unit (Input) 
The sign unit at the inputs converts a 33 bit two's complement number v into a 32 bit unsigned 
integer a preceded by a sign flag S. Thus, the range is restricted to 

32 32 
- 2 + 1 ~ v ~ 2 - 1 . (4) 

The sign flag is 1 if the number is negative. All sign flags are propagated through the whole 
circuit and passed to the sign units at the outputs. 
The arithmetic operation is to invert all bits and add 1 if the highest bit is set, otherwise to leave 
everything unchanged. Thus: 

-
a3 = V32V3 v v

32
(v3 (v2 vv1 vvo) v v

3
v2v 1vO) 

=v32v3 v v32 (v3 EB (v2 V V I v vo» 

In general: 

ap = v32vp v v32 ( vpEB (vp_Ivvp_2v " , vVl v vO» 

Gate count: 3 .000 

5 The Alignment Unit 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

In order to reduce the width of the arithmetic units, the components of the vector are uniformly 
scaled up or down until no component is greater than 215_1 and at least one component is 
greater than or equal to 21 4 . Theoretically, no error emerges from this operation since 

V X 2
n 

V 
n - - -r======= - J 2 2 2 - /2 2 2 

( vx X 2
n

) + CVyX2n) + (v
z

X2
n

) ~vx+Vy+vz 

(11 ) 

However, due to the possible truncation of large vectors, a rounding error might arise. See 
Section 14 Error Estimation . 
To describe the function of this unit we use the following abbreviations: 

SHR 17= (a va va ); 
X31 Y31 Z3 1 

- - -
SHR 16=( a va v a ) Aa . Aa A a 

x30 Y30 z30 x3 1 Y31 z3 1 

SHR 15= Ca va va ) Aa Aa Aa Aa A a Aa 
X29 Y29 z29 x31 x30 Y31 Y30 z31 z'O ' 

(12) 

(13) 

(14) 



- - - --
SHO = (a va va ) /\ ax /\ . . . /\ a /\ ay /\ ... /\ ay /\ a 7 /\ . ,. /\ a

Z1S
; (16) 

X14 Y14 ZJ4 31 x15 31 15 <.31 

- - - --
SHLl = (a va va ) /\ax /\ . .. /\ax /\ay /\ . .. /\ay /\az /\ ... /\az ;(17) 

X13 Y13 z13 31 14 31 14 31 14 

- -
SHL14 = (a va va ) /\ax /\ . .. /\ax /\ay /\ . . . /\ay /\a 7 /\ • •• /\a z (18) xo Yo zo 31 1 31 1 <.3 1 1 

The function of the alignment circuitry is then defined by: 

qo = ao /\ SHO v a
1 

/\ SHRl v a 2 /\ SHR2 v a3 /\ SHR3 v ... v a 17 /\ SHR17 (19) 

q1 = ao /\ SHLl v a 1 /\ SHO v a2 /\ SHRl v a3 /\ SHR2 v . .. v a 18 /\ SHR17 ; (20) 

q2 = ao /\ SHL2 v a
1 

/\ SHLl v a2 /\ SHO v a 3 /\ SHRI v ... v a 19 /\ SHR17 (21) 

q 14 = ao /\ SHL14 v ... v a 13 /\ SHLl v a 14 /\ SHO v a 15 /\ SHRl v .. . (22) 

.. . v a31 /\ SHR17 (23) 

Gate count: 3 .000 

6 The Square Units 
Since the input operands are 15 bit integers, the results are 30 bit positive numbers. We use 
standard multiplier networks. However, the computing pattern shows some redundancy which 
can be exploited to cut the required chip space by one half. 
We will demonstrate the scheme for a 6 bit number. 

