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Figure 1: This fully dynamic scene is rendered at 77 fps with 1793 lights in an image of resolution 1920 × 1080. This is achieved by
introducing new analytic formulae that efficiently computes the spherical harmonics (SH) gradients for lighting with uniform spherical
lights. We integrate our new computations in a SH based rendering system able to compute the lighting from several hundreds of light
sources in real time. This rendering system first computes the SH coefficients and their gradients on a 3D grid, and then compute the shading
at each visible point by interpolating the samples grid. Our formulae reduce the gradients computational cost and allow to: increase the
frame rate, increase the number of SH bands, use more lights and/or increase the 3D grid resolution.

Abstract
When rendering images using Spherical Harmonics (SH), the projection of a spherical function on the SH basis remains a
computational challenge both for high-frequency functions and for emission functions from complex light sources. Recent works
investigate efficient SH projection of the light field coming from polygonal and spherical lights. To further reduce the rendering
time, instead of computing the SH coefficients at each vertex of a mesh or at each fragment on an image, it has been shown, for
polygonal area light, that computing both the SH coefficients and their spatial gradients on a grid covering the scene allows
the efficient and accurate interpolation of these coefficients at each shaded point. In this paper, we develop analytical recursive
formulae to compute the spatial gradients of SH coefficients for spherical light. This requires the efficient computation of the
spatial gradients of the SH basis function that we also derive. Compared to existing method for polygonal light, our method is
faster, requires less memory and scales better with respect to the SH band limit. We also show how to approximate polygonal
lights using spherical lights to benefit from our derivations. To demonstrate the effectiveness of our proposal, we integrate our
algorithm in a shading system able to render fully dynamic scenes with several hundreds of spherical lights in real time.

CCS Concepts
• Computing methodologies → Rendering; Rasterization; Real-time simulation;

1. Introduction

Solving the rendering equation, both for real-time and offline appli-
cations, relies on the convolution of spherical functions represent-
ing the appearance of an object, the BSDF, and the incident light
field from the light sources. Whereas Spherical Harmonics (SH) are

a useful representation of spherical functions, projecting an arbi-
trary function on the SH basis is expensive to compute, which lim-
its the number of projected functions per frame or/and adds strong
limitations on their reconstructed frequencies.

Solving this computational issue of SH to enable faster and more
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accurate rendering of scenes lit by several hundreds of area lights is
thus an important challenge. Ideally, the SH coefficients of the inci-
dent light field should be computed at each visible point or at each
vertex of the scene. However, as noted by Wu et al. [WCZR20], the
light field coming from area lights is spatially smooth, as well as its
SH coefficients, and this per-point computation can be efficiently
performed by interpolating SH coefficients stored in a volumetric
grid. Computing and storing spatial gradients of the SH coefficients
on such a grid then enables a smooth and accurate interpolation.
Wu et al. [WCZR20] demonstrate the significant gain in rendering
time provided by this approach by introducing the computation of
the SH gradients for polygonal lights in a Precomputed Radiance
Transfer (PRT) framework [SKS02].

In this paper, rather than considering polygonal lights, we derive
a SH coefficient gradient formulation for spherical lights. Our new
formulation is very efficient (Fig. 1). Based on this formulation,
we propose a method to approximate polygonal lights by spherical
ones. We thus end-up with a faster gradient computation, applicable
to a large variety of light shapes.

This is achieved by introducing three new contributions:

• an efficient computation of the spatial gradient of SH coefficients
for spherical lights (Sec. 4),

• an efficient computation of spatial gradient of SH basis functions
(Sec. 4.3),

• a model approximating polygonal lights SH projection using
spherical lights (Sec. 4.4).

These contributions are then integrated into a real-time rendering
framework that both computes SH coefficients and their gradients
on the vertices of a volumetric grid, and interpolates the SH coef-
ficients at each visible fragment using gradient-based methods (as
first-order Taylor or Hermite interpolation).

In the following, we express the gradient of SH coefficients
(Sec. 4.2) by differentiating the analytical projection of the light
field emitted by spherical lights onto the SH basis proposed
in [MDVP22]. Due to differentiation chain rule, we need to com-
pute the spatial gradient of the SH basis functions (Sec. 4.3). We
derive our gradient formulation using the principle followed by
Sloan [Slo13] so that their computation is fast. Even though our
formulations are specifically derived for spherical lights, they can
trivially be extended to any circularly symmetric function, and the
computation of the gradient of SH basis functions is general.

We evaluate the scalability of our method w.r.t the number of
lights and the interpolation grid resolution in Sec. 6, after showing
how it has been integrated in a recent framework for dynamic SH
lighting [MP21] in Sec. 5.

2. Related works

Spherical Harmonics lighting Real Spherical Harmonics is an or-
thogonal function basis well suited to solve the rendering equa-
tion [Kaj86]. It was first introduced in Computer Graphics for
computing lighting from an environment map [CMS87]. SH pro-
vide a frequency decomposition of spherical functions whose pre-
computation and storage is very efficient for low frequency ap-
proximation, even though remaining more expensive when rep-
resenting high frequencies. Taking advantage of this property,

SH are successfully applied in Precomputed Radiance Transfer
(PRT) [SKS02]. In contrast, wavelet decomposition offers an all-
frequency approach [NRH03] but wavelet coefficients are more ex-
pensive to compute and store.

The usefulness of SH decomposition for PRT has led to sev-
eral contributions, e.g. for extending PRT to dynamic and de-
formable scenes [SLS05], for visibility and shadow approxima-
tion [RWS∗06], or for fast projection using Zonal Harmonics sub-
basis [NSF12,BXH∗18]. We refer readers interested by PRT to the
surveys by Lehtinen [Leh07] and Ramamoorthi [Ram09].

Area lights Area lights are far more convenient to compute
physically-based shading than simple light primitives, such as
point, directional or spot lights. Nevertheless, their use for real-
time rendering is also more complex and expensive. The integra-
tion of the lighting function over an area light source was studied
for different representations of the light source. While Monte-Carlo
integration provides a ground-truth solution for lighting, analytical
integration schemes introduce less stochastic error while being spe-
cific to the area light representation. Dealing with polygonal repre-
sentation of the area light, Heitz et al. [HDHN16] propose a method
called Linearly Transformed Cosines (LTC) to approximate the
lighting by transforming the projection of the polygon onto the unit
sphere toward a clamped cosine according to the BRDF distribu-
tion. To improve the lighting computation of area lights, Peters cou-
ples LTC with importance sampling of the BRDF [Pet21], and All-
menröder and Peters [AP21] combine LTC with SH. Dealing with
spherical representation of the area light, Dupuy et al. [DHB17]
propose a spherical cap parameterization enabling the use of an an-
alytic integration and an importance sampling scheme of the light-
ing function.

