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Abstract
Although some progress has been made in the layout-to-image generation of complex scenes with multiple objects, object-level
generation still suffers from distortion and poor recognizability. We argue that this is caused by the lack of feature encodings
for edge information during image generation. In order to solve these limitations, we propose a novel edge-enhanced Gener-
ative Adversarial Network for layout-to-image generation (termed EL-GAN). The feature encodings of edge information are
learned from the multi-level features output by the generator and iteratively optimized along the generator’s pipeline. Two new
components are included at each generator level to enable multi-scale learning. Specifically, one is the edge generation mod-
ule (EGM), which is responsible for converting the output of the multi-level features by the generator into images of different
scales and extracting their edge maps. The other is the edge fusion module (EFM), which integrates the feature encodings
refined from the edge maps into the subsequent image generation process by modulating the parameters in the normalization
layers. Meanwhile, the discriminator is fed with frequency-sensitive image features, which greatly enhances the generation
quality of the image’s high-frequency edge contours and low-frequency regions. Extensive experiments show that EL-GAN
outperforms the state-of-the-art methods on the COCO-Stuff and Visual Genome datasets. Our source code is available at
https://github.com/Azure616/EL-GAN.

CCS Concepts
• Computing methodologies → Scene understanding; Image processing;

1. Introduction

Tremendous progress has been made in the conditional image gen-
eration task [ZMYS19, QZXT19b, JGFF18, LWTT18, NFLW20]
that aims to generate plausible images based on user-specified con-
ditions. In this paper, we pay attention to image generation from
layout. By specifying a layout (including bounding boxes and cor-
responding object/stuff category labels), an image that conforms to
it can be generated. From an application point of view, the task of
generating images from layouts can quickly turn a virtual compo-
sition in mind into an actual image, enabling everyone to become
an artist, and has excellent prospects for development.

Image generation from layout is a relatively new and challeng-
ing task. Layout2Im [ZMYS19] took the lead in proposing this
task. However, the generated images are low resolution, and some
generated objects are difficult to identify. Attribute-guided lay-
out2im [MZS20] allows (but does not require) direct semantic at-
tribute control over individual objects. In comparison, OC-GAN
[SZB∗20] restricts the relationship between objects by introducing
scene graphs as an additional condition. The fine-grained control of
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objects in the image has gradually attracted researchers’ attention.
Nevertheless, existing methods still suffer from distortion, ambi-
guity, and poor recognizability in an object-level generation. As
shown in the second column of Figure 1, the head of the sheep gen-
erated by LostGAN-V2 [SW20] is missing, as are the giraffe’s legs.
Moreover, the train has undergone severe deformation.

The human visual system is susceptible to high-frequency edge
information, and the edge contour of an object largely determines
the human perception of it. An important reason for the above prob-
lems in the object-level generation is that the quality of the edge
lines of the object is inferior. Just imagine, if the edge lines of a
"car" in the picture are clear and smooth, people will not pay too
much attention to details such as its texture but directly determine
that it is a car by the edge contour of the object. Conversely, if the
edge lines of a "car" in the image are distorted, even if its texture
resembles a car, people will find it strange or difficult to recognize
because such a car does not exist in the real world. So for the im-
age generation task, we confirm that the feature encodings for edge
information can be added to the generator while feeding frequency-
sensitive image features to the discriminator to solve the problem
of object-level generation.

Therefore, we propose a novel Generative Adversarial Network
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Figure 1: The performance of existing methods and our method on
the edge processing problem. Regions with significant differences in
generation quality are marked with red dashed rectangles. It can be
seen from the comparison that the edge contour of each component
in the image generated by our model is more reasonable, and the
object recognition is higher.

architecture with enhanced Edge information for Layout-based im-
age generation, called EL-GAN for short. The feature encodings
containing edge information are learned from the multi-level fea-
tures output by the generator and iteratively optimized along the
generator’s pipeline. Two new components are linked at each gen-
erator level to realize the extraction and fusion of edge informa-
tion, called edge generation module (EGM) and edge fusion mod-
ule (EFM). EGM converts the output of the multi-level features by
the generator into edge maps of different scales in two stages to
facilitate multi-scale training. Specifically, multi-level features are
first transformed into intermediate image results at different scales
through "ToImg," and then the edge maps of these images are ex-
tracted via "GetEdge." Next, we use EFM to effectively fuse the
feature encodings refined from the edge maps into the subsequent
image generation process by modulating the affine transformation
parameters in the normalization layers. At the same time, we trans-
form the image from the spatial domain to the frequency domain,
and the frequency representations of these images are fed to the
discriminator. The discriminator is required to score the authentic-
ity of the image through frequency-sensitive image features, which
enhances the generation quality of high-frequency edge contours
and low-frequency regions of the image. These new modules work
together to help generate smooth and full edge lines, which signif-
icantly alleviates the problem of object deformation and improves
object recognizability (see the third column of Figure 1). The main
contributions of our work are as follows:

• We propose a novel edge-enhanced Generative Adversarial
Network for layout-to-image generation (termed EL-GAN).
Through multi-scale learning, it can generate images with clearer
edge lines and better recognizable objects based on layout con-
ditions.

