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SMS

RMSE: 0.190 RMSE: 0.184 RMSE: 0.264
SMBS (ours)

RMSE: 0.077 RMSE: 0.121 RMSE: 0.054
Figure 1: Equal time comparison between SMS and our SMBS with the glass scene that showcases the caustics effect on the ground. Our
approach has lower root mean square error (RMSE) than SMS.

Abstract
We propose Specular Manifold Bisection Sampling (SMBS), an improved version of Specular Manifold Sampling (SMS)
[ZGJ20]. SMBS is inspired by the small and large mutations in Metropolis Light Transport (MLT) [VG97]. While the Jaco-
bian Matrix of the original SMS method performs well in local convergence (the small mutation), it might fail to find a valid
manifold path when the ray deviates too much from the light or bounces from a complex surface. Our proposed SMBS method
adds a large mutation step to avoid such a problematic convergence to the local minimum. The results show SMBS can find
valid manifold paths in fewer iterations and also find more valid manifold paths. In scenes with complex reflective or refractive
surfaces, our method achieves nearly twice or more improvement when measured in manifold walk success rate (SR) and root
mean square error (RMSE).

CCS Concepts
• Computing methodologies → Rendering;

† Corresponding author

1. Introduction

Path Tracing covers all paths in the Rendering Equation [Kaj86]
theoretically, but not every path can be easily found in practice,
such as the well-studied specular-diffuse-specular (SDS) paths. Re-
cently Manifold Exploration [JM12] and Manifold Next-Event Es-
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timation (MNEE) [HDF15] explore the surface manifold on re-
fracted paths to connect to the light successfully.

Specular Manifold Sampling (SMS) [ZGJ20] improves MNEE
further by sampling reflective objects to find more valid paths than
MNEE. While the Jacobian Matrix of the SMS method performs
well in local convergence, it might fail to find a valid manifold
path when the ray deviates too much from the light or bounces
from a complex surface. We propose Specular Manifold Bisection
Sampling (SMBS) which adds a large mutation step to avoid such
a problematic convergence to local minimum. The results show
SMBS can find valid manifold paths in fewer iterations and also
find more valid manifold paths than the original SMS.

2. Prior Work

Light Transport Simulation has been an important topic in com-
puter graphics for many years. The original Ray Tracing [Whi80]
simulates paths with reflection and refraction. The advent of the
Rendering Equation [Kaj86] led to the popularity of Path Tracing,
a Monte Carlo integration technique that simulates all possible light
paths through random walk.

While Path Tracing simulates all possible paths to get a realistic
picture, the random walk from the eye could miss the light to form
a valid path, leading to long convergence time to form a noise-free
picture. In contrast, Direct Lighting [SWZ96] and Bi-Directional
Path Tracing (BDPT) [LW93] can efficiently find a valid path by
forcibly connecting to the light.

BDPT generates eye paths and light paths by random walk be-
fore connecting to the light points, so it is still difficult to find
the paths that pass through a small gap, such as the scenes where
the light is behind an ajar door. In addition, the specular-diffuse-
specular path is also difficult to be found through forcible con-
nection because of the material constraint. Metropolis Light Trans-
port (MLT) [VG97] [KSK01] first finds enough valid paths through
BDPT, and then reuses these paths by mutation (disturbance) to
quickly find many different valid paths.

Our work focuses on caustics rendering within the path trac-
ing framework. The classic Photon Mapping [Jen96] offers a fast
yet biased rendering method for caustics. The Vertex Connection
and Merging (VCM) [GKDS12] offers a caustics rendering method
by combining the Bidirectional Path Tracing and Photon Map-
ping with multiple importance sampling. Recently Manifold Explo-
ration [JM12], Manifold Next Event Estimation (MNEE) [HDF15],
and Specular Manifold Sampling (SMS) [ZGJ20] were proposed to
quickly find the valid caustics paths. We will discuss them in more
detail in Section 3.

3. Background

The caustics effects in the scene are caused by refractive or reflec-
tive surfaces. Take Figure 2 as an example. The caustics appear on
x1 when the light from x′4 is refracted by the transparent sphere.
However when we perform path tracing, the initial path starting
from x1 might find x2, x3, x4 and miss the light at x′4. Manifold Ex-
ploration [JM12] offers a solution. The first step generates x1, . . .,x4
by random walk. Although it has not found the light at x′4 initially,

Figure 2: The calculation process of Manifold Exploration.