These methods are however limited to a small number of lights
to provide real-time performances and the pre-computation of the
radiance transfer is an effective solution to compute lighting with
numerous lights. For SH based lighting, some approaches introduce
an analytical solution to compute the SH coefficients of polygo-
nal lights [WR18,BXH∗18]. Following the approach introduced in
Wang and Ramamoorthi [WR18], Wu et al. [WCZR20] propose to
pre-compute and store the SH coefficients and their spatial gradi-
ents on the vertices of a low resolution 3D grid. These coefficients
are then interpolated during rendering, which allows to handle sev-
eral hundreds of polygonal lights in real-time, while remaining lim-
ited to static scenes.

Radiance caching Irradiance and radiance caching are widely
used to compute global illumination by reconstructing the lighting
function from a sparse set of probes caching the global light field
[WRC88,KGPB08,KGW∗08]. To improve the sparsity of the cache
and enhance the interpolation accuracy, a solution is to use the func-
tion gradients [WH08, KGBP05, JDZJ08, JZJ08]. These methods
estimate the gradient numerically using Monte-Carlo; in contrast,
we compute the gradient of the SH-encoded light field analytically.
Several recent approaches rely on off line pre-computation of ra-
diance cache for real-time rendering [DSJN19, ZBN19]. Based on
a volumetric approach introduced by Greger et al. [GSHG98], our
method computes radiance values and their gradients on probes at
each frame, thus allowing to render fully dynamic lighting.
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Yet, even using techniques that exploit a sparse set of probes
[SL17], the cost of storage becomes high for large and complex
scenes. To overcome this limitation, probes data can be compressed
with only a low loss in quality [SS21]. Our proposal is orthogonal
to these compression methods and can therefore take advantage of
their benefits.

Spherical Harmonics gradient The spatial gradients of SH co-
efficients have not been widely used in Computer Graphics. An-
nen et al. [AKDS04] propose to compute the SH coefficients of
the incident illumination with their spatial gradient on a sparse set
of samples and then reconstruct the SH coefficients on any shaded
point. However, gradients are computed with a numerical integra-
tion over the area light, which significantly increases computations
when considering higher SH frequency bands. On the other hand,
based on the initial results for SH coefficient computation on polyg-
onal light [WR18], Wu et al. [WCZR20] derive an analytical solu-
tion to compute the spatial gradient of SH coefficients on polygonal
lights. Our contributions follow the same principle, but are devel-
oped for spherical lights.

Differentiable rendering Computing the gradient of numerous
rendering quantities is at the heart of differentiable rendering ap-
proaches. Aiming at solving inverse problems [LTL∗19, LZBD21,
NDDJK21], differentiable rendering frameworks mainly rely on
path-space [ZMY∗20] or physical formulation of light trans-
port [ZWZ∗19].

While our propositions are not directly related to such differen-
tiable approaches, they may serve as building blocks for improving
gradient computations of the incident light field. Indeed, several ap-
proaches based on differentiable rendering take advantage of SH.
For instance, Liu et al. [LTL∗19] directly compute the gradient of
the SH basis function. The use of our method leads to faster com-
putations. Lyu et al. [LHL∗21] use a spherical representation of the
scene to compute differentiable shadow by projecting the spheres
on SH. This approach can thus directly benefit from our method.
Technically, rather than relying on finite differences or automatic
differentiation frameworks, we introduce an analytical expression
optimizing the evaluation of the SH coefficient gradients.

3. Background

Our proposal relies on fundamental principles of SH lighting. After
recalling the SH definitions and their use in lighting computation,
we describe the methods used in our gradient computations to effi-
ciently evaluate SH basis function [Slo13] and project the spherical
lights on SH [MDVP22].

3.1. Lighting with Spherical Harmonics

Using spherical coordinates, the real part of an harmonic Y m
l is ex-

pressed as:

Y m
l (θ,φ) =


√

2K|m|
l P|m|

l (cosθ) sin(|m|φ) m < 0

K0
l P0

l (cosθ) m = 0
√

2Km
l Pm

l (cosθ) cos(mφ) m > 0

, (1)

where Pm
l denotes the associated Legendre Polynomial, and Km

l is
a normalizing factor:

Km
l =

√
2l +1

4π

(l −m)!
(l +m)!

. (2)

Successive orders l ≥ 0 correspond to increasing frequency bands,
in which degrees span −l ≤ m ≤ l. The Zonal Harmonics (ZH),
defined for m = 0, i.e. Y 0

l , is a sub-basis of SH particularly use-
ful for representing circularly symmetric signals. We denote Sm

l the
coefficients of the vector S, indexed by the order l and the degree
m, resulting from the projection of S(ω) on the SH basis {Y m

l (ω)}.
Projection on SH basis (Eq. 3) and reconstruction from SH coeffi-
cients (Eq. 4) are performed as:

Sm
l =

∫
Ω

S(ω)Y m
l (ω)dω , (3)

S(ω) =
+∞
∑
l=0

l

∑
m=−l

Sm
l Y m

l (ω)≈
N

∑
l=0

l

∑
m=−l

Sm
l Y m

l (ω) . (4)

The SH basis being orthogonal, its use in lighting computation
has a particular interest. Denoting L and F respectively the projec-
tion of the incident radiance L(ω) and of the reflectance F(ω) on
the real spherical harmonics basis, the reflected radiance is defined
as [CMS87]: ∫

Ω

L(ω)F(ω)dω = L ·F . (5)

In practice, SH coefficients are computed and stored up to an order
N and the reconstruction becomes an approximation with a fixed
maximal frequency. In this case, the integral in Eq.5 reduces to a
sum of (N + 1)2 terms, allowing for an efficient evaluation of the
equation.

3.2. Efficient SH evaluation

The SH gradient formulae we derive in Sec. 4.3 rely on the efficient
SH evaluation method proposed by Sloan [Slo13]. The evaluation
of SH basis functions requires the evaluation of the Associated Leg-
endre Polynomials (ALP) Pm

l :

Pm
l (cosθ) = sinm

θ
dm

d cosm θ
(Pl(cosθ)) . (6)

Sloan proposes to pair the sinm
θ from ALP with sin(mφ) and

cos(mφ) from SH expression (Eq. 1). These pairings lead to com-
putationally simpler recurrence relations:

Um =sinm
θcos(mφ) = xUm−1 − yVm−1

Vm =sinm
θsin(mφ) = xVm−1 + yUm−1 ,

(7)

where Um corresponds to the case where m > 0 and Vm corresponds
to m < 0, x = sinθcosφ, and y = sinθsinφ. As a consequence,
Qm

l = Pm
l (cosθ)/sinm

θ is a polynomial in z, with z = cosθ, that
does not require the explicit computation of sinm

θ and is defined
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by these five recurrence relations:

Qm
m = (1−2m)Qm−1

m−1

Qm
m+1 = (2m+1)zQm

m

Qm
l =

(2l −1)zQm
l−1 − (l +m−1)Qm

l−2
l −m

Qm
m+2 =

(2m+3)(2m+1)Qm
mz2 − (2m+1)Qm

m
2

Qm
m+3 =

zQm
m((2m+5)(2m+3)(2m+1)z2−3(4m2+8m+3))

6 .