• Two new components are proposed, called edge generation mod-
ule (EGM) and edge fusion module (EFM). They are linked to
each generator level to achieve iterative optimization and fusion
of the feature encodings containing edge information.

• Frequency-sensitive image features are fed to the discriminator,
and the generation quality of high-frequency edges and low-
frequency regions of the image is improved by frequency dis-
crimination.

• Extensive experiments demonstrate that our proposed method
achieves state-of-the-art performance on the COCO-Stuff
[CUF18] and Visual Genome [KZG∗17] benchmarks.

2. Related Work

2.1. Conditional Image Generation

Generative Adversarial Networks (GANs) [GPAM∗14] produces
good outputs through game learning between the generator and
discriminator. Nevertheless, the images generated in this way are
random, and there is no control over which category the generated
images fall into. To solve this problem, cGANs [MO14] came into
being. The latter improves the former, allowing additional infor-
mation to be input to the generator and discriminator as conditions
for better control of the generation process. Specifically, conditions
can be text descriptions [QZXT19b, LQLT19, RPG∗21, YLS∗19,
QZXT19a, XZH∗18], scene graphs [JGFF18, MAA∗19, YTZC19],
layouts [ZMYS19, MZS20, HLY∗21, SW19, NFLW20], sketches
[LWTT18,LQWL18,SLF∗17], etc. We hope to get images that are
more in line with our expectations by providing more conditional
information to the model.

2.2. Image Generation from Layout

Compared with other conditions, the layout is simple, easy to be
obtained, and the meaning expressed is clear, so it is favored by
some researchers. In previous image generation tasks, layouts of-
ten acted as intermediate results or complementary features to the
generated images.

Layout2Im [ZMYS19] is the first method to directly use a layout
as an input source directly. Many studies decompose layout-based
image generation tasks into multiple subtasks. LostGAN [SW19,
SW20] transforms the layout-to-image problem into layout-to-
mask-to-image to bridge the gap between the input layout and
the synthesized image. While OC-GAN [SZB∗20] is based on the
layout-to-scene graph-to-image process, expecting to learn the re-
lationship between objects through the scene graph. BachGAN
[LCG∗20] proposes that image generation can be carried out by
separating foreground and background generation. In order to im-
prove the generation quality at the object level, many methods pro-
vide their solutions. Attribute-guided layout2im [MZS20] takes the
attribute information of the objects as an optional input condition
for image generation. P-RaGAN [XLJL20] introduces a pair of
relativistic average discriminators to solve the problem of object
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Figure 2: The overview of our proposed EL-GAN (a version of final generated images with a resolution of 64×64). The inputs are a layout
and a latent code z, where z is sampled from the normal distribution to characterize the diversity of the generated images. Edge generation
module (EGM) and edge fusion module (EFM) are embedded in each generator level to perform image generation, edge information refine-
ment, and fusion on the output of the multi-level features by ResBlocks.

distortion and improve generative power. He et al. [HLY∗21] in-
troduces a context-aware feature transformation module and feeds
location-sensitive image features into the discriminator to enhance
the relationship between objects/stuff and their appearance. Li et
al. [LWK∗21] follows LostGAN’s [SW19, SW20] idea and pro-
poses the LAMA module, which is used to adapt overlapped or
nearby object masks to help generate clean and semantically clear
semantic masks, thereby improving the quality of image genera-
tion.

It can be seen that more and more researchers have begun to fo-
cus on the quality of individual objects in the image. However, there
is almost no method to put forward practical solutions to the edge
problem between individual components (objects, stuff, and back-
ground). This problem can seriously affect object recognizability
and overall image quality.

3. Method

3.1. Overview

Our proposed EL-GAN architecture is shown in Figure 2. The
edge generation module (EGM) and edge fusion module (EFM)
are linked on each ResBlock (i.e., each level of the generator) to
achieve iterative optimization and fusion of feature encodings con-
taining edge information. In addition, the discriminator transforms
the input image from the spatial domain to the frequency domain
and then discriminates the image’s authenticity based on the corre-
sponding image features in these two domains.

3.2. Edge Generation Module (EGM)

We add an edge generation module (EGM) after each ResBlock
to generate edge maps of different scales based on multi-level fea-
ture vectors. Due to the vast difference between feature vectors and

edge maps, we decompose the task of generating edge maps from
feature vectors into two stages. Specifically, the multi-level feature
vectors are converted into intermediate image results of different
scales through "ToImg." Then the edge maps of these images are
extracted through "GetEdge."

