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Parallel algorithms are given for the exact solution of the hidden-line prob
lem. Most of the parallel algorithms proposed for visibility problems in the litera
ture give approximate solutions. and thus cannot yield an upper bound on the 
complexity of the particular problem. The first algorithm proposed here is worth 
mentioning not only for its simplicity. but also from a practical point of view: a 
speed up of a factor P is achieved by using P processors. l";;P";;N. where N is 
the number of edges used to describe a polygonal scene. Additionally. the prob
lem of aliasing inherent with approximation methods is avoided. 

The significance of the second algorithm, which is based on the first one, is 
mainly on the theoretical level: it is used to establish the parallel complexity of the 
hidden-line problem. The sequential complexity of this problem has recently been 
proved to be e (N2). and now we can prove that in the parallel case the problem 
is in the complexity class NC, Le., it can be solved in time polynomial in logN by 
using a number of processors polynomial in N, assuming any reasonable model 
of parallel computation. More particularly, an O(logN) parallel time solution is 
given which cannot be further improved even if arbitrarily many processors of a 
concurrent read, exclusive write parallel RAM model are available. 

1. Introduction 

Hidden-line algorithms are used in computer graphics for the elimination of 
invisible parts of edges in line drawings. The input to a hidden-line algorithm can 
be a set of polygons, and a viewer's position in the three dimensional space. The 
output of the algorithm is a planar set of line segments corresponding to the parts 
of edges actually visible from the viewer's position. 

The methods of visibility computations seem to divide naturally into two 
classes: exact and approximation algorithms. Approximation algorithms, rather 
than returning exact picture portions corresponding to visible object parts, approxi
mate the image by using an integral number of picture elements, called pixels. This 
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classification roughly corresponds to the one given by Sutherland, Sproull and 
Schumacker [SUTH74] where image space algorithms are approximation, and 
object space algorithms are exact algorithms. 

Using approximate methods, such as scan-line algorithms, the visibility prob
lem can be divided conveniently among as many processors as are available 
[KAP79], [HUMCS5]. Recently Devai [DEVS5] has described an architecture 
based on a scan-line algorithm that determines the visibility of a set of polygons 

with altogether N edges in time proportional to (;)N logN in the worst case, 

where R is the number of scan lines in the picture, and P is the number of process
ing elements at the final stage of a parallel processor pipeline architecture. 

Using exact algorithms, however, not only the picture is theoretically correct, 
but also such problems as aliasing [NEWM79], [FOLE82] can be avoided. More
over, the execution time can be less than the time required by an approximation 
method used with a high-resolution display device. The exact hidden-surface algo
rithm given by Kuijk, ten Hagen and Akman has also the desirable features of 
being incremental and amenable to parallelization [AKMA87], [KUIJ87]. 

While the complexity of the exact hidden-line [DEV86a] and the exact 
hidden-surface problems [McKES6] have recently been proved to be ®(N2), most 
of the algorithms published in the computer graphics literature, e.g., [APP67j, 
[LOUTIO], [GAL69], [WEIL77], [FRANSO] take ®(N3) timet) in the worst case 
[DEV81]. Using the latter algorithms, we cannot achieve better than O(N2) execu
tion time, even with as many as N processors. 

Recently Nurmi [NURM85] has given an O«N +k)logN) algorithm for the 
hidden-line, and Devai [DEV86b], [DEV86c] for the hidden-surface problem, where 
k, k = O(N2), is the number of intersections in the worst case. These algorithms, 
however, are not easy to decompose for execution on concurrent hardware, and nei
ther are the algorithms given in [DEV86a] and [McKES6]. Instead, we will parallel
ize the O(N2 IogN) worst-case time hidden-line algorithm described by Schmitt 
[SCHM81] and Devai [DEVSl] independently, and referred to as Schmitt's algo
rithm throughout this paper. 

t) We say that fen) = O(g(n» if there exist positive constants c and m such that for all 
n > m, fen) ,.;; c g(n). Similarly,f(n) = o(g(n» if there exist positive constants c and m 
such that for all n > m, fen) ~ c g(n). Finally, fen) El(g(n» if there exist positive 
constants c, d and m such that for all n > m, c g(n) ,.;; fen) ,.;; d g(n). 
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2. The Hidden-Line Problem 
Given a set of pairwise disjoint planar polygonal faces, called a scene, in the 

three-dimensional space. The faces can be simple polygons possibly with holes, 
and are projected to a projection plane, where each face corresponds to one polygon. 
We assume that the coordinate system of the three-dimensional space has been 
choosen so that the projection plane correspond to the plane z = 0, and the faces 
have only positive z-coordinates. 

