
An O(log N) Parallel Time Exact Hidden-Line

Algorithm

F. Dl!vai

Computer and Automation Institute

Hungarian Academy of Sciences

POB 63. Kende 13-17. Budapest. Hungary. H-1502

Parallel algorithms are given for the exact solution of the hidden-line prob
lem. Most of the parallel algorithms proposed for visibility problems in the litera
ture give approximate solutions. and thus cannot yield an upper bound on the
complexity of the particular problem. The first algorithm proposed here is worth
mentioning not only for its simplicity. but also from a practical point of view: a
speed up of a factor P is achieved by using P processors. l";;P";;N. where N is
the number of edges used to describe a polygonal scene. Additionally. the prob
lem of aliasing inherent with approximation methods is avoided.

The significance of the second algorithm, which is based on the first one, is
mainly on the theoretical level: it is used to establish the parallel complexity of the
hidden-line problem. The sequential complexity of this problem has recently been
proved to be e (N2). and now we can prove that in the parallel case the problem
is in the complexity class NC, Le., it can be solved in time polynomial in logN by
using a number of processors polynomial in N, assuming any reasonable model
of parallel computation. More particularly, an O(logN) parallel time solution is
given which cannot be further improved even if arbitrarily many processors of a
concurrent read, exclusive write parallel RAM model are available.

1. Introduction

Hidden-line algorithms are used in computer graphics for the elimination of
invisible parts of edges in line drawings. The input to a hidden-line algorithm can
be a set of polygons, and a viewer's position in the three dimensional space. The
output of the algorithm is a planar set of line segments corresponding to the parts
of edges actually visible from the viewer's position.

The methods of visibility computations seem to divide naturally into two
classes: exact and approximation algorithms. Approximation algorithms, rather
than returning exact picture portions corresponding to visible object parts, approxi
mate the image by using an integral number of picture elements, called pixels. This

http://www.eg.org
http://diglib.eg.org

66

classification roughly corresponds to the one given by Sutherland, Sproull and
Schumacker [SUTH74] where image space algorithms are approximation, and
object space algorithms are exact algorithms.

Using approximate methods, such as scan-line algorithms, the visibility prob
lem can be divided conveniently among as many processors as are available
[KAP79], [HUMCS5]. Recently Devai [DEVS5] has described an architecture
based on a scan-line algorithm that determines the visibility of a set of polygons

with altogether N edges in time proportional to (;)N logN in the worst case,

where R is the number of scan lines in the picture, and P is the number of process
ing elements at the final stage of a parallel processor pipeline architecture.

Using exact algorithms, however, not only the picture is theoretically correct,
but also such problems as aliasing [NEWM79], [FOLE82] can be avoided. More
over, the execution time can be less than the time required by an approximation
method used with a high-resolution display device. The exact hidden-surface algo
rithm given by Kuijk, ten Hagen and Akman has also the desirable features of
being incremental and amenable to parallelization [AKMA87], [KUIJ87].

While the complexity of the exact hidden-line [DEV86a] and the exact
hidden-surface problems [McKES6] have recently been proved to be ®(N2), most
of the algorithms published in the computer graphics literature, e.g., [APP67j,
[LOUTIO], [GAL69], [WEIL77], [FRANSO] take ®(N3) timet) in the worst case
[DEV81]. Using the latter algorithms, we cannot achieve better than O(N2) execu
tion time, even with as many as N processors.