ToImg is responsible for converting feature vectors to images.
The output of the features by the generator is transformed into im-
ages of different scales using ToImg multiple times. Specifically, it
converts the hierarchical feature x output by the i-th ResBlock into
N × 3×H ×W images midi. The hierarchical feature x is a vector
of shape N×C×H×W , where N represents the mini-batch size, C
represents the number of channels, H and W represent height and
width, respectively. C, H, W depend on the level of ResBolck in the
generator (in our experiments, the relationship between them and i
is C = 211−i, H = W = 8i). The network structure of ToImg draws
on the design of ToRGB in LostGAN-V2 [SW20], which is com-
posed of "BatchNorm+ReLU+Conv3×3+Tanh," where Conv3×3
means a convolution layer with a kernel size of 3×3.

GetEdge is used to extract the edge maps of images. In order
to enhance the edge information in the final generated image, we
need to refine and fuse the edge information contained in the out-
put of the hierarchical features by the generator. However, it is not
intuitive and effective to directly refine such information from the
multi-level features generated by ResBlock or the intermediate im-
age results generated by ToImg. Therefore, we first extract edge
maps from these images to facilitate subsequent extraction and fu-
sion of edge feature information. It receives the images midi of
different scales generated by ToImg and outputs the correspond-
ing N × 1×H ×W edge maps edgei (see the grayscale images in
Figure 2). We adopt and improve the holistically-nested edge de-
tector (HED) [XT15] to achieve this task. The pre-trained VGG-
16 [SZ15] is used as the image’s feature extractor, and then it is
connected to a convolutional layer after its 4th, 9th, 16th, 23rd,
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and 30th layers (counting from 1) to obtain the edge map. Figure 3
shows the relationship between different layers of VGG-16 [SZ15]
and the resulting edge maps. As seen from the figure, the higher
the level of VGG-16 [SZ15], the more blurred the contour of the
corresponding edge map. In order to obtain richer edge informa-
tion, we only use the edge map corresponding to the fourth layer
of VGG-16 [SZ15]. Like ToImg, the edge maps of different scales
are obtained using GetEdge multiple times, and these edge maps
contain different information to promote multi-scale learning.

0

4

9

16

23

30 the layers of    

VGG-16 [SZ15]

initial image

Figure 3: Correspondence between different layers of VGG-16
[SZ15] and edge maps. The coordinate axis represents the layers
of VGG-16 (counting from 1), and the grayscale image represents
the edge map corresponding to a specific layer. In our experiments,
we select the edge map corresponding to the fourth layer of VGG-
16 with rich edge information.

3.3. Edge Fusion Module (EFM)

The primary function of the edge fusion module (EFM) is to effec-
tively refine the information in edge maps edgei to obtain feature
encodings, then integrate these encodings containing edge infor-
mation into the following image generation process by modulating
the affine transformation parameters in the normalization layers.
The detailed implementation of the edge fusion module (EFM) is
shown in Figure 4(a). The following describes how the informa-
tion in edge maps is refined and fused from the perspective of the
normalization process. Normalization is generally divided into two
steps: feature standardization and feature recalibration.

Feature Standardization. For the hierarchical feature x output
by the ResBlock, we first normalize x by computing the channel-
wise mean µc and variance σ

2
c as done in the BatchNorm [IS15].

The formula is

x̂ =
x−µc√
σ2

c + ε

, (1)

where ε is a constant added for numerical stability. By standardiz-
ing the features, the adverse effects caused by singular data can be
reduced, and the convergence speed of the model can be acceler-
ated.

Feature Recalibration. In order to improve the representation
ability of the model, the recalibration operation of features is es-
sential. It is achieved by performing an affine transformation on the
standardized features x̂ with two parameters, γedge and βedge.

In our task, the edge information in the final generated image is

expected to be enhanced. So we first perform a Sigmoid operation
on the edge map edgei to normalize the value of each pixel between
0 and 1. The closer the value of a pixel is to 1, the more likely the
point is to be an edge. The normalized edge map is multiplied by
the feature x output by ResBlock as a scale factor to obtain the fea-
ture xscale containing edge information. In this way, the weight of
non-edge pixel values in x is reduced, and the weight of edge pixel
values in x is correspondingly enhanced. In this way, it is possible
to explicitly focus on generating high-frequency information such
as edge contours in the image.