(8)

In order to improve the final computation, the normalization fac-
tors

√
2 and Km

l of SH (Eq. 1) should directly be integrated in the
recurrence relations of Q.

3.3. Spherical light projection

Mézières et al. [MDVP22] propose an analytical SH projection for
uniform spherical lights. Projecting spherical light with uniform
emission on the unit sphere centered at the shaded point creates
a circularly symmetric spherical signal. This property cancels the
signal projection in all bands except for m = 0 (i.e. the ZH). In the
remaining of the paper, we adopt the notations of Fig. 2, namely, x
is the position of the shaded point, y is the position of the spherical
light and r is its radius. Hence, the ZH projection of spherical lights
is expressed as:

L̃l(x) =


√

π

2l +1
(Pl−1(α)−Pl+1(α)) if l ̸= 0

√
π(1−α) otherwise,

(9)

where α = cos(a(x)) and a(x) is the half-angle subtended by the
spherical light (Fig. 2) defined as:

a(x) = arcsin
( r
∥y−x∥

)
. (10)

Then, the projection is rotated to any coordinate system [SLS05]
following:

Lm
l (x) =

√
4π

2l +1
Y m

l (ω)L̃l(x) , (11)

where ω = (y− x)/∥y−x∥ is the direction of the symmetry axis
in the targeted coordinate system.

Our new contributions, detailed in the next section, are the spatial
differentiation of Eq.9 and Eq.11. Note that Eq.11 is valid for any
circularly symmetric signal.

4. Gradient computation

We now derive the formulae for the efficient computation of the
spatial gradients of the SH coefficients for spherical lights (Eq.9
and 11) w.r.t the position of the shaded point (Sec. 4.1). By ap-
plying the differentiation chain rule, we differentiate both the ZH
projection of spherical lights (Sec. 4.2) and the SH basis functions
(Sec. 4.3). We introduce in Sec. 4.4 an adaptation of the SH projec-
tion and the gradient computation to efficiently approximate trian-
gular lights by spherical lights.

Figure 2: Notations and geometric setup with a 2D (a) and 3D (b)
view where x is a shaded point and y is a spherical light. a(x) is
the half-angle subtended by the spherical light and r is its radius.

4.1. Overview

We denote ∇xLm
l (x) the spatial gradient of the SH coefficients

(Eq. 11) w.r.t the shaded point x (Fig. 2). It is defined as:

∇xLm
l (x) =−

√
4π

2l +1
(
∇yY m

l (ω)︸ ︷︷ ︸
Sec. 4.3

Sec. 3.3︷ ︸︸ ︷
L̃l(x) +

Sec. 3.2︷ ︸︸ ︷
Y m

l (ω)∇yL̃l(x)︸ ︷︷ ︸
Sec. 4.2

)
.

(12)

∇xLm
l (x) represents the gradient according to the translation of

a point x. Its computation involves the evaluation of the gradient
∇Y m

l (ω) of the SH basis functions. To compute the latter, it is more
convenient to consider that the point y moves: moving x along a di-
rection d is equivalent to move y along −d. This is what introduces
the minus sign and the gradient ∇y in Eq.12.

The definition of ∇xLm
l (x) contains four main terms: the SH

functions Y m
l (ω), the ZH projection of the spherical light L̃l(x),

and their respective gradients ∇Y m
l (ω) and ∇L̃l(x). In the follow-

ing, the computation of the gradient ∇L̃l(x) of ZH coefficients is
derived first (Sec. 4.2). Then, based on the SH evaluation method
proposed by Sloan, we propose an effective formulation of the gra-
dient ∇Y m

l (ω) of the SH basis functions (Sec. 4.3).

It should be noted that L̃l(x) and Y m
l (ω) are two functions that

could be written in polynomial Cartesian form for each order and
degree [Slo08]. If doing so, computing the spatial gradient would
essentially be a matter of differentiating each equations. However,
our method is based on a more efficient recursive analytical equa-
tions than these polynomial forms (Table 1 and 2).

4.2. Spherical light ZH gradient : ∇L̃l(x)

Our analytical definition of the gradient of the ZH coefficients is
derived using the chain rule as follows.

Subtended angle gradient Given Eq.10, the gradient of the half-
angle subtended by the spherical light is:

∇ya(x) = −r

∥y−x∥
√

∥y−x∥2 − r2

y−x
∥y−x∥ . (13)
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ZH Gradient Given Eq.9, the gradient of the ZH coefficients cor-
responding to the projection of a spherical light is:

∇yL̃l(x) =

−
√

π

2l +1
∇ya(x)sin(a(x))O′

l if l ̸= 0
√

π∇ya(x)sin(a(x)) otherwise
, (14)

where O′
l = (−P′

l+1(α)+P′
l−1(α)). Considering the derivative of

the Legendre polynomials:

∂xPl(x) =− (l +1)(xPl(x)−Pl+1(x))
x2 −1

, (15)

we obtain:

O′
l =

(l +2)(αPl+1(α)−Pl+2(α))− l(αPl−1(α)−Pl(α))

α2 −1
. (16)

4.3. Spherical harmonics basis function gradient : ∇Y m
l (ω)

The computation of the gradient of SH coefficients (Eq. 11) re-
quires the computation of the gradient of SH basis functions. We
first perform this computation in spherical coordinates and then
make the conversion to Cartesian coordinates.

Partial derivatives w.r.t φ The SH partial derivative w.r.t φ is :

∂φY m
l (θ,φ) =


−mY−m

l (θ,φ) m < 0

0 m = 0

−mY−m
l (θ,φ) m > 0

, (17)

and can be computed without overhead when evaluating the SH.

Partial derivatives w.r.t θ The SH partial derivative w.r.t θ is:

∂θY m
l (θ,φ) =


√

2K|m|
l ∂θP|m|

l (cosθ) sin(|m|φ) m < 0

K0
l ∂θP0

l (cosθ) m = 0
√

2Km
l ∂θPm

l (cosθ) cos(mφ) m > 0

. (18)

Eq.18 might be computed directly, giving the thereafter called Di-
rect method. This method improves the one proposed in [LTL∗19]
using a less expensive formula evaluating the derivatives of the
ALP based on the recursion formula given by Hansen [Han88]:

∂θPm
l (cosθ) =


P1

l (cosθ) m = 0

−1
2
{(l −m+1)(l +m)

Pm−1
l (cosθ)−Pm+1

l (cosθ)}
m > 0

. (19)

We however propose a more efficient computation method, called
the Sloan’s like method, based on the same principle as the one
used for the SH basis function computation (Sec. 3.2). Instead of
computing ∂θPm

l (cosθ), we compute (∂θPm
l (cosθ))/sinm

θ to re-
move sinm

θ in other SH terms. When deriving ∂θPm
l (cosθ) and

factorizing to have a sinm
θ factor, we obtain:

∂θPm
l (cosθ)

sinm
θ

=
Pm

l (cosθ)

sinm
θ

mcosθ

sinθ
+∂θ

(Pm
l (cosθ)

sinm
θ

)
. (20)

The first term of the right member of Eq.20 is exactly Qm
l (Sec. 3.2)

and the last term is ∂θQm
l = T m

l . We can thus rewrite Eq.20 as:

∂θPm
l (cosθ)

sinm
θ

= Qm
l

mcosθ

sinθ
+T m

l . (21)

Figure 3: Approximation of a triangular light with a sphere. The
sphere position ps is the centroid of the triangle (Eq. 24) and the
radius rs is determined so that the area of the yellow disc is equal to
the area of the triangle (Eq. 25). γ is the angle between the triangle
normal nt and the direction ω. The shaded point is in grey.

