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Figure 1: Portrait lighting enhancement results of our method. With 3D guidance, our method enables producing photo-realistic lighting-
enhanced images.

Abstract
Despite recent breakthroughs in deep learning methods for image lighting enhancement, they are inferior when applied to por-
traits because 3D facial information is ignored in their models. To address this, we present a novel deep learning framework for
portrait lighting enhancement based on 3D facial guidance. Our framework consists of two stages. In the first stage, corrected
lighting parameters are predicted by a network from the input bad lighting image, with the assistance of a 3D morphable model
and a differentiable renderer. Given the predicted lighting parameter, the differentiable renderer renders a face image with
corrected shading and texture, which serves as the 3D guidance for learning image lighting enhancement in the second stage.
To better exploit the long-range correlations between the input and the guidance, in the second stage, we design an image-
to-image translation network with a novel transformer architecture, which automatically produces a lighting-enhanced result.
Experimental results on the FFHQ dataset and in-the-wild images show that the proposed method outperforms state-of-the-art
methods in terms of both quantitative metrics and visual quality.

CCS Concepts
• Computing methodologies → Computational photography; Image processing;

1. Introduction

In portrait photography, lighting is one of the most important ele-
ments for photo quality and aesthetics. Professional portrait pho-
tographers can capture desirable illumination of their subjects by
using specialized equipment, such as flashes and reflectors. How-

† equal contribution
‡ corresponding author

ever, most casual photographers are not able to create such com-
pelling photographs and their photos taken in poor lighting con-
ditions may suffer from overexposure, underexposure, low con-
trast, and high ISO noise problems. To better emulate professional-
looking portraits, we aim to develop a deep learning method for
enhancing the lighting of portrait photos taken by casual users.

Previous deep learning methods for lighting enhancement fall
into two categories. One is to learn an image-to-image translation
network from the source distribution of bad lighting images to the
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target distribution of enhanced lighting images. Generative adver-
sarial networks (GANs) are often served as the backbone networks
because of their excellent performance in synthesizing images
[JGL∗19, WZF∗19]. Another category is to reformulate this task
as an image-specific curve estimation problem [YS12, GLG∗20].
By learning the parameters of curve functions from input images,
pixel-wise adjustments can be made to obtain enhanced results. De-
spite their major progress on improving the overall brightness of
input images, these generic methods fail to generate delicate light-
ing enhancement effects on portraits. This is because these methods
are limited in the 2D image domain, ignoring vital 3D information,
such as face geometry and lighting directions.

To fully take advantage of the 3D information, we present a 3D-
guided portrait lighting enhancement framework with two stages.
In the first stage, a lighting parameter correction network esti-
mates the original lighting parameters from the input image and
predicts the corrected parameters to adjust the original lighting
as well. A differentiable renderer [LLCL19] is adopted to render
the reconstructed 3D morphable model (3DMM) of the input with
lighting parameters, while enabling the network to receive supervi-
sion from 2D images. As a result, a rendered portrait image with
corrected lighting is obtained to serve as 3D guidance in the sec-
ond stage. In the second stage, an image enhancement network
learns a mapping from the bad lighting image distribution to the
enhanced lighting image distribution, conditioned on the 3D guid-
ance provided earlier. The guidance image, containing shading and
texture information under the corrected lighting, is greatly help-
ful for image enhancement, and the major challenge is how to ex-
ploit semantically meaningful correlations between the input im-
age and the guidance. Convolution Networks (CNN) models are
less effective in this task as the local inductive priors of convolu-
tion operation make it difficult to exploit long-range correlations.
In contrast, the transformer architecture [VSP∗17] abandons the
baked-in local inductive prior and thus supports global interac-
tions via the dense attention module. Therefore, we adopt the trans-
former structure in our image enhancement network. Unlike many
visual transformer tasks that only consider self-correlations in the
input [CMS∗20, DBK∗20], we model the correlations between the
input and the guidance by setting the guidance as query and the
input as key. This helps recover missing details of the input, espe-
cially in underexposure and overexposure regions, as missing de-
tails can be borrowed from other parts of the face by leveraging
long-range correlations.