The feature information in edge maps is high-level and abstract,
and it is crucial to effectively refine the information in it. Inspired
by SPADE [PLWZ19], we use a two-layer convolution operation to
achieve the refinement of feature encodings. Specifically, the first
layer of convolution projects the feature xscale onto an embedding
space and preliminarily refines the information in the edge map.
The second layer of convolution refines this information again to
obtain modulation parameters γedge and βedge that vary with the
spatial position. The parameters here refer to the feature encod-
ings mentioned above that contain edge information. Finally, we
use these two parameters to recalibrate the feature x̂ to obtain x̃.
The formula is

x̃ = γedge · x̂+βedge. (2)

In addition, we also tried the implementation as shown in Figure
4(b). The convolution operation is used to directly refine the infor-
mation in the edge map edgei, and then the modulation parameters
γedge and βedge are obtained. After experimental verification, the ef-
fect of this setting is not good. For details, see w/o scale_factor of
the ablation experiment in Sec. 4.7. We believe that the reason why
this experimental setting is not good is that the feature extraction
operation is performed directly on the edge map edgei with less in-
formation, and the information in the obtained feature x is not fully
utilized. However, by using the edge map edgei as a scale factor
to normalize the feature x and then using convolution to refine the
information in it, the information of the edge map edgei and the
feature x is fully utilized, which is a more effective way to play the
role of the edge map.

3.4. Discriminator with Frequency Discrimination

In response to the lack of definition for image frequency infor-
mation in the discriminator, we propose transforming the image
from the spatial domain to the frequency domain. The discrimina-
tor is fed with frequency-sensitive image features, which are used
to score the image’s authenticity in the frequency domain.

In existing tasks of generating images from layouts, most dis-
criminators first extract the features of the input image or the ob-
jects in it and then score their authenticity. However, this calcu-
lation process only pays attention to the intensity of the semantic
features learned in the spatial domain, but not the intensity of the
semantic features learned in the frequency domain, which causes
the problem that the definition for image frequency information is
missing in the discriminator.

To address this issue, we propose a frequency-sensitive loss item
Lfre complementary to existing spatial domain losses. The details
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Figure 4: Detailed implementation of the edge fusion module
(EFM). (a) and (b) are two different ways, and the way (a) was
chosen in our experiments. "conv" stands for the convolution oper-
ation.

of this loss item can be found in Sec. 3.6, and here is the work
that needs to be done before applying this loss item. Inspired by
[JDWL21], we apply the 2D discrete Fourier transform to the image
to get its frequency representation Ifre. The frequency value at each
coordinate in the frequency domain depends on the pixel value at
all coordinates in the spatial domain. The formula is expressed as
follows:

F(u,v) =
W−1

∑
x=0

H−1

∑
y=0

f (x,y) · e−i2π( ux
W + vy

H ), (3)

where W and H represent the width and height of the image; f (x,y)
represents the pixel value of the image in the spatial domain at (x,y)
coordinate; F(u,v) is the frequency value of the image in the fre-
quency domain at (u,v) coordinate; e is the base of the natural log-
arithm, and i is the imaginary unit. According to Euler’s formula as
shown in Eq. (4):

e−iθ = cosθ+ isinθ, (4)

the natural exponential function in Eq. (3) can be rewritten as

e−i2π( ux
W + vy

H ) = cos2π(
ux
W

+
vy
H
)− isin2π(

ux
W

+
vy
H
). (5)

Therefore, the frequency value of the image in the frequency do-
main is calculated by the orthogonal cosine and sine functions,
which represent the real and imaginary parts of the frequency value,
respectively.

We apply convolutional neural networks to the frequency rep-
resentation of an image to extract image features at the frequency
level. The discriminator is asked to rate the image’s authenticity
by this feature information. High frequencies correspond to places
in the image where the grayscale or brightness change drastically,
that is, edge contours. Low frequencies correspond to places in the
image where the grayscale and brightness changes gently, that is,
large areas. By discriminating images in the frequency domain, it
helps the generator to generate correct high-frequency and low-

frequency information, corresponding to higher-quality edge con-
tours and large areas of the spatial domain image.

Additionally, we use a projection discriminator, inspired by
projection-based cGANs [MK18], when scoring the authenticity
of objects contained in the spatial domain image. The word em-
bedding of label l in the layout is added into the discriminator as
additional condition information, participating in the computation
of the adversarial hinge loss for objects in the image. The discrim-
inator and the generator have been fighting against and promoting
each other, making the generated images and objects in them better
and better.

3.5. Generator

The generator inputs have two parts: a layout and a latent code
z. The category label l of each object/stuff in the layout is trans-
formed into a word embedding with dimension dl (dl = 180 in our
experiments). The latent code z is a vector of dimension dz sam-
pled from the normal distribution to characterize the diversity of
the generated images (dz = 128 in our experiments). The generator
uses ResNet [HZRS16] as the backbone architecture, containing a
linear layer and multiple ResBlocks. We use B ResBlocks to gener-
ate final images with resolutions of 4B−1×4B−1 (e.g., 4 ResBlocks
can generate images with a resolution of 64×64).