Figure 3: The geometry factor (left) and the generalized geometry
factor (right).

the main purpose of this step is to get all the manifold points of
reflection and refraction on the path. The second step uses the cur-
vature constraint of each point (e.g., c2 and c3) to build a constraint
matrix C, which then yields the Jacobian matrix ▽C. This allows
us to move toward the light x′4 by A−1·B4·∆x4 to find the desired
x2. Repeat steps one and two until the ray hits the light. Algorithm
1 shows the Newton down-hill method to speed up the approxi-
mation, as outlined in [JM12]. After finding the path, the unbiased
result is obtained by the generalized geometry factor in Figure 3.

Manifold Next Event Estimation (MNEE) [HDF15] applies
Manifold Exploration to Next Event Estimation (NEE) to connect
the path to the light even with the presence of refraction. It is in
particular effective to solve the difficult specular-diffuse-specular
(SDS) cases. In addition, MNEE improves the equations of Man-
ifold Exploration in Figure 2 by changing the step of finding ∂x2
from ∂x4 to finding ∂x2 from ∂c3.

MNEE can find the caustics caused by refraction but not the
caustics caused by reflection. Specular Manifold Sampling (SMS)
[ZGJ20] samples all specular objects including reflective surfaces
to address the issues with the reflected caustics path. SMS also im-
proves MNEE further by changing the half-vector based constraint
function of MNEE to angle-difference based constraint function.
The improvement can be clearly seen from Figure 4. In addition
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Algorithm 1: WalkManifold [JM12]
Input: A path x1, . . .,xn before mutation, and a light point

x′n.
Output: A path x2, . . .,xn−1 after mutation.

1 Set i = 0 and β = 1
2 while ∥xn− x′n∥> εL do
3 p = x2−βT (x2)P2A−1BkT (xn)

T (x′n− xn)
4 Propagate the ray x1→p through all specular

interactions, producing x+2 , . . .,x
+
n .

5 if step 4 succeeded and ∥x+n − x′n∥< ∥xn− x′n∥ then
6 x2, . . .,xn = x+2 , . . .,x

+
n

7 β = min(1,2β)

8 else
9 β = β/2

10 end
11 Set i = i+1, and fail if i > N.
12 end
13 return x2, . . .,xn−1

the SMS proposes a two-stage method to work on normal-mapped
surfaces, which explores the manifold with surface normal and then
explores the manifold with the texture normal.

Half-vector

SR: 5%

Angle difference

SR: 43%
Figure 4: Comparing the constraint function of half-vector (left)
and angle difference (right) in 1 spp. Higher manifold walk success
rate (SR) means more manifold paths can be found.

4. Specular Manifold Bisection Sampling

We propose Specular Manifold Bisection Sampling (SMBS), an
improved version of SMS [ZGJ20]. SMBS is inspired by the small
and large mutations in Metropolis Light Transport (MLT) [VG97].
While the Jacobian Matrix of the original SMS method performs
well in local convergence (the small mutation), it might fail to find
a valid manifold path when the ray deviates too much from the light
or bounces from a complex surface. Our proposed SMBS method
adds a large mutation step to avoid such a problematic convergence
to the local minimum. Figure 5 explains the difference between
the small mutation and the large mutation. When any of the spe-
cific conditions in Figure 6 occurs, we trigger the large mutation
step. Otherwise the small mutation step of the original SMS is fol-
lowed. The purpose of the large mutation is to find a better search

area, which is then followed by the small mutation to approach the
correct path. The following subsections further explain our SMBS
method in detail.

Figure 5: Schematic of the small mutation and the large mutation.
The small mutation is the strategy in the original SMS. It explores
x+2 on the adjacent area according to the slope of x2. When x2 is
on a back-lit surface, the large mutation is needed to shift x2 to x+2
and make v1 reflect to x′n.

1. Total internal reflection.
re f ract(vk−2,Nk−1,density) = 0
when k = 3, . . .,n.

2. Backlight.
dot(Nn−1,Ln−1)< 0.

3. Large deviation.
dot(vn−1,Ln−1)< 0.8.

Figure 6: Conditions of the large mutation.