2 5 4 3 2 ) 0 2 ,11, 10 , 0 
q = (qs2 +q42 +q3 2 +q22 +q1 2 +q02) = (qlJ2 +Ql02 + ··· +q o2). (24) 

The computing pattern is shown in the following table: 

Q'11 Q'10 Q'g Q's Q'7 Q'6 Q's q'4 Q'3 q'2 Q'1 Q'o 

qsqo Q4qO Q3QO q2qo q1QO Qo 

qSq1 Q4q1 q3q1 q2Q1 q1 Q1QO 

Qsq2 Q4Q2 q3q2 Q2 q2Q1 Q2QO 

QSQ3 Q4q3 q3 Q3q2 q3Q1 q3qO 

qsQ4 Q4 Q4q3 q4q2 Q4q1 q4QO 

Qs QSq4 qSq3 Qsq2 QSQ1 qsQo 

Most elements occur twice and so the table can be reorganize'd: 

q'11 q'lO Q'g Q's Q'7 q'6 q's q'4 Q'3 Q'2 Q'1 q'o 

qsQo q4QO q3qo Q2qO Q1QO qo 

QSQ 1 Q4Q1 Q3Q1 Q2Q1 Q1 

QSQ2 Q4Q2 Q3Q2 Q2 

QsQ3 Q4Q3 Q3 

QSQ4 Q4 

Qs 

The following circuitry performs this function (Q'o = Qo; q'1 = 0): 

4 



Gate count: 3.500 

7 The L - Unit 

L-___ __ q'4 

q's 

L-_____ q'6 

'-------- q' 8 

q'g 

q'7 

HA: Half Adder 
FA: Full Adder 

This is a standard triple input integer adder. The results are 32 bit integers. The alignment unit 
assures that 

10000000H 5, Q2 5, BFFD0003H . (25) 

Gate count: 3.000 

8 The Scale Unit 
The components of the vector and the vector length are scaled so that 

10000000H 5, r 5, 3FFFFFFFH or (26) 

That is, the squared vector length is shifted right two places and each of the components is 
shifted right one digit if one of the most significant bits of the squared vector length is set. 
The function is then described as follows: 

T j = Q 'j /\ Q' 31 /\ Q' 30 v Q 'j + 2 A (Q ' 31 V Q' 30 ) 

tj = Qj/\Q'31 /\Q'30 v Qj + 1 /\ (Q '3 1 v Q '30) for 

for 

and 

Again, truncation errors are subject of consideration (see Section 14 Error Estimation) . 
Gate count: 1.500 

(27) 

(28) 

(29) 



9 The Square Root Unit 
The algorithm is first explained for decimal numbers [GKHK86]. For every two digits of an in
teger, the integer part of the square root has one digit. If the number of digits is odd, a zero 
must be placed in front of the integer. The same holds true for decimals, except that a zero 
must be appended if necessary. Let us consider the following example. 

97126141.70 

A BC . 0 

We start the calculation with the most significant digit. A is the integer part of the square root 
of 97, no matter what follows. Thus, A = 9. The remainder RA = 16. 
Now let's consider the next two digits. 10 xA is still an approximation of the square root of 

9726. The new remainder RA * = 100 X RA + 26 = 1626. 
If we add B, the new square root is (10 x A + B) . By doing so, we increase the square by 

2 
20 x A x B + B . So we can formulate: 

R/ ~ 20 xA xB+B2; (30) 

Since 20 x A x B > B2, we will for the moment neglect Ef2. A rough estimation gives: 

B = lRA*/20XAJ = 11626/180J = 9; (31) 

If this value satisfies (30), we have found B. In this example, however, this is not the case and 
therefore we have to decrement B by one. Thus, B = 8. The remainder Aa is given by: 

* 2 RB = RA - (20xAxB+B) = 1626- (1440+64) = 122; (32) 

Now we are ready for the next two digits. Again, 10 x AB is still an approximation of the square 

root of 972641 (Don't get confused with the notation: AB = 98 in this example, whereas 

A xB = 72). The new remainder RB* = 100 x RB+41 = 1224l. 

We add C to increase the square by 20 x AB x C + c!. So we find: 

R / ~ 20 x AB x C + C2 
; (33) 

Another guesstimate gives: 

C = l R/ 120 xAB J = L 12241/1960J = 6 ; (34) 

This time (33) is satisfied . The integer part of the root therefore is 986. For the decimals we 
can proceed in just the same way: 

* 2 Rc=RB -(20xABxC+C) = 12241-(20x98x6+36) =455; (35) 

* Rc = 100 x Rc + 70 = 44570 ; 

R / ~20xABCxD+D2; 

D = l R/ 120 xABC J = l44570/19720J = 2 ; 

The final result: J972641.7 :== 986.2 ; 

(36) 

(37) 

(38) 

(39) 

This procedure can be continued by appending pairs of zeros to the decimals until the required 
precision is reached. 