Recently Nurmi [NURM85] has given an O«N +k)logN) algorithm for the
hidden-line, and Devai [DEV86b], [DEV86c] for the hidden-surface problem, where
k, k = O(N2), is the number of intersections in the worst case. These algorithms,
however, are not easy to decompose for execution on concurrent hardware, and nei
ther are the algorithms given in [DEV86a] and [McKES6]. Instead, we will parallel
ize the O(N2 IogN) worst-case time hidden-line algorithm described by Schmitt
[SCHM81] and Devai [DEVSl] independently, and referred to as Schmitt's algo
rithm throughout this paper.

t) We say that fen) = O(g(n» if there exist positive constants c and m such that for all
n > m, fen) ,.;; c g(n). Similarly,f(n) = o(g(n» if there exist positive constants c and m
such that for all n > m, fen) ~ c g(n). Finally, fen) El(g(n» if there exist positive
constants c, d and m such that for all n > m, c g(n) ,.;; fen) ,.;; d g(n).

67

2. The Hidden-Line Problem
Given a set of pairwise disjoint planar polygonal faces, called a scene, in the

three-dimensional space. The faces can be simple polygons possibly with holes,
and are projected to a projection plane, where each face corresponds to one polygon.
We assume that the coordinate system of the three-dimensional space has been
choosen so that the projection plane correspond to the plane z = 0, and the faces
have only positive z-coordinates.

A point (u, v, w) in the three-dimensional space is said 'to be visible if w is
greater than the z-coordinate of any point of the scene along the line going through
the point (u, v) in the projection plane, parallely with the z-axis.

The above definition of visibility assumes that the viewer's position is on the
positive z-axis at infinity. This assumption is usual in computer graphics, as usu
ally a perspective transformation is performed on the scene before the visibility
computations.

If no point of an interval of a line is visible, the interval is called a hidden
interval. The determination of the visibility of the edges in a scene is referred to as
as the hidden-line problem in computer graphics.

3. 	 Models of Parallel Computation
The widely accepted models of parallel computation are the several variants of

the model called Parallel Random Access Machine (PRAM). This model consists of
random access machines (RAMs) [AH075], called processors, and a global memory.
All the processors have access to the global memory, and run synchronously. The
global memory accesses are assumed to take unit time. The variants of the PRAM
model handle concurrent reads fu,d writes to the global memory cells differently.
The major variants are the exclusive read, exclusive write (EREW), concurrent read,
exclusive write (CREW) and concurrent read, concurrent write (CReW) models.

In this paper, we use the most widely accepted variant, the CREW PRAM
model. In this model, any number of processors can read a given global memory
cell at once, but at most one processor is allowed to write into a given memory cell
in one step. If more than one attempts to write, the computation is invalid.

The generally accepted definition for the fast solvability of a problem by paral
lel algorithms is if it can be solved in time polynomial in 10gN by using a number
of processors polynomial in N, where N is called the problem size, and is expressed
usually by the number of input data. This class of problems is commonly referred
to as NC.

One reason why NC is broadly accepted as the class of problems amenable to
parallelization is that this class remains the same whether it is defined in terms of
any variant of the PRAM model, or in terms of any other reasonable models, e.g.,
uniform circuits [BOR077], [RUZZ81]. To convert one model to another, a slow
down or speed up of a factor of 10gN emerges. The advantage of NC is that it
allows us to ignore the factors of 10gN that separate the various models.

68

Our purpose is to decide whether there exist NC solutions for visibility prob
lems, in particular for the hidden-line problem. In Section 2, we assumed that a
perspective transformation of the scene is performed before the visibility computa
tions. It is easy to see that a perspective transformation of a scene with N edges

can 	be obtained in 0 (;) time by using a CREW PRAM with P processors,

1 .;;; P .;;; N.

4. A Parallel Algorithm with a Small Number of Processors

As the sequential complexity of the hidden-line problem is e (N 2) [DEV86a],
the number of processors required to obtain an o (logN) time solution is

Q (l:~). A parallel algorithm with a small number of processors, however, may

be inTeresting from a practical point of view. A linear number of processors are
considered within reach of current technology [AGGA85], [MEAD80].

Let P be the number of processors, and let each processor be responsible for

the visibility of a group of at most ; edges. For simplifying the presentation,

assume that P = N. Then each processor executes Schmitt's algorithm on the edge
assigned to it, as follows.