A point (u, v, w) in the three-dimensional space is said 'to be visible if w is 
greater than the z-coordinate of any point of the scene along the line going through 
the point (u, v) in the projection plane, parallely with the z-axis. 

The above definition of visibility assumes that the viewer's position is on the 
positive z-axis at infinity. This assumption is usual in computer graphics, as usu
ally a perspective transformation is performed on the scene before the visibility 
computations. 

If no point of an interval of a line is visible, the interval is called a hidden 
interval. The determination of the visibility of the edges in a scene is referred to as 
as the hidden-line problem in computer graphics. 

3. 	 Models of Parallel Computation 
The widely accepted models of parallel computation are the several variants of 

the model called Parallel Random Access Machine (PRAM). This model consists of 
random access machines (RAMs) [AH075], called processors, and a global memory. 
All the processors have access to the global memory, and run synchronously. The 
global memory accesses are assumed to take unit time. The variants of the PRAM 
model handle concurrent reads fu,d writes to the global memory cells differently. 
The major variants are the exclusive read, exclusive write (EREW), concurrent read, 
exclusive write (CREW) and concurrent read, concurrent write (CReW) models. 

In this paper, we use the most widely accepted variant, the CREW PRAM 
model. In this model, any number of processors can read a given global memory 
cell at once, but at most one processor is allowed to write into a given memory cell 
in one step. If more than one attempts to write, the computation is invalid. 

The generally accepted definition for the fast solvability of a problem by paral
lel algorithms is if it can be solved in time polynomial in 10gN by using a number 
of processors polynomial in N, where N is called the problem size, and is expressed 
usually by the number of input data. This class of problems is commonly referred 
to as NC. 

One reason why NC is broadly accepted as the class of problems amenable to 
parallelization is that this class remains the same whether it is defined in terms of 
any variant of the PRAM model, or in terms of any other reasonable models, e.g., 
uniform circuits [BOR077], [RUZZ81]. To convert one model to another, a slow 
down or speed up of a factor of 10gN emerges. The advantage of NC is that it 
allows us to ignore the factors of 10gN that separate the various models. 
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Our purpose is to decide whether there exist NC solutions for visibility prob
lems, in particular for the hidden-line problem. In Section 2, we assumed that a 
perspective transformation of the scene is performed before the visibility computa
tions. It is easy to see that a perspective transformation of a scene with N edges 

can 	be obtained in 0 ( ;) time by using a CREW PRAM with P processors, 

1 .;;; P .;;; N. 

4. A Parallel Algorithm with a Small Number of Processors 

As the sequential complexity of the hidden-line problem is e (N 2) [DEV86a], 
the number of processors required to obtain an o (logN) time solution is 

Q ( l:~). A parallel algorithm with a small number of processors, however, may 

be inTeresting from a practical point of view. A linear number of processors are 
considered within reach of current technology [AGGA85], [MEAD80]. 

Let P be the number of processors, and let each processor be responsible for 

the visibility of a group of at most ; edges. For simplifying the presentation, 

assume that P = N. Then each processor executes Schmitt's algorithm on the edge 
assigned to it, as follows. 

The Schmitt Algorithm 

(1) 	 [Hidden interval determination] Prepare the list of all (possibly non-disjoint) 
intervals hidden by other polygons along the edge. 

(2) 	 [Interval union] Determine the union of the hidden intervals obtained in 
step 1. Taking the complement of the resulting intervals with respect to the 
edge, the visible segments of the edge are obtained. 

The intervals of an edge hidden by a given polygon can be determined as follows. 
Using line/polygon classification, a standard geometric algorithm [TIL81], the seg
ments of the projection of the edge inside the projection of the polygon can be 
obtained in O(mlogm) time for an m-sided polygon. By comparing z-coordinates, 
we can decide for each line segment whether it is hidden by the appropriate 
polygon. 

Now, let mi be the number of edges of the i-th polygon, 1 .;;; i .;;; M, then 
there exists a positive constant c such that step (l) can be executed in time 

M 

T!(N)';;; c~(milogmi) 


i=! 
M 

Since logmi .;;; 10gN for any mi, and ~ mi = N, we can write 
i=! 

M 	 M 
T! (N) .;;; c ~ (milogmi) .;;; c 10gN ~ mi = c N 10gN 

i=! i=! 
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In step (1) we cannot obtain more than ~ intervals. The union of these inter

vals can also be determined in O(N logN) time [FRED78]. Since each processor 
completes its work in O(N logN) time for an edge, we obtain the following result. 