6 



The advantages of this method will become clear if we consider binary numbers. Again the 

integer part of the square root has one bit for every pair of bits of the operand. For a better 

readability we will denote the square bits as On, that is J2 = {D29;D 28 . . . D O} . 

Input operand 

Square root 

Naturally, the most significant bit T14 can only be 0 or 1 (accordingly, there are only two square 

numbers which fit into two bits: 00 and 01) . Thus: 

T 14 = D 29 v D 28; 

The remainder R 14
[29 .. 28] is calculated according to 

14 14 
R 29 = D 29 /\ D 28 and R 28 = D 29 /\ D 28 ; 

(40) 

(41 ) 

The square root of the binary number D 29 D 2J3 D 27D 26 is still approximated by 2 x T14 , the re

mainder R *[29 . . 2 6J is represented by R~;R~:D 27D 26 · 

If we add T 13, the square is increased by 4 x T1 4 X T13 + ~3. So the following relation must 

be satisfied : 

(42) 

* If we assume TI 3 = 1, then R [ 29 ... 26 ) ~ 4 X T I4 + 1. (43) 

In other words: T I 3 = 1 if the above test passes, else T 13 = O. The new remainder R 13
[29 .. 26J 

is com puted by: 

13 * ....J. 
R[29 ... 26 ) = R [29 . .. 26) - 4 x TI4 X T !3- 1 I3; 

That is, the remainder is left unchanged in the case T13 = O. 

This function is performed by the simple circuitry shown below. The subtractor generates 
the flag N(egative , active low) as result bit which also controls the Multiplexer. 

R14 
29 

R~: T 14 

0 27 0 

(44) 



For clarity, we will demonstrate the computation of the next result bit, T12. The new intermedi

ate remainder R*[28 .. . 24] is constructed from R~~R;;R;~D25D24 . 

If we add T1:?> the square is increased by 4 x T14 Tl3 X T12 + ~2 . 

(45) 

Depending on the result of this compare operation, the new remainder is either left unchanged 
or 

R 12 - R* 4 T T 1 - [8 2 ) - X 14 13- . [27 .. . 24 ] 2 .. . 4 (46) 

Just as we did for decimal numbers, we can repeat this calculation until the requ ired precision 
is obtained. 

Note that R;~ and R;~ have been dismissed. They are always O. In general, the remainder 

has at most one digit more than the root. This can be shown as follows. Consider the integer 

numbers Z and N, where N is the integer part of the square root of Z. 

R 
~ ______________ +-______ +-____ ~ ____ ~~ N 

o 

For the remainder R we can formulate: 

R ~ CN + 1) 2 - W- - 1 ; 

R ~ ~ + 2N + 1 - W- - 1 ; 

R~2N; 

(47) 

(48) 

(49) 

The block diagram on the next page shows the circuitry for 30 bit integers D{29 .. 0j- Except for 
the first one a register is inserted after each stage. The multiplexers and registers at the out
puts of the subtractors have been merged into a single symbol. 
In general, for the calculation of the integer part of a square root of a number with N bits (where 
N is assumed even), we need NI2 - 1 subtractors, starting with a 4-bit and ending with a 
(N12 + 2) - bit subtractor. NI2 - 2 multiplexers are also required, starting with a 3-bit, ending 
with a N/2 - bit multiplexer. 
In this particular case, the Square Root Unit has 14 stages, 14 subtractors from 4 to 17 bits, 
13 multiplexers from 3 to 15 bits and 433 register bits. 
Gate count: 6.000. 

10 Component FIFO 
This is a 14 x 49 bit memory including one valid bit per vector. The components FIFO should 
be realized as a register pipeline (as opposed to the usual iall-through" - architecture of 
FIFOs), so that the components and the vector length arrive at the same time at the inputs of 
the divide units without special control circuitry. 
Gate count: 5.000 

8 



1 
°(29 .. 0] 1 

° [29 .. 28] J O [27 .. 26J 

T14 - R 14 
[29 .. 28] 