The Schmitt Algorithm

(1) 	 [Hidden interval determination] Prepare the list of all (possibly non-disjoint)
intervals hidden by other polygons along the edge.

(2) 	 [Interval union] Determine the union of the hidden intervals obtained in
step 1. Taking the complement of the resulting intervals with respect to the
edge, the visible segments of the edge are obtained.

The intervals of an edge hidden by a given polygon can be determined as follows.
Using line/polygon classification, a standard geometric algorithm [TIL81], the seg
ments of the projection of the edge inside the projection of the polygon can be
obtained in O(mlogm) time for an m-sided polygon. By comparing z-coordinates,
we can decide for each line segment whether it is hidden by the appropriate
polygon.

Now, let mi be the number of edges of the i-th polygon, 1 .;;; i .;;; M, then
there exists a positive constant c such that step (l) can be executed in time

M

T!(N)';;; c~(milogmi)

i=!
M

Since logmi .;;; 10gN for any mi, and ~ mi = N, we can write
i=!

M 	 M
T! (N) .;;; c ~ (milogmi) .;;; c 10gN ~ mi = c N 10gN

i=! i=!

69

In step (1) we cannot obtain more than ~ intervals. The union of these inter

vals can also be determined in O(N logN) time [FRED78]. Since each processor
completes its work in O(N logN) time for an edge, we obtain the following result.

Theorem 1. Given P processors, 1 ~ P ~ N, the exact hidden-line problem
for a set ofpairwise disjoint polygons with a total of N edges can be deter

mined in 0 « ~)N log N) time.

The practical significance of the above algorithm lays in the fact that the reduction
of its worst-case time is proportional to the number of processors.

5. An NC Solution

Now, let we assign N processors to each edge. Then the algorithm given in
Section 4 for determining the visibility of a single edge can be extended as follows.

(I) [Hidden interval determination]

Let E be the given edge, and let s be the straight line containing edge E. We
can assume that s coincides with the x axis of the coordinate system.

(1.1) Find the intersection points of the projection of line s with the projections
of edges different from E in the projection plane. Using N -1 processors,
these can be obtained in 0(1) parallel time. Assume, for simplifying the
presentation, that the intersection points are pairwise disjoint.

(1.2) For each polygon P, sort the intersection points of the projections of the
edges of P along the projection of the line s. By using the Ajtai-Komlbs
Szemeredi (AKS) parallel sorting algorithm [AITA83], this can be accom
plished in O(lognmaJJ time, where n max is the number of edges of the
polygon with the maximum number of edges.

(1.3) From the sorted lists obtained in Step (1.2) the hidden intervals of line s
can be obtained in 0(1) parallel time by taking adjacent pairs of the
intersection points of each polygon P, and comparing their z-coordinates
with the appropriate z-values of s.

(2) [Interval union]

(2.1) Define the left endpoint of E as a right endpoint of a hidden interval, and
the right endpoint of E as a left endpoint of another hidden interval.
Then prepare the sorted arrays Land R of the left and right endpoints of
the hidden intervals, respectively. Let k be the number of hidden inter
vals, R[O] 00, and R[k + 1] 00. This step takes O(logN) time by
the AKS method.

70

(2.2) For each left endpoint 	i, 1 ,;:;; i < k, insert L{i] in R by using binary
search in O(logN) serial time, such that

RU - 1] < L{i] < RU].
Then the visible segments of edge E can be obtained by executing on
each processor i, I ,;:;; i < k, the following program:

if i j then
output (RU - 1], L{i Das a visible segment

else
halt processor i;

Using at most i processors, Step (2.2) can also be executed in O(logN)

parallel time.

Now, we are ready to prove the following result.

Theorem 2. The exact hidden-line problem for a set of pairwise disjoint
polygons with a total of N edges can be solved in 0 (log N) parallel time, and
o (N2) space by using N 2 processors. 9(logN) time is the best possible
under the CREW PRAM model of parallel computation with arbitrarily
maJry processors.