4.1. Generating the Initial Path

Regardless of MNEE, SMS, or our SMBS, the initial path must be
generated, and then the answer can be slowly approached based on
this path. First, trace a ray which starts from the eye. Second, ran-
domly sample a specular surface and a light surface when the ray
hits a diffuse surface by random walk. Taking the diffuse surface
at x1 as an example, shoot a ray from x1 to the specular surface x2
and get the initial path x1, . . .,xn through multiple refractions and
reflections (xn is non-specular). If the light surface x′n is not hit in
the end, it will use mutation to find the path from x1 to x′n. See 4.2
for a detailed mutation process.

4.2. Large Mutation

The path mutation method of SMBS is shown in Algorithm 2. Com-
pared to the previous Algorithm 1, our method adds a condition of
large mutation in line 3. We perform a large mutation when the
path x1, . . .,xn satisfies one of the conditions described in Figure
6, otherwise we use the small mutation of the original SMS. The
first condition occurs at the total internal reflections during a re-
fraction such as the cases in Figure 1. The second condition avoids
the back-lit situations where the small mutations usually get stuck.
Figure 10 shows an example of such cases. The third condition is
designed to avoid too many small mutations which could be costly.
Figure 12 offers an example of such cases. Our experiments show
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Algorithm 2: OurWalkManifold
Input: A path x1, . . .,xn before mutation, and a light point

x′n.
Output: A path x2, . . .,xn−1 after mutation.

1 Set i = 0 and β = 1
2 while ∥xn− x′n∥> εL do
3 if large mutation (see Figure 6) then
4 v′2 = GetNextDir((x2, . . .,xn−1),x

′
n)

5 v1 = normalize(x2− x1)
6 α = GetRatio(x1,x2)
7 β = 1
8 p = x1 +(α(−v′2)+(1−α)v1)

9 else
10 p = x2−βT (x2)P2A−1BkT (xn)

T (x′n− xn)
11 end
12 Propagate the ray x1→p through all specular

interactions, producing x+2 , . . .,x
+
n .

13 if large mutation or step 13 succeeded and
∥x+n − x′n∥< ∥xn− x′n∥ then

14 x2, . . .,xn = x+2 , . . .,x
+
n

15 β = min(1,2β)

16 else
17 β = β/2
18 end
19 Set i = i+1, and fail if i > N.
20 end
21 return x2, . . .,xn−1

Algorithm 3: GetNextDir

Input: A path x2, . . .,xn−1, and a light point x′n.
Output: A direction v′2 by large mutation.

1 v′2 = normalize(xn−1− x′n)
2 for i = n−1; i >= 2; i = i−1 do
3 if xi is a reflective vertex then
4 v′2 = re f lect(v′2,xi)
5 else
6 v′2 = re f ract(v′2,xi)
7 end
8 end
9 return v′2

that a threshold value between 0.8 and 0.9 works well for condition
3.

Ideally, the large mutation quickly finds a better search area and
the small mutation approaches the correct path. Therefore, the ideal
large mutation must have low complexity and roughly approach the
correct path.

Our first thought was to trace back from x′n to xn−1 to get the
path x′1, . . .,x

′
n, and then let the next mutation change to shoot a ray

from x1 to x′2. But the cost of tracing paths was too high in practice.
Instead we use a much simpler approach as shown in Algorithm 3.
Let v′n be a direction of x′n to xn−1. Substitute v′n and the normal

of xn−1 into the reflection or refraction formula to get v′n−1. Then
substitute v′n−1 and the normal of xn−2 into the reflection or refrac-
tion formula to get v′n−2. And so on, -v′2 will be the direction of the
next mutation.

It is worth mentioning that the stage one of the two-stage SMS
[ZGJ20] may be considered a certain kind of large mutation. How-
ever, its large mutation is only performed once at the initial stage
while our SMBS method may perform large mutation whenever it
is necessary (i.e., Algorithm 2, Line 3). Furthermore, while the two-
stage SMS works mainly on normal-mapped reflection, our large
mutation works on all types of specular surfaces. Figure 12 offers
a validation of the above observation.

4.3. Interpolation Coefficient α

According to Figure 7, in order to make the large mutation more
stable, our next sampling direction is the interpolation between the
previous direction v1 and the current evaluation direction −v′2. Al-
gorithm 4 shows the formula used to calculate the interpolation co-
efficient (the offset of the large mutation). Although taking the half-
vector of v1 and −v′2 is the easiest method, we have observed that
we cannot immediately know whether it is a good mutation toward
the direction −v′2. What is a good mutation? That is, the direction
can still hit the specular object after the mutation, and the offset
on the specular surface should be moderate. Therefore we further
check the intersection with the bounding box of the specular object
containing x2. If the mutation does not hit the specular object, then
we reduce the offset toward the direction −v′2.