To compute T m
l , we derive the recurrence relations of Qm

l (Eq. 8):

T m
m = 0

T m
m+1 =−(2m+1)(sinθQm

m)

T m
l =

(2l −1)(cosθT m
l−1 − sinθQm

l−1)− (l +m−1)T m
l−2

l −m
T m

m+2 =−(2m+3)(2m+1)(sinθcosθQm
m)

T m
m+3 =

(sin θQm
m)((−(2m+5)(2m+3)(2m+1)cos2

θ)+(4m2+8m+3))
2 .

(22)

From Eq.22, the final equations integrating the normalization
factors of the SH definition are developed in Appendix A.

SH gradient in Cartesian coordinates To obtain the translational
gradient in Cartesian coordinates, we need to multiply the gradient
computed in spherical coordinates with the Jacobian of the spher-
ical coordinates w.r.t the cartesian coordinates. Since the SH func-
tions vary only in θ and φ, we have ∂rY m

l = 0, and:


∂xY m

l

∂yY m
l

∂zY m
l

=



xz
Ψ

−y
x2 + y2

yz
Ψ

x
x2 + y2

−x2 − y2

Ψ
0


(

∂θY m
l

∂φY m
l

)
, (23)

where (x,y,z) = y−x and Ψ = (x2 + y2 + z2)
√

x2 + y2.

Validation of our methods We perform several unit tests on CPU
(Table 1) to compare the performance of our two methods, Di-
rect and Sloan’s like, with a reference evaluation of the SH func-
tions and their gradients using the polynomial form of SH. The goal
is to compare the mean time to evaluate the SH coefficients and
their gradient in one direction. This comparison uses the same vali-
dation procedure than the one proposed by Sloan [Slo13]. For each
method, the mean computation time is measured using the same set
of thousand directions. For each method, timings are averaged over
a hundred executions for each direction. We observe that both the
Direct and the Sloan’s like methods are faster than the polynomial
form when having 3 SH bands or more, including the Cartesian
conversion. Also, the Sloan’s like method is always faster than the
Direct method.
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Algorithm
Band limit

3 4 5 6 8 10

Polynomial

Eval 27.82 32.22 40.57 54.63 84.51 144.01

Gradient ∇x,y,z 56.91 83.34 122.28 190.25 386.91 720.26

Sum 84.74 115.56 162.85 244.87 471.42 864.27

Eval &
Gradient ∇θ,φ

Sloan’s like (ours) 25.86 33.77 44.51 59.95 106.35 169.82

Direct (ours) 42.28 60.66 81.15 112.32 196.33 296.94

Cartesian conversion 41.63 43.67 48.97 53.82 66.19 84.41

Eval &
Gradient ∇x,y,z

Sloan’s like (ours) 67.50 77.43 93.48 113.78 172.55 254.23

Direct (ours) 83.92 104.32 130.13 166.14 262.52 381.35

Table 1: Timings (in ns, on the CPU) comparison to evaluate SH and their corresponding gradients at different orders. Both our methods are
efficient compared to the traditional Cartesian approach. However, our Sloan’s like approach is the most efficient, achieving a speedup of
more than ×3 on 10 SH bands. Our gradients expressed w.r.t the spherical direction are converted to obtain the Cartesian spatial gradients
(Sec. 4.3). For both our methods, SH are evaluated with Sloan’s method [Slo13] and are not separated from the gradient calculations because
∇φ is directly calculated from the SH evaluation (Eq. 17).

4.4. Approximating polygonal lights SH projection

To take full benefit of our gradient computation for polygonal
lights, and as any polygonal light is divisible into triangles, we pro-
pose to approximate triangular lights using spherical ones (Fig. 3).
We approximate the SH projection of a triangular light by first de-
ducing the spherical light position and radius from the triangle ver-
tices. Then, we modulate the SH projection by a correction factor
according to the orientation of the triangle w.r.t the shaded point.

Spherical light parameters The position ps of the sphere is de-
fined as the centroid of the triangle:

ps =
p1 + p2 + p3

3
, (24)

where p1, p2 and p3 are the triangle vertices. The sphere radius is
defined so that a disc with the sphere’s radius and the triangle have
the same area. Reminding that πr2 measures the area of a disc, and
∥ ⃗p1 p2 ∧ ⃗p1 p3∥/2 the triangle area, the radius of the sphere is:

rs =

√
1

2π
∥ ⃗p1 p2 ∧ ⃗p1 p3∥ . (25)

Coefficients and gradients For each shading point, the flatness of
the triangle is recovered from the spherical shape of the light by
multiplying its energy by the factor |cosγ| (Fig. 3), where γ is the
angle between the triangle normal nt and the direction −ω from
the center of the spherical light to the shaded point. As this factor
varies for each light at each shaded point, the equation computing
the SH coefficients for the light at the shaded point (Eq. 11) needs
to be adapted, such that:

Pm
l (x) =

√
4π

2l +1
Y m

l (ω)L̃l(x) |cosγ| (26)

(we use the absolute value for |cosγ| to consider the triangular light
as double sided). This equation multiplies by |cosγ| the SH pro-
jection of spherical light proposed by Mézières et al. [MDVP22].

Thus, the gradient of this equation is deduced from the gradient of
the original equation (Eq. 12) as:

∇xPm
l (x) =−

√
4π

2l +1
(
∇yY m

l (ω)L̃l(x) |cosγ|+

Y m
l (ω)∇yL̃l(x) |cosγ|+Y m

l (ω)L̃l(x)∇y |cosγ|
)
,

(27)

with

∇y |cosγ|=
( −nt

∥y−x∥ +(y−x)nt · (y−x)
∥y−x∥3

) cosγ

|cosγ| . (28)

5. Rendering pipeline

The rendering is performed at each frame with two independent
passes. The first pass computes SH coefficients and their gradients
at each vertex of a 3D grid enclosing the scene. The second pass
interpolates the SH coefficients and computes the shading at each
visible fragment.

Our rendering pipeline is a clone of the one proposed by Wu et
al. [WCZR20] in which polygonal lights are replaced by spheri-
cal ones. As they do, we can use any of the three interpolations
they propose to reconstruct the SH coefficients from the grid values
(the linear interpolation, the Taylor interpolation [AKDS04] and
the Hermite interpolation [WCZR20]).