Network T 14 

llO. ' 
~ - / T 13 

N 
SUB 

1 
T[14. 13J ~ Y R13 

[28 .. 26J ~ I 0[25 .0J ~ 
T(14 .. 13J 

O [25 .. 24J 

J 
l t., 1 

T1 2 \ - / O[23 .0J 

N 
SUB 

1 
T[14 .. 12J ~ --l R1 2 

(27 .. 24] ~ I O[23 .. 0J ~ 
T[14 .. 12J 

O [23 .. 22J 

T 

1(.' 
Tll \- / 0[2 1..0] 

N 
SUB 

1 
T14 .. 11J ~ Y Rl1 

(26 .. 22J 1 I O[21..0J 1 
• 

T[14 .. 2J R 2 
[17 .. 4J °[3 .. 0J 

T[14 .. 2J 
0 [3 .. 2J 

Tl 

T[14 .. 1J 

T[14 .. 1J 
°[1 .. 0J 

T[14 .. 0] 

Square Root Pipeline 



11 The Division Unit 
The components t are taken from the component FIFO as 15 bit unsigned integers preceded 
by a sign bit. The vector length T arrives as a 15 bit unsigned integer as well. Thus, there are 
three unsigned division pipelines, as for example explained in [Hoff82], to be constructed. The 
results {mx;my;mz} shall be computed as 15 bit fixed point numbers. 

Since 0 :c:;; a :c:;; V, 0.::; m :c:;; 1 . In the first instance we assume that 

-14 

m = I,111./t 
j=o 

where m = 1nl . (50) 

The algorithm shall be explained by an example where t = 011100111010011 and 
T = 100001111010111. The quotient is computed bitwise using 16 bit two's com plement 
arithmetic. 
mo = 1 if t - T ~ O. The light grey cells contain the sign extensions of the operands. The dark 

cell holds the inverted result bit mOo 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit-Position 

::s: 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 Component t 

+ i~ ::: 0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 2's Compl. of T 

~II 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 Remainder 1°, ·[15 .. 0] 

If mo = 0, the remainder RO must be corrected by adding T. Then, R-1 = RO 
- T12, and 

m_I = 1 if R-
1 ~ O. However, the same can be achieved by adding TI2to RD if mo = 0 and 

subtracting TI2 from RO if mo = 1. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 Bit-Position 

.-I 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 Remainder RO[15 .. -1] 

+ Q;: 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 TI2 

= 11 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 Remainder R-1[14 .. _1] 

Note that the result bits can be excluded from further calculation since 

IROI = It-l1 :c:;; T; (51 ) 

IR- 1
1 = IIROI- T121:c:;; TI 2 ; (52) 

IR-2
1 = IIR- II- T / 41 :c:;; T / 4 and·so forth. (53) 

Thus, the width of the required ALUs remains constant throughout the complete pipeline. The 
computation is continued in this way until the required precision is reached. The last remainder 
is discarded. 
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However, this scheme makes no good use of the avaifable precision . mo is set only in the case 
t = T. To increase the precision, we use the following format instead: 

- 15 

m = ~ m/i. (54) 

j =-1 

The maximum error is then reduced to 2-15. 

For t = T, m is expressed as 0.111111111111111 . This is achieved by assuming mo = 0 and 
starting the computation with the operation t - TI2. 
The first step is given below: 

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 Bit-Position 

0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 Component t 

+ ::::::I:::~: 0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 2's Compl. of TI2 

= m 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 Remainder R-1[14 .. _1j 

The circuitry shown on the next side performs this function . Each pipeline stage computes one 
result bit. The three division pipelines consume approximately 40.000 gates. 

12 The Sign Unit (Outputs) 
The sign units at the outputs perform the inverse function as the sign units at the inputs, how
ever, the arithmetic operation is the same. The 15 bit positive components m, which are pre
ceded by a sign flag S, are converted int016 bit two's complement components n. 
Again we formulate: 

(55) 

(56) 

(57) 

(58) 

(59) 

110 = S . (60) 

Gate count: 1.500 

13 Control Structure 
If the component FIFO is realized as a register pipeline (as opposed to the usual Ufall -through~

architecture of FIFOs), there is no internal control structure required . All operands travel the 
same distance and so the chip just has to be clocked . 
Provisions are made to freeze the pipeline. The activation of an external signal masks the 
clock. This Circu itry is designed very carefully to avoid spikes on the internal clock lines. 
Th e valid flags , one for each stage, must be reset during initialization . The valid flag must be 
held active at the inputs whenever a vector is clocked in. Normalized vectors are available as 
long as the valid vector output maintains an active state. 
"Design-for-Testability" features are also taken into account. We use scan-path flipflops for all 
registers to construct one or more scan chains. 