Figure 7: Process of the large mutation. (a) The path before muta-
tion. (b) The path traced backward from the light. (c) The correct
path is usually between (a) and (b), so an interpolation of v1 and
−v′2 as the direction of mutation is chosen.

Figure 8 shows that using interpolation coefficient to get the next
sampling direction has lower average mutation numbers per path
(mpp), which means that a manifold path can be found through
fewer mutations. In addition, a good mutation also increases the
manifold walk success rate (SR), which means it is easier to find
the manifold paths.

4.4. Unbiased Results

Finally, we use the same Algorithm 5 as the SMS to get unbiased
results. First find a manifold path. Then get the PDF, pk in Algo-
rithm 5, of the path by randomly sampling manifold paths.

5. Results

We modify the open-source version of SMS which is based on Mit-
suba2 [Jak20]. Regarding the program, we mainly modified the
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Algorithm 4: GetRatio
Input: The first vertex x1 and the second vertex x2 in the

path. The previous direction v1 and the current
evaluation direction −v′2.

Output: A interpolation coefficient α.
1 α = 0.5
2 if dot(v1,−v′2)< 0 then
3 //backlight such as the right of Figure 5
4 α = 1
5 end
6 while true do
7 dir = α(−v′2)+(1−α)v1
8 if boundingBox(x2).rayIntersect(x1,dir).isValid() then
9 break

10 end
11 α = α∗0.5
12 end
13 return α

Algorithm 5: UnbiasedSMBS
Input: The shading point x1 and the light point xn with

density p(xn).
Output: Estimate of radiance traveling from xn to x1.

1 x2←sample a specular vertex
2 x∗2← the second vertex returned by OurWalkManifold (alg2)
3 ⟨1/pk⟩= 1
4 while true do
5 x2← sample a specular vertex
6 x′2← the second vertex returned by OurWalkManifold
7 if ∥x′2− x∗2∥< ε then
8 break
9 end

10 ⟨1/pk⟩= ⟨1/pk⟩+1
11 end
12 return fs(x∗2 )G(x1↔. . .↔xn)⟨1/pk⟩Le(xn)/p(xn)

content related to the integrator type "path_sms_ms". We run the
program on a notebook PC with an Intel® Core™ i7-10875H CPU.
The ground truth of each scene is the result of running 1000 sam-
ples per pixel (spp) by unbiased SMS. For each comparison, we list
the running time, manifold walk success rate (SR), average number
of mutations per path (mpp), root mean square error (RMSE) and
other information under each algorithm. The higher the success rate
(SR), the easier it is for the algorithm to find a manifold path. The
lower the mpp, the fewer number of mutations is needed to find a
manifold path, which means less computation.

In Figure 9, the area near the refraction surface has a high prob-
ability of total internal reflection. When the total internal reflection
occurs, SMS will give up on finding a valid path. In contrast, our
SMBS can effectively deal with this kind of path with large muta-
tions.

Figure 10 shows an example where back-lit specular surfaces
are present. Although it is not a difficult case for the SMS which

22 mpp
SR: 34
RMSE: 0.099

17 mpp
SR: 49
RMSE: 0.088

60 mpp
SR: 38
RMSE: 0.181

27 mpp
SR: 58
RMSE: 0.118

Figure 8: Two scenes showing specular reflective and refractive
surfaces, rendered with unbiased SMBS. We show equal-sample
comparison (1 spp) between using −v′2 in Figure 7 as the next
sampling direction (left) and using interpolation coefficient to get
the next sampling direction (right). Insets show average mutation
numbers per path (mpp), manifold walk success rate (SR), and root
mean square error (RMSE).

already has a very high manifold walk success rate, our SMBS can
further improve the results because of our large mutation conditions
(Figure 6) that detect the back-lit cases.