3.6. The Loss Functions

Frequency-sensitive Loss Lfre. This loss term penalizes images
not correctly classified in the frequency domain and is complemen-
tary to the existing spatial domain losses. Inspired by the hinged
version of the traditional adversarial loss [TRB17], the Lfre loss
item has different forms in the generator and discriminator. In the
discriminator, Lfre is formulated as follows:

L f re(I f re) =

{
max(0,1− pI f re), If I f re means Ir f re

max(0,1+ pI f re), If I f re means I f f re
(6)

In the generator, Lfre is formulated as follows:

L f re(I f f re) =−pI f f re . (7)

Among them, Irfre represents the frequency representation corre-
sponding to the ground truth Ireal; Iffre represents the frequency
representation corresponding to the final generated image Ifake; p∗
represents the true score of ∗ output by the network layer.

Focal Frequency Loss LFFL. This loss item considers the dif-
ference between the final generated image Ifake and the ground
truth Ireal in the frequency domain and improves the quality of the
generated image by reducing this difference. So we introduce this
loss item to better handle the high-frequency information in the
image generation process, that is, edge contours. The loss item is
expressed as the following formula:

LFFL = FFL(Ireal , I f ake). (8)

Perceptual Loss Lper. This loss item constrains the distance be-
tween the generated and ground truth images in deep-level features.
We add this loss item between the intermediate images midi output
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by the i-th ToImg and the ground truth images of the corresponding
resolution. The formula is

Lperi = Dis(F(Ireali),F(midi)), (9)

where Dis is the distance function, and F represents the network
that extracts the features of the images (in our experiments, Dis is
the L1 distance, and F is the VGG-19 [SZ15] network). We need
to scale the ground truth images to get images Ireali of the same
size as the midi. Note that when i refers to the last ToImg in the
generator, Ireali refers to Ireal, and midi refers to Ifake.

Adversarial Loss Lt(I,L). Unlike the traditional adversarial
loss [GPAM∗14], we adopt its hinge version [TRB17]. Its gen-
eral idea is to make the distance between images/objects that are
not correctly classified and images/objects correctly classified suf-
ficiently far away. The adversarial loss in the discriminator is ex-
pressed by the formula as follows:

Lt(I,L) =

{
max(0,1− pt), if I is a real image
max(0,1+ pt), if I is a fake image

(10)

The adversarial loss in the generator is expressed as follows:

Lt(I,L) =−pt , if I is a fake image (11)

where t ∈ {I,ob j1, ...,ob jm} and pt represent the realness score of t
output by the network layer. The subscript m represents the number
of objects in an image. We use LI(I,L) to represent the adversarial
loss of the image, that is, t ∈ {I}. Similarly, we use Lob j(I,L) to
represent the objects’ adversarial loss, that is, t ∈ {ob j1, ...,ob jm}.

Total Loss. In general, the total loss function of the discriminator
is expressed as:

LD = λ f reL f re +λILI(I,L)+λob jLob j(I,L). (12)

The total loss function of the generator is expressed as:

LG =λ f reL f re +λFFLLFFL

+λper

n

∑
i=1

Lperi +λILI(I,L)+λob jLob j(I,L),
(13)

where n is the number of ResBlocks in the generator. L f re, LI(I,L),
and Lob j(I,L) have different forms for the discriminator and gen-
erator (see Eq. (6), Eq. (7), Eq. (10), and Eq. (11) for details). λ∗
indicates the proportion of the following loss item to the total loss.
We can get better results by adequately adjusting the proportion of
each loss item.

4. Experiments

4.1. Datasets

We used the two most commonly used benchmarks, the COCO-
Stuff [CUF18] and Visual Genome (VG) [KZG∗17] datasets. The
annotation file of the COCO-Stuff dataset contains 80 object in-
stance categories (such as person, bicycle, etc.) and 91 stuff cate-
gories (such as clouds, fog, etc.). Following the settings of [SW19,
SW20], objects whose bounding box takes up less than 2% of the
image will be ignored, and the number of objects in each image is
between 3 and 8. 74777 and 3097 images are used for training and
testing, respectively. The Visual Genome dataset contains annota-
tion information for 178 object categories. We follow the settings

of [SW19, SW20] to preprocess the dataset, using 62565 and 5062
images containing 3 to 30 objects for model training and testing.

4.2. Implementation Details

Our algorithm is implemented with PyTorch [PGM∗19]. We use
Synchronized Batch Normalization [IS15] in each ResBlock of the
generator. It can make full use of existing computing resources to
achieve synchronization. This operation is performed on all devices
instead of independently limiting to each GPU. It is also used in the
edge fusion module (EFM). Spectral Normalization [MKKY18] is
used in both the generator and discriminator.

The generator and discriminator use Adam [KB15] as the opti-
mizer, and the learning rate is set to 1e−4. The batch size is 16, and
a total of 200 epochs are trained. We use 4 Tesla V100 GPUs for
our experiments. The weight parameters λFFL, λper, λI , λob j are
set to 1, 1, 0.1, 1, respectively. And λ f re is 1 when facing Irfre and
0.1 when facing Iffre.