Besides leveraging 3D information, another challenge of portrait
lighting enhancement is how to collect bad-and-enhanced lighting
image pairs to support training. To the best of our knowledge, cur-
rent public image light enhancement datasets [WWYL18, CGZ18]
are for scenes rather than for portraits. Though some face relighting
datasets have been proposed [GMC∗10, ZHSJ19], their data con-
tains portraits with various lighting positions yet lacks explicit def-
inition of enhanced or desirable lighting, which is inappropriate for
the task. Furthermore, collecting real data is expensive and labo-
rious as it requires a large number of identities as well as profes-
sional light stage system [MGAD19]. To this end, we propose an
efficient data synthesis method. We first ask volunteers to vote for
visually pleasant images taken under good lighting conditions from
the FFHQ dataset [KLA19] as our target images. To create training

pairs, each target image is then degraded to a bad lighting condition
by extrapolating its lighting parameters away from the center of the
target dataset, followed by post-processing and manual screening.
We demonstrate the model trained on our synthesized dataset gen-
eralizes well on in-the-wild images.

Our technique contributions are summarized as follows:

• We design a two-stage framework for portrait lighting enhance-
ment with 3D guidance, which outperforms previous 2D ap-
proaches by exploiting 3D facial information.
• A transformer-based image-to-image translation network is pro-

posed to model long-range correlations between the guidance
image and the input image, which further improves the perfor-
mance of our method in lighting enhancement.
• We propose an efficient data synthesis method that can produce

photo-realistic training pairs for the portrait lighting enhance-
ment task. This dataset will be released for research purposes.

2. Related Work

2.1. Image Enhancement

Image enhancement aims to beautify images based on certain stan-
dards, such as from low-light to normal-light or from low dynamic
range to high dynamic range. A series of methods use reinforce-
ment learning [HHX∗18, YLZ∗18] or GAN [DLT18] to learn the
best adjustment parameters, including brightness, contrast, curves,
etc. For example, Hu et al. [HHX∗18] consider these basic image
exposure adjustment operations as basic action units, and use re-
inforcement learning to solve for the optimal action sequence and
parameters of each action to adjust the exposure of the input im-
age. On the basis of [HHX∗18], Yu et al. [YLZ∗18] use semantical
masks to adjust the exposure by regions. EnhanceGAN [DLT18]
uses GAN for weakly supervised image enhancement. Its genera-
tor performs a global color adjustment, and the discriminator de-
termines whether the results are enhanced images or not. This kind
of methods is explainable and fast, yet they can only adjust the
brightness of pixels, and cannot recover missing details in the un-
derexposure or overexposure regions.

The second series of methods, such as [CWKC18,ZX20] directly
learn the mapping between the two image domains and generate
the enhanced target image by image-to-image translation networks.
Chen et al. [CWKC18] use a two-stage GAN similar to Cycle-
Gan [ZPIE17] to perform image enhancement. The generator uses
the structure of U-Net [RFB15] and takes global features as input
to reveal high-level information and to determine local adjustments
for individual pixels. Comparing to learning curves or parameters,
directly generating images can enhance images with greater flexi-
bility.

These two categories of methods are limited in the 2D image
domain without considering 3D information. So they are feasible
when enhancing the overall brightness or color tone of generic im-
ages, but it would lead to unnatural effects when enhancing the
lighting of faces, which are sensitive to 3D shapes. In our method,
3D facial guidance is involved and proved useful.
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2.2. Face Relighting

Portrait relighting aims to change the lighting condition of face
images given a group of arbitrary lighting parameters. A series of
methods [SBT∗19,ZTP∗20] try to solve the problem directly on im-
age level with image-to-image translation. Sun et al. [SBT∗19] use
an encoder-decoder structure based on U-Net [RFB15] to implicitly
express the unlighted intermediate state and let the network learn
the geometry and reflectance information. Zhang et al. [ZTP∗20]
use two GridNet [FEF∗17] to remove shadows introduced by exter-
nal objects, and then to soften shading as well as shadows projected
by facial features. Both methods use Light Stage to collect data as
it can produce image sets with single lighting sources and simu-
lates arbitrary lighting environments, yet building such a dataset
is expensive and time-consuming. There are some other work try-
ing to construct dataset without Light Stage by reconstructing face
models [ZHSJ19] or restoring images of Light Stage through color
gradient images [MHP∗19].

Besides relighting portraits on image level, some work first re-
store the albedo of the input images along with the correspond-
ing normal or mesh, and then render corresponding images under
different illuminations. Shu et al. [SYH∗17] propose using GAN
to end-to-end infer disentangled intrinsic facial attributes, such as
shape, albedo and lighting. SfSNet [SKCJ18] also decomposes the
image into shape, reflection and lighting, with a residual block
structure to learn the relation between high-frequency variation and
physical attributes. Nestmeyer et al. [NLML20] implement delight-
ing and relighting by restoring albedo of the input image through
the diffuse physics-based image generation model with Light Stage
data.