Figure 11 shows that under the equal time, SMS can achieve 2
spp, while SMBS only achieves 1 spp. We find that under the same
spp, SMS only need to process about half of the number of rays in
SMBS, leading to faster rendering. However the values of success
rate show that the number of paths successfully found by SMBS in
this scene is about 9 times higher than that of SMS. Therefore, even
if SMS has a higher spp in this scene under equal time, our method
still has lower RMSE and produces better results.

In the normal-mapped reflection scene of Figure 12, SMBS not
only spends less time, but also has lower RMSE. The number of
rays of SMBS is about half of SMS because SMBS has lower num-
ber of mutations per pixel (mpp). A lower mpp means that SMBS
can spend fewer mutations to find a correct manifold path. The suc-
cess rate of SMBS is also improved because large mutations reduce
the probability of local convergence.

We also compare our results to the two-stage SMS [ZGJ20] in
Figure 12. As mentioned previously in 4.2, the stage one of the
two-stage SMS may be considered a certain kind of large mutation.
However, its large mutation is performed once at the initial stage
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while our SMBS method may perform large mutation whenever it
is necessary. Furthermore, while the two-stage SMS works mainly
on normal-mapped reflection, our large mutation works on all types
of specular surfaces.

6. Conclusions and Future Work

Our SMBS method avoids the problematic convergence to the local
minimum in SMS. In scenes with complex reflective or refractive
surfaces, our method achieves nearly twice or more improvement
when measured in manifold walk success rate (SR) and root mean
square error (RMSE).

We have not yet implemented our SMBS method on GPU. How
to convert the current method into an algorithm that is more con-
ducive to parallel processing is a possible direction for future work.

The higher manifold walk success rate (SR), the more manifold
paths found under the same spp, and the less noise. Therefore, in-
creasing SR helps the convergence of a picture. We think that SR
may be further improved by controlling the specular sampling. For
example, we may reduce the sampling probability of back-lit spec-
ular surfaces because they are less likely to fall on caustics paths.
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P.: Light transport simulation with vertex connection and merg-
ing. ACM Trans. Graph. 31, 6 (nov 2012). URL: https://doi.
org/10.1145/2366145.2366211, doi:10.1145/2366145.
2366211. 2

[HDF15] HANIKA J., DROSKE M., FASCIONE L.: Manifold next event
estimation. Comput. Graph. Forum 34, 4 (jul 2015), 87–97. 2

[Jak20] JAKOB W.: Mitsuba renderer 2, 2020. URL: https://
github.com/mitsuba-renderer/mitsuba2. 4

[Jen96] JENSEN H. W.: Global illumination using photon maps. In Pro-
ceedings of the Eurographics Workshop on Rendering Techniques ’96
(Berlin, Heidelberg, 1996), Springer-Verlag, p. 21–30. 2

[JM12] JAKOB W., MARSCHNER S.: Manifold exploration: A markov
chain monte carlo technique for rendering scenes with difficult specular
transport. ACM Trans. Graph. 31, 4 (jul 2012). URL: https://doi.
org/10.1145/2185520.2185554, doi:10.1145/2185520.
2185554. 1, 2, 3

[Kaj86] KAJIYA J. T.: The rendering equation. SIGGRAPH Comput.
Graph. 20, 4 (aug 1986), 143–150. URL: https://doi.org/10.
1145/15886.15902, doi:10.1145/15886.15902. 1, 2

[KSK01] KELEMEN C., SZIRMAY-KALOS L.: Simple and Ro-
bust Mutation Strategy for Metropolis Light Transport Algorithm.
Tech. Rep. TR-186-2-01-18, Institute of Computer Graphics
and Algorithms, Vienna University of Technology, Favoriten-
strasse 9-11/E193-02, A-1040 Vienna, Austria, jul 2001. hu-
man contact: technical-report@cg.tuwien.ac.at. URL: https:
//www.cg.tuwien.ac.at/research/publications/
2001/Szirmay-2001-METR/. 2

[LW93] LAFORTUNE E. P., WILLEMS Y. D.: Bi-directional path tracing.
In PROCEEDINGS OF THIRD INTERNATIONAL CONFERENCE ON
COMPUTATIONAL GRAPHICS AND VISUALIZATION TECHNIQUES
(COMPUGRAPHICS ’93 (1993), pp. 145–153. 2

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN K.: Monte carlo tech-
niques for direct lighting calculations. ACM Trans. Graph. 15, 1
(jan 1996), 1–36. URL: https://doi.org/10.1145/226150.
226151, doi:10.1145/226150.226151. 2