Sketch of Proof: The above algorithm can be executed in 0 (log N) time for a single
edge by using N processors. Using N 2 processors, the algorithm can be executed
for N edges within the same time.

It follows from the definition of visibility that finding the maximum of N
integers is 0 (1) time reducible to the hidden line problem by using N processors.
Cook and Dwork [COOK82] has given ~(logN) lower bound for finding the max
imum of N integers allowing infinitely many processors of a CREW PRAM model.
From here the theorem follows.

6. 	 Reduction of the Constant Factor

On the theoretical1evel, we can conclude that the hidden-line problem is easy
in the sense that it is solvable in polylogarithmic parallel time by using polynomi
ally many processors. The algorithm given in Section 5, however, has an impracti
cally large constant factor due to the usage of the AKS parallel sorting algorithm.

Recently Cole [COLE86] has given O(logN) time sort with a small constant
factor on a CREW PRAM of N processors. A more complex version of the algo
rithm for the EREW RAM is also given which also uses N processors and O(logN)
time, where "the constant in the running time is still moderate, though not as
small" [COLE86]. It should be noted, however, that the hidden-line algorithm pro
posed here exploits the power of the CREW model, e.g., in step (1.1).

71

7. Concluding Remarks
While the algorithm is optimal in a stronger sense, the question that whether

l:~ processors are enough to maintain O(logN) time remains open. (Although

th! number of visible segments is e (N2) in the worst case, it might still be possible
that each processor reports e (log N) visible segments.)

Another question of interest is that whether the 0 (log N) time can be beaten
in a stronger model with write conflict resolution, where g(loglogN) is a tight
bound on finding the maximum of N integers [FICH85].

72

8. References

[AGGA85] Aggarval, A., Chazelle, B., Guibas, L., O'Dunlaing, C, Yap, C "Paral
lel computational geometry." Proc. 26th Annual Symp. on Foundations of
Computer Science, Portland, Oregon, (Oct., 1985),468-477.

[AH075] 	 Aho, A. V., Hopcroft, J. E., Ullman, J. D. "The Design and Analysis of
Computer Algorithms". Addison-Wesley, Reading, Mass., 1975.

[AJTA83] 	 Ajtai, M., KomIns, J., Szemeredi, E. :'An O(nlog(n» sorting network."
Proc. 15th ACM Symp. on Theory of Computing (1983), 1-9. Also in:
Combinatorica 3,1 (1983) 1-19.

[AKMA87] Akman, V., ten Hagen, P., Kuijk. A. A. M. "A vector-like architecture
for raster graphics". (these proceedings)

[ANDE85] Anderson, R. "The Complexity of Parallel Algorithms." Report No.
STAN-CS-86-1092. Department of Computer Science, Stanford Univer
sity, Stanford, CA, 1985.

[APP67] Appel, A. "The notion of quantitative invisibility and the machine
rendering of solids". Proc. ACM National Conference, 1967,387-393.

[BOR077] Borodin, A., "On relating time and space to size and depth". SIAM J.
Computing 6 (1977) 733-744.

[COOK82] Cook, S., Dwork, C "Bounds on the time for parallel RAMs to com
pute simple functions." Proc. 14th ACM Symp. on Theory of Computing,
San Francisco, Californa, (May, 1982), 231-233.

[DEV81] 	 Devai, F. "Complexity of Visibility Computations". Dissertation for the
degree of Candidate of Sciences. Budapest, Hungary, 1981 (In Hun
garian).

[DEV85] 	 Devai, F. "A digital signal processor architecture for real-time image
synthesis." Proc. IEEE Int. Symp. on New Directions in Computing, Aug.
12-14, 1985, Trondheim, Norway, 371-376.