Unlike the relighting task that requires users to input lighting
parameters, our method automatically predicts the lighting param-
eters to correct the original lighting of input image. Meanwhile,
as the reconstruction and rendering process will lead to unavoid-
able distortion, we do not use the rendered results with corrected
lighting as our final outputs like the second category of methods.
Instead, we use it to guide our image-to-image translation network
for generating more photo-realistic lighting-enhanced images.

2.3. Differentiable Renderer

Differentiable renderer takes shape, texture, lighting parameters,
and camera pose parameters as input and outputs rendered image
and depth image. The most important feature of differentiable ren-
derers is that it makes it possible to calculate the gradient of the
rendered image to the input variables. The key challenge is how
to make the rasterization process differentiable. To solve this prob-
lem, [LB14,KUH18,GCM∗18] try to approximate the gradients in
an inverse manner, while [RRR∗15, LLCL19, CLG∗19] try to sim-
ulate the forward rasterization process.

Differentiable renderers are widely used in various applications,
including object reconstruction [YYY∗16, TZEM17], human pose
estimation [PZZD18], light source estimation [NJR18], and so on.
In lighting correction stage of the proposed method, we integrate
the differentiable renderer after the lighting parameter correction
network to enable applying image-level loss to 3D mesh and light-

ing parameters. It serves as a bridge to connect the deep neural
network and the reconstructed 3D information.

2.4. Transformer

Transformer is first proposed in natural language process-
ing (NLP) [VSP∗17], whose success makes it gradually popular in
computer vision areas. For example, DETR [CMS∗20] leverages
the transformer as the backbone to cope with the object detection
problem. ViT [DBK∗20] first applies transformer for image recog-
nition. Wan et al. [WZCL21] adopt transformer to address high-
fidelity free-form pluralistic image completion and have achieved
visually pleasing results. In these works, transformer architecture
shows promising performance because of its strong capability to
model global image structures by building dense correlations. How-
ever, these works only consider modeling self correlations involved
in the input features. In contrast, our method aims to model dense
correlations between the input and a guidance image to exploit the
texture and light information involved in the guidance to help en-
hance the input image.

3. Method

Our method aims to enhance the lighting of input portrait images
taken under some unsatisfactory lighting conditions. Considering
that the shape of human faces is rich in geometric details and the
shading on the face is also delicate, we do not follow previous
methods which model this task as an image-to-image translation
problem and directly learn a mapping from the bad lighting im-
age distribution P(Is) to target light-enhanced image distribution
P(It), defined as F : P(Is)→ P(It). Instead, we achieve it in two
stages to incorporate 3D information in learning. Specifically, we
first learn a mapping from P(Is) to the distribution of the 3D guid-
ance Ig, defined as F : P(Is)→ P(Ig), and then we learn a mapping
from P(Is) to P(Ig) conditioned on the 3D guidance, defined as
P(Is|Ig)→ P(It).

Figure 2 shows our framework. Given an input image Is, in the
lighting correction stage (Section 3.1), its 3D mesh and albedo map
are first reconstructed by a 3DMM reconstruction block C. And
then the lighting parameter correction network L combined with a
differentiable renderer R, is learned to predict the corrected light-
ing parameters, and yields a guidance image Ig containing a face
rendered with corrected lighting, for the next stage. The image en-
hancement stage (Section 3.2) is based on a GAN network that con-
sists of a transformer encoder T, a generator G, and a discriminator
D. It takes the guidance Ig as a condition to modify the shading
of the input face image Is and eventually generate an enhanced re-
sult image, which is visually pleasing and photorealistic with good
lighting.

3.1. Lighting Correction Stage

To include 3D facial information into our framework, we first re-
construct the shape of the input face and disentangle the albedo in-
formation from the texture. Following the idea of [FSGF16] which
matches 3D models to portraits, we adopt a reconstruction network
from [DYX∗19], which takes the input image and use a neural net-
work to regress identity coefficients α, expression coefficients β,

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

179



Fangzhou Han, Can Wang, Hao Du & Jing Liao / Deep Portrait Lighting Enhancement with 3D Guidance

differentiable
renderer R

lighting correction stage

image enhancement stage

estimated lighting
parameters

input image 𝑰!

corrected lighting
parameters

3DMM 
reconstruction C

lighting parameter 
correction network L

transformer
encoder T generator G

pose parameters

guidance image 𝑰!