4.3. Methods in Comparison

We compared with five previous methods: Layout2Im [ZMYS19],
attribute-guide layout2im [MZS20], LostGAN-V2 [SW20], He et
al. [HLY∗21] and Li et al. [LWK∗21]. For brevity of description
and neatness of presentation in figures or tables, we abbreviate the
model proposed by He et al. [HLY∗21] as CAL2I. The attribute-
guide layout2im [MZS20] model is abbreviated as AG-layout2im
and the model proposed by Li et al. [LWK∗21] as LAMA.

Layout2Im [ZMYS19] pioneered the generation of images using
layouts directly as input sources. It divides the representation of
each object in the image into a specified/certain part (category) and
an unspecified/uncertain part (appearance). It first builds a feature
map for each object in the input layout. Then the convolutional
Long-Short-Term Memory (cLSTM) network is used to fuse the
feature maps of the individual objects into a hidden feature map,
which is used to generate the final image.

AG-layout2im [MZS20] is an extension of Layout2Im
[ZMYS19]. In addition to layout information, it also adds at-
tributes of each object as optional input, where attributes can be
specified by the user or sampled from prior class distributions
of object-attribute co-occurrence counts. It learns 106 (/40000)
attributes in the dataset, enhancing the ability to semantically
control individual object instances. At the same time, it introduces
SPADE [PLWZ19] to prevent semantic information from being
washed away by conventional normalization layers.

LostGAN-V2 [SW20] learns fine-grained mask maps in a
weakly-supervised manner during image generation to bridge the
gap between layouts and images. It is equivalent to transforming
the layout-to-image problem into a layout-to-mask-to-image prob-
lem. Its input includes spatial layouts and style codes, and style
control includes two levels of image and mask.

CAL2I [HLY∗21] introduces a context-aware feature transfor-
mation module in the generator. Each object and stuff update their
respective features by checking other existing objects or stuff in
the image through the self-attention mechanism. At the same time,
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Table 1: Comparison results on the COCO-Stuff (COCO) and Visual Genome (VG) datasets. Bold means the best performance under the
same resolution conditions in the same column.

Methods Resolution IS↑ FID↓ DS↑
COCO VG COCO VG COCO VG

Real images 64× 64 12.58± 0.59 11.81± 0.55 - - - -
Real images 128× 128 20.57± 1.11 19.67± 0.88 - - - -
Real images 256× 256 27.71± 1.64 26.78± 0.95 - - - -

Layout2Im [ZMYS19] 64× 64 8.59± 0.39 7.71± 0.40 43.01 38.78 0.15± 0.07 0.17± 0.09

AG-layout2im [MZS20] 64× 64 - 8.1± 0.2 - 33.09 - 0.10± 0.02
0.20± 0.01

LAMA [LWK∗21] 64× 64 8.98± 0.63 7.64± 0.34 28.48 22.70 0.37± 0.10 0.38± 0.09
Ours64 64× 64 10.52± 0.62 8.52± 0.51 24.25 19.27 0.17± 0.08 0.16± 0.08

AG-layout2im [MZS20] 128× 128 - 8.5± 0.1 - 39.12 - 0.15± 0.09
LostGAN-V2 [SW20] 128× 128 12.58± 0.79 10.14± 0.45 31.12 28.97 0.45± 0.09 0.42± 0.09

CAL2I [HLY∗21] 128× 128 13.52± 0.48 11.25± 0.50 30.40 25.67 0.16± 0.07 0.30± 0.10
LAMA [LWK∗21] 128× 128 13.02± 0.58 10.45± 0.48 31.06 27.27 0.46± 0.09 0.49± 0.09

Ours128 128× 128 13.88± 0.53 12.05± 0.35 29.55 20.95 0.35± 0.10 0.27± 0.08

LostGAN-V2 [SW20] 256× 256 15.86± 0.86 13.38± 0.53 37.61 32.38 0.55± 0.09 0.53± 0.10
LAMA [LWK∗21] 256× 256 17.06± 1.04 12.96± 0.52 38.08 36.92 0.49± 0.11 0.54± 0.10

Ours256 256× 256 17.24± 0.92 13.26± 0.76 36.49 35.72 0.44± 0.10 0.42± 0.10

it uses the Gram matrix computed from the feature maps of the
generated object images to preserve location-sensitive information
in the discriminator, which greatly enhances the appearance of ob-
jects.

LAMA [LWK∗21] assumes that it is important to generate clean
and semantically clear semantic masks in the layout-to-image pro-
cess. Based on this assumption, the Locality-Aware Mask Adaption
(LAMA) module is proposed. It adapts the raw semantic mask to a
cleaner one by scaling the mask values of each object in each pixel
individually with a learned matching mechanism.