The final shading is computed with a recent SH framework han-
dling fully dynamic scenes [MP21]. This method is specialized for
separable BRDF. We skip the visibility in our computations, and
add a pass of SSAO [BS08] to compensate for the lack of shadows.
We also show in (Fig. 11) that our method is versatile and can, for
instance, be applied with captured data-driven materials and with
per-pixel lighting.

5.1. Efficient parallel grid construction

The method of Wu et al. [WCZR20] relies on the ZH factoriza-
tion [NSF12]. The projection is done on a set of independent ZH
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Interpolation

Polygonal Spherical

SH coefficients on 3D grid

#threads = 3D grid × (2L-1)

#threads = 3D grid × 3 (rgb)

#threads = 3D grid

ZH coefficients on 3D grid
(for each ZH lobes of factorization)

Z
H

 f
ac

to
ri

za
ti

on
  

1 thread computes the projection for one ZH lobe and one 3D grid vertex

1 thread computes the ZH rotation to SH for one 3D grid vertex and one rgb channel

Projection on pre-
rotated ZH lobes

ZH to SH

Projection on SH
Number of 
ZH lobes

1 thread computes the SH projection for one 3D grid vertex

Figure 4: Parallelization scheme for polygonal (left) and spherical
lights (right). The projection of polygonal lights relies on the ZH
factorization [NSF12], which is efficiently parallelized and provide
a good tradeoff between the number of threads and the register
pressure. Our method is factorized following a different model.

lobes whose directions are fixed for all lights. Each ZH lobe is pro-
cessed in parallel, which allows a good distribution of the workload
(Fig. 4) on the GPU. In our approach, each light defines a ZH lobe
direction, which makes the workload difficult to distribute over the
different threads, thus increasing the pressure on registers, espe-
cially when increasing the SH bands.

To better parallelize the computations, we reverse the main loops
in the code. First, as our SH recurrence relations do not use relations
between two different degrees m, except for the opposite degree
−m, we only need to fix a degree m and loop through the orders l.
So, the natural approach to compute the SH coefficients and their
gradients for all the lights, denoted as Forward in the following,
is to loop first over the lights, and then over all the degrees m and
orders l of SH. As we need to accumulate the SH coefficients for all
the lights, this Forward strategy needs to keep in GPU registers all
the SH coefficients. This requires so many temporary storage that
the parallel workload between GPU cores is limited. To improve
parallel workload on the GPU, we permute the loops on the lights
and on degree m, denoted as Reverse in the following. Doing this,
we only need to keep in registers the SH coefficients deducted for
a given degree m, decreasing the register pressure.

Forward (natural) Reverse (ours)

FOR(∀ lights)

FOR(∀m)

FOR(∀l)

→
FOR(∀m)

FOR(∀ lights)

FOR(∀l)

This improves the overall performance of our method, especially
when increasing the SH band limit (Table 2). The drawback is that,
for each light, we have to recompute all the terms that depend on

SH Spherical lights Polygonal lights

bands Analytical Ours Our Ref.

limit forw. rev. forw. rev. approx. [WCZR20]

5 4.48 4.32 4.08 2.22 2.53 7.21

6 7.25 6.37 5.98 2.96 3.39 13.08

7 13.11 8.54 7.24 3.77 4.42 16.21

8 19.30 10.41 12.73 4.76 5.35 29.07

9 33.23 12.91 22.26 5.18 5.74 164.01

Table 2: Timings (in ms) for the computation of the SH and gradi-
ents coefficients in a 83 3D grid, using 648 lights (spheres or tri-
angles). Columns labeled "analytical" correspond to the SH com-
putations with their Cartesian form, ZH projection is computed
in closed form [Slo08] and gradients are computed with analyti-
cal derivation. Reverse columns correspond to the inversion of the
loops (Eq. 5.1). Our approximation of polygonal lights is computed
with the reversed loops and exhibits a low overhead compared to
spheres.

m. Despite that, the register pressure drop is such that the extra cost
of calculation is largely absorbed by a better usage of GPU cores.

6. Results

We implemented our method in an experimental rendering engine
(Sec. 5) using OpenGL / GLSL 4.5 running on an Intel Xeon 2.10
GHz processor and a RTX 2080 NVIDIA graphics card. For our
experiments and comparisons, we use the same band limitations as
Wu et al. did for the polygonal lights [WCZR20]. Lighting is band-
limited on 5 SH bands and the convolution with the GGX specular
lobes are computed on 9 SH bands. In the following, we denote as
"SH reference" the results obtained without interpolation. They are
obtained by computing the exact projection of the radiance on SH
at each pixel instead of only at the 3D grid vertices.

Quality As pointed out in the overview (Sec. 4.1), the SH gradi-
ent’s coefficients for spherical lights (Eq. 12) can be computed with
Cartesian analytic equations for each SH. While being as accurate
as these Cartesian analytical forms (Fig. 5), our recursive analytical
equations are faster to evaluate (Table 2).

From the three interpolation schemes (trilinear, Taylor and Her-
mite), the Hermite interpolation is, as demonstrated by Wu et
al. [WCZR20], the more accurate and the accuracy increases as
the grid is denser (Fig. 6).

When an equal time is allocated to generate the SH coefficients
and their gradients on a 3D grid, or to generate only the coefficients
on a 3D grid, the latter grid can be denser. Nevertheless, linear in-
terpolation on such a grid does not reach the quality provided by
the Hermite interpolation on a sparser grid (Fig. 7) while using, in
this case, 3.35× more memory to store the grid data.

As shown in Fig. 8, reconstructing the SH coefficients with Her-
mite interpolation from grid samples generates results that closely
match the per-pixel direct computation of SH coefficients. We also
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Scene Figure Lights
Output Eval SH Eval coeff

Interp. ssao Total
Reference

resolution coeff & grad. Time Speed up MAE (×103)

Drone & Horse Fig. 1a 1793 1920×1080 3.18 5.30 6.73 0.9 12.93 139.11 10.8× 0.2022

Dragon Fig. 6 578 1920×1080 0.84 1.82 12.41 0.98 15.21 76.54 5.0× 0.2372

Perseverance Fig. 7 512 1920×1080 0.86 1.39 10.17 1.06 12.62 55.40 4.4× 0.1310

Armadillo & Buddha Fig. 8 242 1000×1000 0.34 0.66 10.51 0.39 11.56 30.50 2.6× 0.1920

Conference Fig. 9a 900 1920×1080 1.49 2.63 11.53 0.77 15.65 115.51 7.4× 0.9656

Living Room Fig. 9b 2500 1920×1080 4.36 7.84 11.30 0.88 20.02 325.07 16.2× 0.7445

Fertility Fig. 11 800 1920×735 1.46 2.26 28.56 0.65 31.47 133.01 4.2× 0.0340

White Room Fig. 12 722 1920×1080 1.19 2.07 14.58 1.21 17.86 119.49 6.7× 0.0779

Table 3: Timings in ms obtained on our different scenes using a 83 3D grid. The rendering without interpolation is used as reference. We give
the computation times for both the coefficients and the coefficients plus their gradients to evaluate the extra cost of gradient computations.