reconstructed image

final result "𝑰"

multi-SPADE
block

Figure 2: The schematic illustration of our method.

and texture coefficients ζ of a 3DMM face model [PKA∗09] as
well as the pose parameters γ corresponding to the input. The face
shape S and the albedo texture A can be presented as:

S = S(α,β) = S+Bidα+Bexpβ

A = A(ζ) = A+Btζ
(1)

where S and A are the average face shape and texture, Bid , Bexp,
and Bt are the PCA bases of identity, expression, and texture, re-
spectively. As shading is not considered during the formation of
the texture bases, the interpolation result of the texture can only
represent albedo information regardless of the input illumination,
resulting in a desired disentangle effect.

After reconstruction, we train a lighting correction network to
predict lighting parameters corresponding to an enhanced light-
ing condition. To back-propagate gradients from loss functions de-
fined on 2D images to the network, we use a differentiable ren-
derer [LLCL19] to render the shape and albedo texture of the in-
put image with lighting parameters obtained from the network. The
renderer R replaces the traditional rendering steps of rasterization
and hidden face removal with a differentiable aggregate function.
For ith pixel, its color can be represented as:

Ii = ∑
j

wi
jC j +wi

bCb,

where C j is the color of jth triangle, Cb is the color of the back-
ground and wi are weights corresponding to the ith pixel. The
weights are negatively correlated with the distance between the
pixel and the triangle, as well as the depth of the triangle.

For network L, a good prediction requires accurately estimating
the input lighting and then mapping the input lighting to its cor-
rection target. Experiments show that training the network to learn

the two steps simultaneously and to directly output the corrected
lighting is difficult. Therefore, we design a bi-branch pipeline to
explicitly learn the estimation and the mapping with supervision
from input and target images, respectively. With the bi-branch de-
sign, the lighting parameter correction network encodes two sets
of parameters, the estimated lighting parameters εest and the differ-
ence between the estimated lighting parameters and the corrected
lighting parameters δSH , with which the corrected lighting parame-
ters εcrt can be calculated by εcrt = εest +δSH . Both εest and εcrt are
input to the differentiable renderer along with the reconstruction re-
sults to obtain the reconstructed image Îs = R(S,A,γ,εest) and the
guidance image with corrected illumination Ig = R(S,A,γ,εcrt).
The loss function can be written as:

Llight =
∣∣Îs− Is

∣∣+λcrt |Ig− It | (2)

where λcrt is a weight parameter.

Although the corrected lighting parameters are obtained and
used in the rendering process, the rendered image cannot be directly
used as the enhancement result, as there is unavoidable distortion
in the reconstruction process and the lighting model in the renderer
cannot perfectly simulate the real lighting effects. Therefore, we
use an image-to-image translation network to guarantee the real-
ity of the enhancement result, while using the rendered image as
a guidance to provide the translation process with realistic shading
and texture information.

3.2. Image Enhancement Stage

Given the input low-light face image Is and the guidance image Ig
generated in the lighting correction stage, the image enhancement
stage outputs the desired enhanced face image. As mentioned in
Section 1, to better exploit the visual relations between Is and Ig

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

180



Fangzhou Han, Can Wang, Hao Du & Jing Liao / Deep Portrait Lighting Enhancement with 3D Guidance

is the key to reconstruct the desired enhanced face image. We ap-
ply two modifications on the basis of pix2pix [IZZE17], the trans-
former encoder and the multi-SPADE block, to make better use
of the guidance from the lighting correction stage and generate
visually-pleasing results.
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Figure 3: Transformer block.
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Figure 4: Multi-SPADE block. η and ϕ are modulation parame-
ters.

Transformer Encoder: Traditional transformers capture self
correlations by calculating Q (Query), K (Key), and V (Value) us-
ing the input feature, but we want to model the relations between
the input and the guidance. Therefore, we propose a transformer
block as shown in Figure 3. In the proposed block, the input fea-
ture is extracted from the input image and the guidance Ig will first
be warped into the same dimension as the input feature. Then Q is
calculated from Warp(Ig), while K and V are calculated from the
input feature. The attention map is obtained by performing a matrix
multiplication between Q and K and applying a softmax operation
to its result. By multiplying V and the attention map, we acquire
the output feature.