[DEV86a] 	 Devai, F. "Quadratic bounds for hidden-line elimination". Proc.
Second Annual ACM SympOSium on Computational Geometry, Yorktown
Heights, New York, USA, June 2-4, 1986,269-275.

[DEV86b] 	 Devai, F. "Solid modelling in IGOS". Working Paper GD115, Com
puter and Automation Institute, Hungarian Academy of Sciences.
Budapest, Hungary, Oct., 1986,22 pp.

[DEV86c] 	 Devai, F. "An intersection-sensitive hidden-surface algorithm." Proc.
Eurographics'87, Amsterdam, the Netherlands, Aug. 24-28, 1987, 495
502.

[FICH85] Fich, F. E., Meyer auf der Heide, F., Ragde, P., Wigderson, A. " One,
two, three ... infinity: Lower bounds for parallel computation." Proc.
17th ACM Symp. on Theory of Computing, Providence, Rhode Island,
(May, 1985), 48-58.

73

[FOLE82] 	 Foley, J. D., van Dam, A. "Fundamentals of Interactive Computer
Graphics". Addison-Wesley, Reading, Mass., 1982.

[FRAN80] 	 Franklin, W. R. "A linear time exact hidden surface algorithm," Com
puter Graphics 14, 3 (1980), 117-123.

[FRED78] 	 Fredman, M. L., Weide, B. "On the complexity of computing the
measure of U [ai, bd. Comm. ACM 21, 7 (July, 1978),540-544.

[GAL69] 	 Galimberti, R. Montanari, U. "An algorithm for hidden-line elimina
tion." Comm. ACM 12, 4 (Apr., 1969),206-211.

[HUMC85j Hu, M. c., Foley, 1. D. "Parallel processing approaches to hidden
surface removal in image space."
317.

Comput. & GraphiCS 9, 3 (1985), 303

[KAP79] Kaplan, M., Greenberg,
hidden-surface removal."

D. P. "Parallel processing techniques for
Computer GraphiCS 13, 2 (Aug.1979), 300-307.

[KUIJ87j Kuijk, A. A. M., ten Hagen, P. 1. W., Akman, V. "An exact incremental
hidden-surface removal algorithm." (these proceedings)

[LOUT70j Loutrel, P. P. "A solution to the hidden-line problem for computer
drawn polyhedra." IEEE Trans. Compo C-19, 3 (Mar. 1970), 205
213.

[McKE86j McKenna, M. "'Worst-case optimal hidden-surface removal". Report
JHUI EECS-86/05, The Johns Hopkins University, Baltimore, Mary
land, 8 pp. (To appear, ACM Transactions on Graphics)

[MEAD80] Mead, c., Conway, L. "Introduction to VLSI Systems". Addison
Wesley, Reading, Mass., 1980.

[NEWM79]Newman, W. M., Sproull, R. F. "Principles of Interactive Computer
Graphics". (Second Edition) McGraw-Hill, 1979.

[NURM85] Nurmi, O. "A fast line-sweep algorithm for hidden line elimination."
BIT 25, 3 (1985), 466-472.

[RUZZ8Ij Ruzzo, W. L., "On uniform circuit complexity." Journal of Computer
and System Sciences 22 (1981) 365-383.

[SCHM81] Schmitt, A. "Time and space bounds for hidden line and hidden sur
face algorithms." Proc. Eurographics'81, Darmstadt, FRG, (Sep., 1981)
43-56.

[SUTH74] Sutherland, I. E., Sproull, R. F., Schumaker, R. A. "A characterization
of ten hidden-surface algorithms." Computing Surveys 6, I (March,
1974) I-55.

[TIL81] Tilove, R. B. "Line/polygon classification: A study of the complexity
of geometric computation." IEEE CG&A (Apr., 1981) 75-88.

[WEIL77] 	 Weiler, K., Atherton, P. "Hidden surface removal using polygon area
sorting". Computer Graphics 11, 2 (Summer, 1977) 214-222.