[VG97] VEACH E., GUIBAS L. J.: Metropolis light trans-
port. In Proceedings of the 24th Annual Conference on Com-
puter Graphics and Interactive Techniques (USA, 1997), SIG-
GRAPH ’97, ACM Press/Addison-Wesley Publishing Co., p. 65–76.
URL: https://doi.org/10.1145/258734.258775, doi:
10.1145/258734.258775. 1, 2, 3

[Whi80] WHITTED T.: An improved illumination model for
shaded display. Commun. ACM 23, 6 (jun 1980), 343–349.
URL: https://doi.org/10.1145/358876.358882, doi:
10.1145/358876.358882. 2

[ZGJ20] ZELTNER T., GEORGIEV I., JAKOB W.: Specular manifold
sampling for rendering high-frequency caustics and glints. ACM Trans.
Graph. 39, 4 (jul 2020). URL: https://doi.org/10.1145/
3386569.3392408, doi:10.1145/3386569.3392408. 1, 2, 3,
4, 5

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

252

https://doi.org/10.1145/2366145.2366211
https://doi.org/10.1145/2366145.2366211
https://doi.org/10.1145/2366145.2366211
https://doi.org/10.1145/2366145.2366211
https://github.com/mitsuba-renderer/mitsuba2
https://github.com/mitsuba-renderer/mitsuba2
https://doi.org/10.1145/2185520.2185554
https://doi.org/10.1145/2185520.2185554
https://doi.org/10.1145/2185520.2185554
https://doi.org/10.1145/2185520.2185554
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://www.cg.tuwien.ac.at/research/publications/2001/Szirmay-2001-METR/
https://www.cg.tuwien.ac.at/research/publications/2001/Szirmay-2001-METR/
https://www.cg.tuwien.ac.at/research/publications/2001/Szirmay-2001-METR/
https://doi.org/10.1145/226150.226151
https://doi.org/10.1145/226150.226151
https://doi.org/10.1145/226150.226151
https://doi.org/10.1145/258734.258775
https://doi.org/10.1145/258734.258775
https://doi.org/10.1145/258734.258775
https://doi.org/10.1145/358876.358882
https://doi.org/10.1145/358876.358882
https://doi.org/10.1145/358876.358882
https://doi.org/10.1145/3386569.3392408
https://doi.org/10.1145/3386569.3392408
https://doi.org/10.1145/3386569.3392408


Jia-Wun Jhang & Chun-Fa Chang / Specular Manifold Bisection Sampling for Caustics Rendering

Ground Truth

SMS

1 spp
138 Mrays
SR: 19%
RMSE: 0.264

SMBS

1 spp
96 Mrays
SR: 44%
RMSE: 0.054

Figure 9: Results of the refraction scenes in roughly equal time
(~14 seconds). Insets show samples per pixel (spp), number of
rays, manifold walk success rate (SR), and root mean square er-
ror (RMSE).

Ground Truth

SMS

1 spp
51 Mrays
SR: 48%
RMSE: 0.143

SMBS

1 spp
48 Mrays
SR: 50%
RMSE: 0.117

Figure 10: Results of the scenes with backlit area in roughly equal
time (~5 seconds). Insets show samples per pixel (spp), number of
rays, manifold walk success rate (SR), and root mean square error
(RMSE).
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Ground Truth

SMS

2 spp
141 Mrays
SR: 6%
RMSE(L): 0.311
RMSE(R): 0.319

SMBS

1 spp
122 Mrays
SR: 55%
RMSE(L): 0.188
RMSE(R): 0.179

Figure 11: Results of the refraction scenes in roughly equal time
(~15 seconds). Insets show samples per pixel (spp), number of
rays, manifold walk success rate (SR), and root mean square er-
ror (RMSE).

Ground Truth

SMS

77 sec, 69 mpp, 1008 Mrays
SR: 26%
RMSE: 0.120

Two-stage SMS

65 sec, 56 mpp, 812 Mrays
SR: 38%
RMSE: 0.082

SMBS

47 sec, 33 mpp, 489 Mrays
SR: 60%
RMSE: 0.067

Figure 12: Results of the normal-mapped reflection scene in 1
spp. Insets show running time, average mutation numbers per path
(mpp), number of rays, manifold walk success rate (SR), and root
mean square error (RMSE).
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