Multi-SPADE Block: SPADE (Spatially-Adaptive Normaliza-
tion) [PLWZ19] is an effective layer in a generator for synthesizing
photo-realistic images given an input semantic layout. Unlike the
original SPADE block which only injects the guidance image as
condition and totally ignores the semantics involved in the origi-
nal input image, we adopt a Multi-SPADE block from [MWSL20]
to make the generated image better preserve semantics-consistence
with the input. Specifically, we cascade two SPADE blocks, one
takes Ig as input and the other one takes Is as input, as shown in

Figure 4. Such a cascaded block ensures the generated image be
consistent with Ig at light level and simultaneously be semantics-
consistent to the input Is.

There are three loss functions used in training the enhancement
network. We use the adversarial loss to minimize the distribution
distance between the ground-truth and output normal light distri-
butions. For a face image, some local areas require much attention
to adaptive but a global discriminator fail to provide the desired
adaptivity. Similar to PatchGAN [IZZE17], we use a multi-scale
patch discriminator D = {D1,D2,D3} to discriminate the real and
fake images at different scales. Thus, the adversarial loss is defined
as follows:

min
T,G

max
D1,D2,D3

∑
k=1,2,3

LGAN (T,G,Dk) (3)

LGAN = EIt [logDk(It)]+E(Is,Ig)[log(1−Dk(G(T (Is),Ig)))] (4)

To make the training process robust, we also adopt a feature
matching loss [WLZ∗18] between different layer features extracted
by the discriminator of the real and fake images.

LFM (T,G,Dk)=E(Is,Ig,It )

L

∑
i=1

1
Ni

[∥∥∥D(i)
k (G(T (Is),Ig))−D(i)

k (It))
∥∥∥

1

]
(5)

where i means the ith layer, L represents the number of layers, and
Ni is the number of parameters of the ith layer.

Also, a perception loss is used to further improve the perfor-
mance:

Lpercep(T,G) =
K

∑
i=1

1
Mi

[∥∥∥F(i)(Is)−F(i)(G(T (Is),Ig)))
∥∥∥

1

]
(6)

where i means the ith layer, K represents the number of layers, Mi

is the number of parameters of the ith layer, and F(i) is the feature
of the ith layer of a VGG19 network.

In our work, these losses can be optimized jointly and the total
objective can be defined as:

min
T,G

max
D1,D2,D3

∑
k=1,2,3

LGAN (T,G,Dk)+

λFM ∑
k=1,2,3

LFM (T,G,Dk)+λpercepLpercep (T,G)
(7)

where λFM and λpercep are weight coefficients.

4. Experiments

4.1. Dataset Construction

As mentioned in Section 1, currently there exists no high-quality
dataset for portrait lighting enhancement. To build such a dataset,
we first ask volunteers to manually select a group of portrait
images that are believed to have good lighting from FFHQ
dataset [KLA19]. This group of images forms the enhanced light-
ing distribution as shown by the blue oval of Figure 5. They will
be used as the ground truth for training to guarantee the outputs
to be more natural than using synthetic data. The corresponding
input images are degraded from target images. Specifically, we
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Figure 5: Dataset construction process and samples. Is is the de-
graded low-light image and It is the pseudo ground-truth image.

first estimate SH parameters of all target images following the it-
erative optimization method used in [ZHSJ19] and calculate their
mean value SH. Given the SH parameters of ith target image,
denoted as SHtarget,i, we randomly sample an ideal SH parame-
ter within a small radius of the mean, denoted as SH i, and ex-
trapolate SHtarget,i away from SH i to get the degraded lighting:
SHinput,i = SHtarget,i +λsh ∗ (SHtarget,i−SH i) where SHinput,i rep-
resents the SH parameters of the ith input image and λsh ∈ [1,2]
is a randomly sampled extrapolation parameter. The randomness in
ideal point and extrapolation parameter sampling introduce lighting
variations in dataset. With degraded lighting parameters SHinput,i,
the ith degraded image is generated by the data synthesis pipeline
introduced in [ZHSJ19]. After degradation, to make the synthetic
data as realistic as possible, a blurring filter is applied to the de-
graded image, followed by a Gaussian noise to simulate detail loss
and noise artifacts in poorly-relit images. The strength of the blur-
ring filter and the Gaussian noise is not uniform but in positive
correlation with the shading darkness. And thus, the training pair
of the ith input and target images is formed.

To further prevent unrealistic synthetic images, volunteers are
asked to perform manual filtering, after which 6828 out of 20000
image pairs are selected to form the final dataset. Among the 6828
pairs, 6371 pairs are splited as the training set, while 457 pairs are
splited as the testing set. Some samples from the dataset are shown
in Figure 5.