• 
• 

S m[-1 .. -15] 

• 
• 

One of three Division Pipelines 
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T [14 .. 0] 

T [14 .. 0] 

• 
• 



14 Error Estimation 
Incoming components vare considered to be "true values". The normalization of V without 

~ ~ 

rounding errors will give the exact unit vector N £. We will derive an error vector I1N, so that 
~ ~ ~ 

N = N£ +I1N. 

The sign units at the inputs operate precision conserving, that is 

a = Ivl . (61 ) 

Depending on their size, the operands are possibly right shifted and truncated by the align
ment unit and the scale unit. For Simplicity, let's assume that the error I1t is defined by 

- 1 ::; I1t ::; 0 . (62) 

Due to this discretization of the components, a change in direction of the normalized vector 
~ ~ 

might occur. Instead of the vector V = {v ; v ; v } , the vector T = {t ; t ;t} is normal-x y Z x y z 

ized. Provided this computation is carried out accurately, the maximum deviation occurs for 

T = {V . ·O·O} and I1t = I1t = -1 where V . = 21 4 . (63) 
mln ' , y Z mln 

The error vector MD is then defined by: 

MD = {0;_ 2- 14;_2- 14
} where 

-5 MD =8, 63x10 . (64) 

Any other permutation of the components in (63) and (64) yields the same result for MD ' 
~ 

However, there might be an error in T, so that T is not scaled properly. We have to distinguish 
two cases: 

1.) There was no shift operation in the scale unit. 
~ 

T2 is the true squared length of T. However, the limited precision of the square root unit causes 
a truncation error 11 T. For simplicity, we assume that 

-1 ::; 11 T::; 0 . (65) 

2.) The scale unit performed a right shift operation . 

The squared vector length is divided by 4 and the two LSBs are discarded. After this operation, 
the range of T2 is given by 

10000000 H ::; i- ::; 2 F F F 4000 H 

and therefore, the truncation error of T2 can be neglected. So it can be said that 
222 

i- = C;) + (;) + (~z ) . 
On the other hand, 

(66) 

(67) 

(68) 

Taking the truncation error of the square root unit into account, the resulting error 11 T is then 
given by 

- 1 ::; 11 T ::; 0.5 x Jj . (69) 

For a given 11 T, the resulting vector length M is given by: 

M = 
(T + I1D 2 

T I1T = -- = 1 - - . (70) 
T + I1T T 



For the moment we assume that the divide units operate at infinite precision. Then the error 
--» 

vector Ms is given by: 

Ms = sxM where 
c: -15 - 14 

-..J3 x2 ~s ~2 . (71 ) 

The maximum truncation error of the divide units is _2-15 for each component. This produces 
-" 

an additional error vector M T' given by: 

--» -15 - IS -15 
MT = {-2 . .. 0;-2 .. . 0;-2 .. _O} 

The error vector I'1N is then defined by: 

I'1N = MD + Ms + MT ' 

We assume further that MD ~ Ms' 

The error vector of maximum magnitude is finally given by: 

I'1N = {±2-14;_3 x 2- 15 ;-3 x 2- 15
} and 

- 4 
I'1N = 1.43 x 10 , 

(72) 

(73) 

(74) 

or any permutation of the components. The sign units at the outputs again operate precision 
conserving. 

15 Design Complexity 
The total number of gates needed for the functional units is approximately 70.000. Assuming 
a 50% array utilization, which should be achievable in consideration of the regular structure of 
the chip, a 140.000 gates master is needed. 

16 Conclusion 
We presented a single-chip VLSI solution to one of the essential tasks in computer graphics, 
the normalization of vectors. This approach is superior over other hardware solutions such as 
look-up tables or micro-programmed ALUs, because it achieves maximum speed at minimum 
costs. Advances in VLSI technology can directly be exploited to increase clock frequency and 
to place multiple vector normalizers along with additional functional units onto a single chip, 
so that a complete Phong shader with a generation rate of 100M pixel/s will be feasible as a 
single-chip device in the near future . 
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