Theorem 1. Given P processors, 1 ~ P ~ N, the exact hidden-line problem 
for a set ofpairwise disjoint polygons with a total of N edges can be deter

mined in 0 « ~ )N log N) time. 

The practical significance of the above algorithm lays in the fact that the reduction 
of its worst-case time is proportional to the number of processors. 

5. An NC Solution 

Now, let we assign N processors to each edge. Then the algorithm given in 
Section 4 for determining the visibility of a single edge can be extended as follows. 

(I) [Hidden interval determination] 

Let E be the given edge, and let s be the straight line containing edge E. We 
can assume that s coincides with the x axis of the coordinate system. 

(1.1) Find the intersection points of the projection of line s with the projections 
of edges different from E in the projection plane. Using N -1 processors, 
these can be obtained in 0(1) parallel time. Assume, for simplifying the 
presentation, that the intersection points are pairwise disjoint. 

(1.2) For each polygon P, sort the intersection points of the projections of the 
edges of P along the projection of the line s. By using the Ajtai-Komlbs
Szemeredi (AKS) parallel sorting algorithm [AITA83], this can be accom
plished in O(lognmaJJ time, where n max is the number of edges of the 
polygon with the maximum number of edges. 

(1.3) From the sorted lists obtained in Step (1.2) the hidden intervals of line s 
can be obtained in 0(1) parallel time by taking adjacent pairs of the 
intersection points of each polygon P, and comparing their z-coordinates 
with the appropriate z-values of s. 

(2) [Interval union] 

(2.1) Define the left endpoint of E as a right endpoint of a hidden interval, and 
the right endpoint of E as a left endpoint of another hidden interval. 
Then prepare the sorted arrays Land R of the left and right endpoints of 
the hidden intervals, respectively. Let k be the number of hidden inter
vals, R[O] 00, and R[k + 1] 00. This step takes O(logN) time by 
the AKS method. 
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(2.2) For each left endpoint 	i, 1 ,;:;; i < k, insert L{i] in R by using binary 
search in O(logN) serial time, such that 

RU - 1] < L{i] < RU]. 
Then the visible segments of edge E can be obtained by executing on 
each processor i, I ,;:;; i < k, the following program: 

if i j then 
output (RU - 1], L{i Das a visible segment 

else 
halt processor i; 

Using at most i processors, Step (2.2) can also be executed in O(logN) 

parallel time. 

Now, we are ready to prove the following result. 

Theorem 2. The exact hidden-line problem for a set of pairwise disjoint 
polygons with a total of N edges can be solved in 0 (log N) parallel time, and 
o (N2) space by using N 2 processors. 9(logN) time is the best possible 
under the CREW PRAM model of parallel computation with arbitrarily 
maJry processors. 

Sketch of Proof: The above algorithm can be executed in 0 (log N) time for a single 
edge by using N processors. Using N 2 processors, the algorithm can be executed 
for N edges within the same time. 

It follows from the definition of visibility that finding the maximum of N 
integers is 0 (1) time reducible to the hidden line problem by using N processors. 
Cook and Dwork [COOK82] has given ~(logN) lower bound for finding the max
imum of N integers allowing infinitely many processors of a CREW PRAM model. 
From here the theorem follows. 

6. 	 Reduction of the Constant Factor 

On the theoretical1evel, we can conclude that the hidden-line problem is easy 
in the sense that it is solvable in polylogarithmic parallel time by using polynomi
ally many processors. The algorithm given in Section 5, however, has an impracti
cally large constant factor due to the usage of the AKS parallel sorting algorithm. 

Recently Cole [COLE86] has given O(logN) time sort with a small constant 
factor on a CREW PRAM of N processors. A more complex version of the algo
rithm for the EREW RAM is also given which also uses N processors and O(logN) 
time, where "the constant in the running time is still moderate, though not as 
small" [COLE86]. It should be noted, however, that the hidden-line algorithm pro
posed here exploits the power of the CREW model, e.g., in step (1.1). 
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7. Concluding Remarks 
While the algorithm is optimal in a stronger sense, the question that whether 

l:~ processors are enough to maintain O(logN) time remains open. (Although 

th! number of visible segments is e (N2) in the worst case, it might still be possible 
that each processor reports e (log N) visible segments.) 

Another question of interest is that whether the 0 (log N) time can be beaten 
in a stronger model with write conflict resolution, where g(loglogN) is a tight 
bound on finding the maximum of N integers [FICH85]. 
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