This dataset construction method is pecuniarily efficient and
the dataset is easy to extend. Training with the dataset, networks
will learn to adjust the lighting of the input images towards the
elected standard, yet the results will still preserve the lighting char-
acteristic of the input images, instead of undesirably mapping all
lighting conditions to a normalized one. Although the domain gap

between synthetic data and real data is inevitable, even with the
above-mentioned delicate designs, the testing results on real images
demonstrate that our synthetic dataset enables networks to general-
ize well on real poorly-relit images.

4.2. Implement Details

In the lighting correction stage, L is modified from the structure of
ResNet50 [HZRS16], which concatenates the Is ∈ R512×512×3 and
Ig ∈R512×512×3 as input and outputs a matrix of size B×54, where
B = 4 is the batch size and 54 is the vector length representing 2
groups of 3× 9 parameters, εest and δSH . The numbers of SH we
used are 27 (9 for each channel of RGB). . During the training of
the lighting correction stage, we optimize the network parameters
using Adam with β1 = 0.95 and β2 = 0.90. The initial learning rate
is 0.001 and linearly decays for every 15 epochs by a factor of 0.7,
with total epochs being 120. The value of λcrt is set to 1.

In the image enhancement stage, E has 7 convolution layers and
4 transformer blocks in total. It takes Is ∈ R512×512×3 and Ig ∈
R512×512×3 as input and outputs a feature map of shape B×1024×
8× 8, where B = 16 is the batch size. G has 7 upsampling layers
with scale factor 2, and each is accompanied by a Multi-SPADE
block. It reconstructs an image of the same size as the input. D has
a similar architecture as PatchGAN [IZZE17] and downsampling
factors for D1,D2,D3 are 1, 2, and 4 respectively. We optimize the
network parameters using Adam with β1 = 0.95 and β2 = 0.90.
The initial learning rate is 0.0002 and linearly decays to 0 after
50 epochs. Values of λFM and λpercep are all set as 10. Besides,
in Equation 5, L equals 5 including 1 input layer, 2 intermediate
layers, and 1 output layer. And in Equation 6, K equals 5 which
means we apply the perceptual loss to the output of the first 5 layers
of the VGG19 network.

4.3. Ablation Study

Albedo w/o BB w/o SH Ours

PSNR 9.868 9.994 10.17 10.25

SSIM 0.2774 0.2798 0.2813 0.2842

Table 1: Quantitative evaluation results of ablation study on the
lighting correction stage.

Lighting correction stage

To demonstrate the effectiveness of the bi-branch design and the
SH lighting model of the lighting correction stage, we conduct an
ablation experiment including two comparisons with three results:

• Est. lighting w/o SH: the estimated lighting of the method using
the default ambient and directional lighting model instead of SH
lighting model (SH) in the differentiable renderer.
• Crt. lighting w/o BB: the corrected lighting of the method not us-

ing the bi-branch design (BB) but use a single-branch to directly
estimate the corrected lighting.
• Crt. lighting w/o SH: the corrected lighting of the method using

the default ambient and directional lighting model in the differ-
entiable renderer.
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Figure 6: Example results of ablation study on the lighting correction stage.

Some example results are given in Figure 6. To only output the
corrected lighting parameters under the supervision of the ground
truth is the most straightforward design of the lighting parameter
correction network. However, in such a single-branch design with-
out explicitly estimating the original lighting of the input image,
it will cause ambiguities and lead to results sometimes being too
close to the input (2nd example) but sometimes being too flat and
losing the original lighting patterns (1st and 3rd examples). In our
bi-branch design, the network can learn to estimate and adjust the
lighting from separate supervision, which leads to better perfor-
mance.

Another issue that influences the lighting correction performance
is that the original differentiable renderer supports only ambient
lighting model and direction lighting model, which sometimes can-
not perfectly simulate the lighting effect of the image. In our imple-
mentation, we modify the lighting model to SH lighting, which is
more flexible in simulating lighting directions and colors. In Figure
6 we can see that the SH lighting model is able to simulate more
complex lighting condition and better fit the skin color of the input
image, therefore leads to better corrected lighting results.

We also conduct quantitative evaluation by calculating Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM)
against target images. The results in Table 1 shows that our final
method obtains the highest score on both metrics, which numeri-
cally proves the effectiveness of the bi-branch design with SH light-
ing model.