4.4. Evaluation Metrics

We perform quantitative, qualitative, and ablation studies on the
models. We hope that the generated images conform to the size
and position information of the objects provided in the layout.
They should also look clear, real, and diverse. We use three met-
rics to quantitatively evaluate the images generated by the model:
Inception Score (IS) [SGZ∗16], Fréchet Inception Distance (FID)
[HRU∗17], and Diversity Score (DS).

Inception Score (IS) [SGZ∗16] mainly focuses on the clarity
and diversity of images. It uses the Inception-V3 [SVI∗16] network
pre-trained on the ImageNet [DDS∗09] dataset for calculation. The
diversity in IS refers to the diversity of the categories of objects in
the image. For example, if a model can generate sufficiently diverse
pictures, the distribution of pictures generated by the model with a
high IS score in each category should be even. The higher the IS
value, the better the image quality.

Fréchet Inception Distance (FID) [HRU∗17] focuses on the
distance between the generated and ground truth image in the fea-
ture space. It first uses the Inception-V3 [SVI∗16] network to per-
form feature extraction on the image, then uses the Gaussian model

to model the feature space, and finally uses the mean and covari-
ance matrix to calculate the distance between the two distributions.
The lower the FID value, the better the quality of the generated
image.

Diversity Score (DS) compares the perceptual similarity of two
images generated from the same layout in the deep feature space.
Unlike the diversity in IS, DS focuses on the diversity of two im-
ages corresponding to the same layout, that is, the degree to which
one of the generator’s inputs z works. Specifically, we use the
LPIPS metric [ZIE∗18] to calculate DS, where we use AlexNet
[KSH12] to extract the deep features of the image.

4.5. Quantitative Results

Table 1 shows the comparison results of the quantitative met-
rics. The data in the table are calculated using the pre-trained
models provided by the relevant authors under their respec-
tive datasets division and processing conditions, except for AG-
layout2im [MZS20]. Because we did not find its pre-trained model,
we reused the data provided in its paper. We denote our models
that generate images with resolutions of 64× 64, 128× 128 and
256×256 as Ours64, Ours128 and Ours256, respectively.

For IS and FID metrics, our model outperforms all other methods
except Ours256 is slightly inferior to LostGAN-V2 [SW20] on the
VG dataset. It is worth noting that at a resolution of 64× 64, the
FID metric of our model under the COCO dataset is more than 4
points lower than the second-place LAMA [LWK∗21]. Similarly,
under the condition of 128× 128 resolution, it is nearly 5 points
lower than the second-place CAL2I [HLY∗21] on the VG dataset.
On the DS metric, although the performance of our model is not
the best, the quality of images and the edge contours of objects
generated by our model have great advantages over other models,
see Sec. 4.6 for details.
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Figure 5: Examples of generating samples from a given layout by different methods. The left side of the dashed line is the results under
COCO-Stuff [CUF18], while the right is the sampling results under the Visual Genome [KZG∗17] dataset. Only Layout2Im [ZMYS19],
LAMA64 [LWK∗21], and Ours64 images have a resolution of 64×64, and the rest are 128×128.
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Figure 6: Examples of generating samples from a given layout by different methods. The left side of the dashed line is the results under
COCO-Stuff [CUF18], while the right side is the sampling results under the Visual Genome [KZG∗17] dataset. All images are of 256×256
resolution.

4.6. Qualitative Results

Figures 5 and 6 show images generated by our method and
some other methods, including Layout2Im [ZMYS19], LAMA
[LWK∗21], LostGAN-V2 [SW20], and CAL2I [HLY∗21]. Also,
more comparisons are provided in the supplemental material. As
can be seen from these examples, the generative ability of our
model is impressive, especially in the processing of edge contours.

At a resolution of 64 × 64, it is difficult for Layout2Im and
LAMA64 to generate recognizable objects. Nevertheless, the ob-
jects generated by Ours64 are plausible and reasonable. The edges
of objects in (a), (b), (e), and (h) are smooth and full, which is in
line with the human visual system.

Under the condition of 128×128 resolution, the lines of the vase
generated by LostGAN-V2, CAL2I, and LAMA128 in (b) are dis-
torted, which obviously does not conform to people’s perception of
vases in the real world. In (c), the legs of the zebra generated by
CAL2I are missing, and LAMA128 fails to generate the zebra ob-
ject. The boat and train serve as central subject objects in (f) and
(h), and the remaining methods generate these two objects with
poor recognizability, while Ours128 generates the boat and train
with high quality. The layout of (g) is complex and contains many
objects. The images generated by LostGAN-V2 and LAMA128
look cluttered. While the image generated by Ours128 in (g) is
clean and straightforward, and the edge lines of objects such as
lamps are apparent.
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Figure 7: Qualitative comparison of ablation experiments on COCO-Stuff. All images are of 128×128 resolution. Areas requiring attention
are marked with red dashed rectangles. See text for more details.