(a) Analytical (b) Ours (c) 100× Abs. diff.

∇
SH

fu
nc

tio
n

∇
SH

co
ef

fic
ie

nt

Figure 5: Validation of our method to compute the gradients of SH
basis functions (top line, Sec. 4.3) and the gradients of SH coeffi-
cients for spherical lights (bottom line, Eq.12) using (l,m) = (6,3).
Column (a) computed using the differentiation of the analytical
equations [Slo08](Sec. 4.1) and (b) computed with our methods.
We show in (c) the difference between (a) and (b) to highlight the
accuracy of our methods. Spatial gradients are encoded as colors
such that each pixel corresponds to a different pair (θ,φ), θ varies
according to the columns, and φ varies according to the rows of
each image. The gradients for the SH coefficients are computed us-
ing a spherical light at a distance of 2 and a radius equal to 0.5.

illustrate a benefit of using spherical lights when representing tex-
tured lights in Fig. 9. In this case, a spherical light is placed at each
texture pixel, and the results always closely match the SH refer-
ence (Table 3).

Performance We present in Table 3 the results produced on dif-
ferent scene configurations. We observe that with ≈500 lights we
obtain an acceleration of ≈ 5× compared to the SH reference. This
acceleration is even higher when the number of sources increases.

Ref.Ref.

MAE (103)MAE (103)

4343 1.60ms1.60ms

3.25223.2522

8383 1.82ms1.82ms

0.23720.2372

163163 3.24ms3.24ms

0.05630.0563

Figure 6: Results obtained by varying the 3D grid resolution with
Hermite interpolation and 578 lights. Timings at the top right of
each images indicate the computation time of the SH coefficients
and their gradients on the 3D grid. The reference is computed with
SH without interpolation. The inset of reference image shows the
scene configuration and other insets show 100× absolute errors.

On average, we obtain an overhead of ≈ 1.8× to evaluate the gra-
dient of the coefficients in addition to the computation of the co-
efficients themselves. This shows that, as depicted in the previous
sections (Eq. 17), we are able to reuse temporary results between
the computations of the coefficients and their gradients.

In our renderings, the light is projected on a full set of SH and
the material is an isotropic GGX-based microfacet model projected
only on ZH. The convolution between light and material is com-
puted respectively between a function projected on SH (for the
light) and another only on ZH (for the material) [SKS02]. When
interpolating SH coefficients in a grid, the radiance function can-
not be reduced to a ZH representation. We thus cannot take advan-
tage of the fast convolution computation between two ZH following
Mézières et al. [MDVP22]. Despite this, the gain provided by the
grid interpolation over the direct projection of light sources pays
off, and the overhead produced by the convolution SH by ZH be-
comes negligible as the number of lights increases (Fig. 10).
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Ref.Ref.

MAE (103)MAE (103)

Trilinear (193)Trilinear (193)

1.38ms1.38ms
MAE: 0.5752MAE: 0.5752

Hermite (83)Hermite (83)

1.39ms1.39ms
MAE: 0.1310MAE: 0.1310

Figure 7: Equal-time grid generation comparison using 512 lights.
The same time is required to compute a 193 3D grid without gradi-
ent (for trilinear interpolation) (bottom-left) and a 83 3D grid with
gradients (for Hermite interpolation) (bottom-right). When trilin-
early interpolating the very large grid is still not dense enough to
surpass the quality of the Hermite interpolation. Insets show 40×
absolute errors.

820.82ms820.82ms

MAE (103)MAE (103)

(a) Ray casting

30.50ms30.50ms

19.0519.05

(b) SH reference

11.56ms11.56ms

19.0819.08

(c) Ours

≈ =

Figure 8: Comparison against ray casting with a lambertian Bud-
dha, a glossy Armadillo and 242 lights. As demonstrated for polyg-
onal lights [WCZR20], our approximation with interpolation (c)
almost perfectly match the result without interpolation (b). Both re-
sults are close to the ray cast reference. Looking at the armadillo,
results only differ on glossy material due to the order limit on SH
approximation. The ray cast result is generated using 100 impor-
tance samples for each light.

In addition, the convolution between two ZH functions has mul-
tiple inconveniences. Firstly, the cosine of the rendering equation
is approximated by the cosine between the surface normal and the
direction to the center of the sphere, which significantly affects the
Mean Absolute Error (MAE) (Table 4). Secondly, we cannot use
this method with numerical materials [KSS02] (Fig. 11) since SH
coefficients for the BRDF cannot be directly reduced to ZH.

Triangular light approximation In order to evaluate our approx-
imation of polygonal lights (Fig. 12), we propose to consider a
square light source split in small triangles (as done in [WCZR20]),
and then replace each triangle by our spherical approximation
(Sec. 4.4). For our comparison, we use a slightly modified ver-

(a) 900 lights(a) 900 lights 15.65ms15.65ms

(b) 2500 lights(b) 2500 lights 20.02ms20.02ms

Figure 9: Textured lights rendering with 900 lights (a) and 2500
lights (b). The insets illustrate the scene configurations.

sion of the code published by Wu et al. [WCZR20]. We compute
the solid angle substended by a triangle using van Oosterom’s for-
mula [VS83]:

tan
Ω

2
=

(u⃗1 × u⃗2) · u⃗3
1+ u⃗1 · u⃗2 + u⃗2 · u⃗3 + u⃗3 · u⃗1

, (29)

in which u⃗i = (pi−O)/(∥pi −O∥) is the normalized direction from
the origin O to the vertex pi of the triangle, and the index i is
circular u⃗4 = u⃗1 and u⃗0 = u⃗3. The initial formula creates numer-
ical inaccuracies when a triangular light is far away or when many
polygonal lights have aligned edges. This strongly affects the com-
parison between triangular lights and our approximation. We anal-
yse three main criteria of scalability: the number of light sources,
the 3D grid resolution, and the SH band limit. Our approximation
of triangular lights creates only a small overhead over spherical
lights and it is more efficient to compute than the original trian-
gular light (Fig. 13). We also observe a significantly better scal-
ability of our approximation when increasing the number of SH
bands (Table 2) or increasing the 3D grid resolution (Fig. 14). Our
representation also provides an accurate approximation of the SH
coefficients of triangular lights (Fig. 15). The MAE is reduced by
one order of magnitude compared to raw spherical lights (Table 4).
The approximation error of the SH coefficients has a quadratic be-
havior according to the number of SH bands (Fig. 15d). However,
using the number of SH bands traditionally considered in real-time
rendering, i.e. 5 to 9 SH bands, the error on the coefficients approx-
imation remains very low, in an order of 10−8, and the error in the
final rendering is only slightly increased (Fig. 16).
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Figure 10: Timings (in ms) to compute the final shading, i.e. SH
coefficients and gradients plus interpolation, on a 83 3D grid
using different number of lights on Fig. 8. We compare spheri-
cal lights, triangular lights and our approximation of triangular
lights, with and without interpolation. References correspond to
the computation without interpolation. The ZH approximation for
spheres [MDVP22] cannot be used with interpolation but efficiently
approximates spherical light at low cost.