Image enhancement stage

To demonstrate the effectiveness of each part of the image en-
hancement stage, we conduct an ablation experiment to compare
our method with four methods:

Input w/o Ig w/o SH w/o T w/o MS Ours

PSNR 18.25 24.21 26.13 26.26 26.93 27.15

SSIM 0.8816 0.9030 0.9115 0.9163 0.9188 0.9211

Table 2: Ablation study on the image enhancement stage.

• w/o Ig: the method that removes the 3D guidance injection Ig in
the retouching branch. The input of this method is the image Is
only. Specifically, we set Is as the input to the encoder T without
using Multi-SPADE blocks and the guidance Ig.
• w/o SH: the method that uses guidance if point lighting rather

than SH lighting in the relighting branch.
• w/o T: the method that adopts traditional convolution layers as

encoder rather than the transformer encoder.
• w/o MS: the method that uses single SPADE block which

only injects Ig without considering semantics consistency using
Multi-SPADE blocks.

First, qualitative experiments are conducted, as shown in Fig-
ure 7. We observe that method w/o Ig has obtained the worst results
of all ablations, which evaluates the necessity of using 3D guid-
ance for image enhancement. Sometimes method w/o SH shows
enhancements compared to the input, but it is still not comparable
to ours. For example, the lower jaw of the 3rd example cannot be
enhanced. This is because the point lighting model fails to estimate
the lighting accurately and an inaccurate guidance cannot provide
a right training direction of the model. Method w/o T shows severe
artifacts, for example the nose of the girl in the second row. This
shows that the low-light regions cannot be well-enhanced without
the transformer’s ability of modeling correlations between the input
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Figure 7: Visual results of ablation study on the image enhancement stage.

and the guidance. Method w/o MS outperforms other ablations, but
the absence of texture details makes its results non-photorealistic.
For example, we cannot see enough details of the 3rd and 4th ex-
amples. Depending only on single SPADE block fails to preserve
enough texture details. In contrast, our method gives superior re-
sults, which demonstrates the superior performance and general-
ization ability of each component of our method.

We also conduct quantitative experiments in Table 2. In contrast,
the PSNR and SSIM metrics of our final method are all better than
other settings, which validates the effectiveness of our method by
imposing 3D guidance, SH lighting model, transformer encoder,
and Multi-SPADE block. We also find more serious degradation
without using our proposed 3D guidance than others. This reveals
the importance of providing 3D information to the enhancement
process. This 3D guidance not only guides the training process in
the right direction, but also provides missing texture details of the
input, especially in the underexposure and overexposure regions.
Though the 3D guidance contributes more to the improvement of
our method, other components are also crucial to the success of the
final pleasing results.

4.4. Comparisons on Synthetic Data

To evaluate the performance of the proposed method, we com-
pare it with state-of-the-art image lighting enhancement methods,
EnlightenGAN [JGL∗19] and Zero-DCE [GLG∗20], and portrait
relighting methods, DSIPR (Deep Single-Image Portrait Relight-
ing) [ZHSJ19] and SMFR [HZS∗21]. We train the two image light-
ing enhancement methods on our dataset with author-released code,

as they were previously trained for general images, and use the pre-
trained model for the portrait relighting methods. As the portrait re-
lighting methods require lighting parameters as input, we feed them
with the lighting parameters predicted by our first stage.

We first compare these methods on synthetic data, both quali-
tatively and quantitatively, results of which are shown in Figure 8
and Table 3. In terms of very dark areas in Figure 8, all of the com-
parison methods cannot produce desired results. EnlightenGAN
and Zero-DCE achieve better results than the relighting methods
DSIPR and SMFR, but they still perform badly in generating natu-
ral face textures and pleasing lighting conditions compared to ours.
Numerical results in Table 3 also support this observation. DSIPR
and SMFR report the worst two results on both PSNR and SSIM
metrics, while EnlightenGAN and Zero-DCE show relatively bet-
ter results. However, it is obvious that the proposed method has
achieved the best in terms of PSNR and SSIM metrics. This proves
the superiority of the proposed method in making use of 3D infor-
mation and correlations between the 3D guidance and the input.

Input DSIPR SMFR EnlightenGAN Zero-DCE Ours

PSNR 18.25 23.68 22.77 26.15 26.32 27.15

SSIM 0.8816 0.8970 0.8893 0.9088 0.9102 0.9211

Table 3: Comparison with state-of-the-art models.
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Figure 8: Qualitative comparison with state-of-the-art methods on the FFHQ dataset on the image enhancement stage.