Under the condition of 256× 256 resolution, problems such as
distortion and unreasonable edges of objects are easier to find.
The giraffe generated by LostGAN-V2 and LAMA in (a) has only
textures but no edge contours, which looks a bit scary. The right
boundary of the building in (d) generated by LostGAN-V2 appears
to blend with other component pixels, and the paper in (f) passes
through the pizza, which is not in line with the actual situation.

Most of the objects generated by LAMA are distorted, such as the
keyboard in (b), the bus in (c), the building in (d), and the pizza
in (f). Our model sometimes does not handle image details well
enough, such as undesired cluttered pixels in the desk-stuff in (b),
and an almost missing man in (d). But in comparison, the images
generated by Ours256 look more natural and harmonious because
the objects’ edges are smoother and fuller.
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4.7. Ablation Study

In this experiment, we verify the necessity of its existence by re-
moving key components in our model. The experiment was com-
pleted on the COCO-Stuff [CUF18] dataset. The ablation experi-
ment design is as follows:

w/o edge. Edge-related modules, specifically the edge genera-
tion module (EGM) and edge fusion module (EFM), are no longer
used in the generator. This experiment verifies the effect of these
two modules on image quality.

w/o scale_factor. In the edge fusion module (EFM), the edge
map is no longer used as a scale factor to normalize the output of
the features by ResBlock (see Figure 4(a)). Instead, the convolu-
tion operation is directly applied to the edge map to extract feature
information (see Figure 4(b)). This experiment compares which of
the two ways of adding edge information is more efficient.

w/o D f re. Images are not converted to frequency representation
in the discriminator. The L f re loss item is also not used in the gener-
ator and discriminator during training. This experiment is to verify
the effectiveness of frequency discrimination.

w/o LFFL. The LFFL loss item is not used during training to see
its effect on image quality.

The quantitative results are shown in Table 2. The Full model
achieves the best results on IS and FID metrics. All models with
individual key components removed show a drop in performance.
Among them, the model that removes edge-related modules (w/o
edge) has the worst effect, so adding edge information during im-
age generation can effectively improve the quality of image gener-
ation. Compared with w/o edge, the effect of w/o scale_factor with
edge information is improved. We can also see a gap still compared
with the full model. So the way of adding edge information is cru-
cial. Both w/o D f re and w/o LFFL degrade the performance of the
model, too. Therefore, all these key components are essential to
improving the generated image quality.

Table 2: Ablation study of our model on COCO-Stuff. Bold indi-
cates the top performer in the same column.

Methods IS↑ FID↓
w/o edge 12.63± 0.48 32.54

w/o scale factor 13.17± 0.51 31.27
w/o D f re 13.74± 0.73 30.10

w/o LFFL 13.42± 0.65 30.25
Full model 13.88± 0.53 29.55

The qualitative results are shown in Figure 7. From these exam-
ples, it can be seen that most of the objects generated by w/o edge
have problems of poor recognizability. The cat in (a), the two ele-
phants in (c), the zebra in (d), and the bus in (e) do not see their
original shape at all. Moreover, pixel blending occurs between ad-
jacent donuts in (f). Compared with w/o edge, w/o scale_factor of
adding edge information has a certain improvement in image qual-
ity. For example, the lines of the zebra in (d) and the donuts in (f)

are clearer and smoother. But some objects are still difficult to iden-
tify, such as the cat in (a) and the bus in (e). w/o D f re and w/o LFFL
use a scale factor operation for edge maps. It can be seen that the
quality of the elephants generated in (c) and the bus in (e) are sig-
nificantly improved by both methods compared to w/o scale_factor.
But there are still some problems with the images they generate,
such as the cat in (a), the zebra in (d), and the donuts in (f) do not
work well. The full model fuses the advantages of each component
to generate more recognizable objects and higher-quality images,
as in (g) the vase looks plausible.

5. Conclusion

This paper proposes a novel Generative Adversarial Network ar-
chitecture with enhanced edge information for layout-based image
generation (EL-GAN). EGM and EFM are included in each level
of the generator, which can effectively iteratively learn and opti-
mize the feature encodings containing edge information through
multi-scale learning. These feature encodings influence the subse-
quent image generation process by modulating the affine transfor-
mation parameters in the normalization layers. The purpose is to
make the edge contours in the generated images clearer and solve
the problems of distortion and poor recognizability of object-level
generation. At the same time, frequency-sensitive image features
are added to the discriminator, which enhances the definition of
image frequency information. Extensive experiments verify the ne-
cessity of key components in our model and demonstrate that our
proposed method achieves state-of-the-art performance. Our future
work will continue to focus on improving object-level generation
quality and implementing more general strategies that do not rely
on specific model design.
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