Compared method

Fig. 8 Fig. 12

Number of lights

288 512 800 722

Comparison with spheres [MDVP22]

Spheres (ZH approx.) [MDVP22] 1.866 1.865 1.865 1.540

Spheres interp. (Eq. 12) 0.192 0.192 0.193 0.079

Comparison with triangles [WR18]

Spheres [MDVP22] 15.86 15.76 15.67 62.08

Triangles approx. (Eq. 26) 0.096 0.068 0.121 0.129

Comparison with triangles interp. [WCZR20]

Spheres interp. (Eq. 12) 15.93 15.83 15.75 62.13

Triangles approx. interp. (Eq. 27) 0.215 0.165 0.174 0.176

Table 4: MAE (103) with different scene configurations with an
interpolation in a 83 3D grid. Bold text highlights rendering
without interpolation. The comparisons with spheres [MDVP22]
show that the interpolation for spherical sources produces a better
approximation than using the ZH acceleration that approximate
the cosine in the lighting equation. The comparisons with trian-
gles [WR18, WCZR20] show that our approximation of triangles
significantly reduces the MAE compared to spherical lights.

The triangles configuration plays a very important role in the er-
ror introduced by our approximation (Fig. 17). This error lies in
the difference of the shapes, sphere against triangle, projected on
the unit hemisphere over a shading point. The higher this differ-
ence, the higher the approximation error. This difference is related
to the solid angle subtended by the triangle, for well-shaped trian-

31.47ms31.47ms

Figure 11: Rendering using a 83 3D grid for interpola-
tion with captured materials from [DJ18]. From left to right:
cm_toxic_green, paper_blue, vch_frozen_amethyst, satin_gold,
cc_nothern_aurora.

gles, or to the narrowness of the triangle in the general case. The
narrowness can be quantified by the inverse of the intersection area
between the triangle and a co-planar disk centered at the center of
gravity of the triangle having the same area than the triangle.

7. Limitations and future work

As our proposal relies on Spherical Harmonics, it faces the lim-
itations inherent to this representation, also found in the Wu et
al. [WCZR20] approach.

Analytical and numerical integration As evoked by Wu et
al. [WCZR20], it could be envisioned to switch between analytic
and numerical integration to compute SH coefficients and their gra-
dients. Indeed, when lights are far away from the shaded point, only
one sample should be sufficient for numerical integration. More-
over, importance sampling of spherical lights is well studied in lit-
erature [DHB17]. However, in practice, sampling numerical ma-
terials (i.e. data-driven materials [DJ18]) on the GPU (Fig. 11) is
difficult and often very expensive. Using SH thus remains a perti-
nent solution as SH allow the use of data-driven materials with only
a very small overhead.

Textured and anisotropic lights Our method handles textured
light in a very simple manner, by replacing each texel by a spherical
light. However, neighboring texels in the texture may have a simi-
lar color, which introduces redundancy in the spherical light colors.
This redundancy can be used to drastically reduce the number of re-
quired spherical light, e.g. by building a quadtree approximating the
texture and placing a spherical light at the center of each leaf. Being
orthogonal to our contributions, this is left for future work. Consid-
ering anisotropic lights, i.e. angularly non uniform emissive lights,
the SH projection, as the gradient, should be adapted to take into
account the radiance variations within the solid angle subtended by
the spherical source (Fig. 2).

Shadow and visibility Our results do not integrate the visibility
other than by a rough ambient occlusion approximation. Two prob-
lems must be faced to integrate the visibility in our framework:
(1) projecting the dynamic visibility on SH at each frame and (2)
modifying the light-field projection at each shaded point. While
the former is related to efficient SH projection of arbitrary func-
tions and is an active research area, the later is related to handling
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Figure 12: Accuracy of our approximation of triangular lights [WR18,WCZR20] using interpolation. The insets show 100× absolute errors,
insets and MAE are computed using the image with the corresponding colour patch as reference. MAE is reduced by two orders compared
to raw spherical lights and the 100× absolute error is only slightly visible, which illustrate the accuracy of our approximation of polygonal
lights. This figure also highlights that triangular lights timings increase significantly with the size of the 3D grid (Fig. 14).

Figure 13: Timings (in ms) to compute SH coefficients and their
gradients in a 83 3D grid using different number of lights on Fig. 8.
We compare spherical lights, triangular lights and our approx. of
triangular lights. Interpolation does not depend on the type and
number of lights.

anisotropic emission as noted above. It should also be noted that
integrating visibility would add a costly general SH triple product
to compute the shading, even though efficient algorithms were re-
cently proposed [XZA∗21]. Solving this visibility problem is an
important future research direction while being orthogonal to our
proposal that focuses on efficient gradient computation.

Figure 14: Timings (in ms) to compute SH coefficients and their
gradients for different 3D grid resolutions on Fig. 12 with 722
lights. Interpolation is not affected by the the grid resolution.

SH band limit for real-time rendering In [WCZR20], scalabil-
ity has not been investigated when increasing the number of SH
bands. The number of bands can be a bottleneck for both the SH
grid computation, and the SH interpolation at shading stage. In this
work, we shown that using an higher number of bands to construct
the 3D grid is faster with spherical lights than with polygonal lights
(Table 2). However, during interpolation, the number of memory
accesses to retrieve the SH coefficients and gradients is high (espe-
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(a) setup

(b) l=3,m=2

(c) l=8,m=6 (d) mean error (10−8) per SH band
between triangle and our approx.

Figure 15: Accuracy of our approximation of triangular lights SH
projection [WR18]. We show the setup of the scene in (a). In (b) and
(c) we evaluate one SH coefficient on the red line highlighted in (a).
The plot in (d) represents the mean error (10−8) between triangles
and our approximation computed for each SH band on the whole
plane lighted by the light.

MAE (103)MAE (103)

26.20ms26.20ms

0.70120.7012

4.76ms4.76ms

MAE (103)MAE (103)

1290.84ms1290.84ms

0.71200.7120

24.72ms24.72ms
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Figure 16: The error of our approximation of triangular
light [WR18] according to the number of SH bands. Results are
generated with 36 lights, without interpolation and a glossy model.
Bottom images inset in the left show the scene configuration and
insets in the right show 100× absolute errors. The approximation
error remains in the same magnitude order between 5 and 9 SH
bands.

cially when using a high number of SH bands) and creates a non-
negligible bottleneck (Table 5). We believe that a careful low-level
implementation on GPU could reduce this limitation.