4.5. Comparisons on In-the-Wild Data

To evaluate the generalization ability of our method, we compare
to related works on the in-the-wild images, as shown in Figures 9.
All methods can enhance the lighting condition overall, but these
related works still show obvious worse results than ours. Both En-
ligtenGAN and Zero-DCE show unrealistic skin colors after en-
hancing the input. For example, EnligtenGAN makes the skin color
more yellow for the face of the 3rd example. Besides, Zero-DCE
tends to generate over-exposure and unnatural images. In contrast,
our method can successfully enhanced the input and synthesize
photo-realistic light-enhanced image without destroying the face
color. This is because the 3D information such as face geometry,
face texture and lighting directions and intensities involved in the
guidance can guide our networks to generate desired enhanced im-
ages, while EnligtenGAN and Zero-DCE do not use any guidance.
As for relighting-based methods DSIPR and SMFR, they cannot re-
construct face details. Though they use SH parameters as guidance
to train their models, their performances are still worse than ours.
This is because these SH parameters only capture lighting infor-
mation, while the 3D guidance we used cannot only model target
lighting but also capture face geometry, shading, and face texture.
To conclude, all these methods generate unsatisfactory visual re-
sults when it comes to both brightness and naturalness. Compared
to these methods, our method successfully enhances the low-right
areas and also preserves facial texture details without inducing ar-
tifacts. More results please refer to our supplemental materials.

As there is no ground truth for the enhancement of in-the-wild
images, we also conduct a user study to perform numerical eval-

uation among our method and the related works. Specifically, we
randomly choose 25 bad-lighting real images as test cases and ap-
ply different methods to enhance these images. Then for each case,
we show the input image and the enhanced images generated by
different methods and ask 22 participants to rank the five results
from the highest quality (score 4) to the lowest quality (score 0).
During ranking, the participants are instructed to consider whether
the lighting condition of the images are properly and naturally
enhanced without any artifacts or noise. The statistics results are
shown in Figure 10. Figure 10 (a) demonstrate the average ranking
scores and standard deviations of each method, where our method
is ranked in the first place (3.54±0.79). Figure 10 (b) shows the av-
erage ranking scores for each methods by every test case, and Fig-
ure 10 (c) shows the average ranking scores for each methods by
every participant, from both of which it can be seen that our method
has a stable and outstanding performance over different test cases
judged by different individuals.

4.6. Image Harmonization

To increase the stability for training the networks, we detect and
crop the face region when pre-processing the dataset. To extend our
method to handle images with random face size and location, we
train an image harmonization network [KS20] to adjust the bright-
ness of the background according to the enhanced face region. In
Figure 11 we compare our harmonized enhancement results (Ours)
with the inputs and the enhancement results directly padded to the
original background (w/o harmonization). It can be seen that the
discontinuity on the background or the hair region of the images
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Figure 9: Qualitative comparison with state-of-the-art methods on in-the-wild images on the image enhancement stage.

after the enhancement is smoothed by the harmonization network,
which effectively enriches the working scenarios of our method.

5. Conclusions

In this paper, we present a deep face lighting enhancement method
with 3D guidance. To support face light enhancement, we propose
a method to synthesize more photo-realistic training pairs and use
a 3DMM and a differentiable renderer to generate 3D guidance.
We show that a transformer encoder can better model the relation
between the guidance and the input low-light face image. Quali-
tative and quantitative experimental results prove the effectiveness
of the proposed method in both poorly-lit synthetic and in-the-wild
images.

Although it is proved that the lighting guidance is useful and
more accurate and realistic guidance will lead to better enhance-
ment performance, a limitation of current method is that it is unable
to alter the lighting attributes, such as direction or strength, of the
enhancement results with modifying the lighting guidance. This is
because, unlike the relighting tasks where the lighting inputs (pa-
rameters or color maps) are only entangled with the training targets,
the lighting guidance in our method also has correlation with the in-
put image. Figure 12 shows some failure cases when providing the
guidance with arbitrary lighting outside our enhanced lighting dis-
tribution. In future work, the framework can be modify to perform
relighting function with generating multiple guidance-target pairs

for one input image. Another potential limitation is, because a lim-
ited number of SH coefficients are used, the synthesized training
pairs cannot represent all kinds of illuminations, especially those
with high-frequency components. Thus, our network may not be
able to handle these challenging illuminations perfectly. This is a
common problem for all lighting enhancement and relighting meth-
ods with synthetic training data. While real datasets captured in
light stages or real environments would be helpful to avoid such
problems, they are expensive and time-consuming to collect.
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