Applications of SH gradients The goal of our proposal is to effi-
ciently reconstruct the radiance field using a gradient based inter-
polation method. This is also the goal of Neural Radiance Field
approaches (NeRF). Some recent methods use the SH and their
gradients for this purpose [YLT∗21, YFKT∗21], hence they con-
stitute a direct application of our method. Jimenez et al. [JWPJ16]
propose to compute the ambient occlusion on SH using spherical
kernels, i.e. the same framework as our proposal. Occlusion be-

SH Eval coeff
Interp. Total

Reference

bands & grad. Time Speed up

5 1.39 7.65 9.04 45.25 5.0×
6 1.87 8.90 10.77 53.77 5.0×
7 2.43 26.14 28.57 77.18 2.7×
8 3.07 55.57 58.64 98.79 1.7×
9 3.35 132.29 135.64 148.04 1.1×

Table 5: Timings (in ms) with different number of SH bands us-
ing Fig. 7. Interpolation is difficult to compute in reasonable times
when increasing the SH bands due to the large number of mem-
ory accesses required to retrieve the SH coefficients. Polygonal
lights [WCZR20] suffer from the same problem since interpolation
has also to be performed.

ing generally smooth, this approach could take advantage of our
method. However, the use of gradients in a general visibility con-
text is a complex problem because the visibility is not generally a
continuous and smooth function.

Second-order derivatives Instead of only using the gradient,
some existing methods go further and compute the Hessian ma-
trix [SJJ12, MJJG18]. This matrix might be computed by deriving
again the recursive relations we developed. As our method exhibits
auto-similarities in its formulation, e.g. deriving SH basis function
results in an expression using the same sub-terms but at another de-
gree (Eq. 14, 17 and 19), this might ease this derivation. However,
the mathematical and computational complexity of these deriva-
tions need to be carefully investigated and we leave this interesting
direction for future investigations.

8. Conclusion

In this research, we propose a recursive analytic derivation for
the gradient of SH coefficients for uniform spherical lights. Our
method handles several hundred lights while offering real-time per-
formance on scenes with dynamic geometry, lights and viewpoints.
We also introduce a model to approximate the SH projection of
polygonal light with spherical ones at a lowest cost and at simi-
lar quality. This approximation introduces only a small overhead
compared to raw spherical lights. Our contribution also concerns
the computation of the gradients of SH basis function. To the best
of our knowledge, we do not know any other efficient method per-
forming this computation and the method we propose is more effi-
cient than the classical Cartesian method. Finally, we show that our
method can be implemented in a SH framework facilitating the use
of fully dynamic scenes.
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mean error (10−5) for the SH coefficients.
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Figure 17: Limitations and failure cases of our polygonal source approximation. Narrow triangles (first row) are known to be problematic in
rendering. The approximation error is proportional to the narrowness of the triangle. Large triangles (second row) introduce an error related
to their subtended solid angle. Insets show 10× absolute errors.

Armadillo and Buddha taken from Stanford 3D scanning reposi-
tory. White room and conference taken from the McGuire Com-
puter Graphics Archive. Suzanne taken from blender foundations.
Fertility taken from visionair. Living room taken from BlendSwap.

References
[AKDS04] ANNEN T., KAUTZ J., DURAND F., SEIDEL H.-P.: Spherical

harmonic gradients. In SIGGRAPH Sketches (2004), p. 110. doi:10.
1145/1186223.1186361. 3, 6

[AP21] ALLMENRÖDER J., PETERS C.: Linearly transformed spherical
harmonics. I3D poster (2021). 2

[BS08] BAVOIL L., SAINZ M.: Screen space ambient occlusion. NVIDIA
developer information 6 (2008). 6

[BXH∗18] BELCOUR L., XIE G., HERY C., MEYER M., JAROSZ W.,
NOWROUZEZAHRAI D.: Integrating clipped spherical harmonics ex-
pansions. ACM Transactions on Graphics 37, 2 (Mar. 2018). doi:
10/gd52pf. 2

[CMS87] CABRAL B., MAX N., SPRINGMEYER R.: Bidirectional re-
flection functions from surface bump maps. In SIGGRAPH (1987),
p. 273–281. doi:10.1145/37401.37434. 2, 3

[DHB17] DUPUY J., HEITZ E., BELCOUR L.: A spherical cap preserv-
ing parameterization for spherical distributions. Trans. Graph. 36 (2017).
doi:10.1145/3072959.3073694. 2, 10

[DJ18] DUPUY J., JAKOB W.: An adaptive parameterization for efficient
material acquisition and rendering. Trans. Graph. 37, 6 (2018). doi:
10.1145/3272127.3275059. 10

[DSJN19] DUBOUCHET A., SLOAN P.-P., JAROSZ W.,
NOWROUZEZAHRAI D.: Impulse responses for precomputing
light from volumetric media. EG (2019). doi:10/gf6rx8. 2

[GSHG98] GREGER G., SHIRLEY P., HUBBARD P. M., GREENBERG
D. P.: The irradiance volume. IEEE Computer Graphics and Applica-
tions 18, 2 (1998), 32–43. doi:10.1109/38.656788. 2

[Han88] HANSEN J. E.: Spherical near-field antenna measurements,
vol. 26. Iet, 1988. 5

[HDHN16] HEITZ E., DUPUY J., HILL S., NEUBELT D.: Real-time
polygonal-light shading with linearly transformed cosines. Trans. Graph.
35 (2016). doi:10.1145/2897824.2925895. 2

[JDZJ08] JAROSZ W., DONNER C., ZWICKER M., JENSEN H. W.:
Radiance caching for participating media. Trans. Graph. 27 (2008).
doi:10.1145/1330511.1330518. 2

[JWPJ16] JIMÉNEZ J., WU X., PESCE A., JARABO A.: Practical real-
time strategies for accurate indirect occlusion. SIGGRAPH Courses
(2016). 12

[JZJ08] JAROSZ W., ZWICKER M., JENSEN H. W.: Irradiance gradients
in the presence of participating media and occlusions. In EGSR (Goslar,
DEU, 2008). doi:10.1111/j.1467-8659.2008.01246.x. 2

[Kaj86] KAJIYA J. T.: The rendering equation. In CGIT (1986). doi:
10.1145/15922.15902. 2
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Appendix A: Final recurrences for SH evaluation and gradients.

We need to integrate the normalization factors of SH in the recur-
rences relations Q (Eq. 8) and T (Eq. 22) to obtain their final forms.
Let’s write:

Jm
l =

{ √
2Km

l m > 0

K0
l m = 0

,
Xm

l = Jm
l Qm

l

Zm
l = Jm

l T m
l

. (30)

Multiplying Eq.21 by the normalization factor Jm
l , it gives us:

Jm
l

∂θPm
l (cosθ)

sinm
θ

= Xm
l

mcosθ

sinθ
+Zm

l . (31)

Then, we extend the recurrence relations Q to integrate the normal-
ization factors.

Xm
m = Jm

m (1−2m)Qm−1
m−1

Xm
m+1 = Jm

m+1(2m+1)cosθQm
m
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m+2
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2
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m((2m+5)(2m+3)(2m+1)cos2
θ−3(4m2+8m+3))

6 .
(32)

These relations are the final forms developed in the code given by
Sloan [Slo13]. The final recurrences for our derivatives T are then:

Zm
m = 0

Zm
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m+1(2m+1)(sinθQm
m)
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2 .
(33)
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