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Abstract
Given a time-varying scalar field, the analysis of correlations between different spatial regions, i.e., the linear dependence
of time series within these regions, provides insights into the structural properties of the data. In this context, regions are
connected components of the spatial domain with high time series correlations. The detection and analysis of such regions is
often performed globally, which requires pairwise correlation computations that are quadratic in the number of spatial data
samples. Thus, operations based on all pairwise correlations are computationally demanding, especially when dealing with
ensembles that model the uncertainty in the spatio-temporal phenomena using multiple simulation runs. We propose a two-step
procedure: In a first step, we map the spatial samples to a 3D embedding based on a pairwise correlation matrix computed from
the ensemble of time series. The 3D embedding allows for a one-to-one mapping to a 3D color space such that the outcome
can be visually investigated by rendering the colors for all samples in the spatial domain. In a second step, we generate a
hierarchical image segmentation based on the color images. From then on, we can visually analyze correlations of regions at
all levels in the hierarchy within an interactive setting, which includes the uncertainty-aware analysis of the region’s time series
correlation and respective time lags.

1. Introduction

Numerical simulations of mathematical models describing spatio-
temporal natural phenomena are key to research in various fields
of natural sciences. To capture uncertainties in the models, one fre-
quently runs simulation ensembles using varying model settings.
When analyzing the simulation outcome, a main question is what
are the spatial structures that form with respect to the given uncer-
tain time series. More precisely, one would be interested in observ-
ing whether there are regions, i.e., spatially connected components,
that have a similar temporal behavior for the entire ensemble, and
whether different regions exhibit a common pattern, i.e., whether
the temporal behavior of the different regions is similar or exhibit
some causality.

Similarity of time series is commonly quantified using a corre-
lation measure. Thus, spatial samples within a homogeneous re-
gion would have high correlations. Moreover, when considering
spatially separate regions with some connection, they would also
exhibit high correlations, where both positive and negative corre-
lations can be of interest. In addition, when observing some cor-
relation between two regions with a time lag, this is a basis for
hypothesizing about some causality relation between the two re-
gions. Correlations between spatial positions are computed pair-
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wise. Thus, when given n spatial samples, the number of correla-
tions is quadratic in n. When the spatial resolution is high, there are
many time steps, and the spatio-temporal data are collected for an
ensemble, keeping the computation times for pairwise correlation
analysis within a feasible range is rather challenging. Furthermore,
developing a visual representation that allows for a global analysis
of the correlations, while still providing the necessary details for
an analysis of all facets on demand (including spatial regions at ad-
justable granularity, temporal behavior, time lags, and uncertainty),
is equally challenging.

We propose a two-step visual analysis of global time series cor-
relations of spatial locations for spatio-temporal ensembles. The
first step is dedicated to detecting regions of high correlations and
visualizing the global correlations. To do so, we compute pairwise
correlations of time series ensembles for all spatial samples. The
correlation matrix is used to compute a 3D embedding. The 3D em-
bedding is mapped to a color space such that each spatial sample
is assigned a color and color differences are related to the pairwise
correlations. The outcome of this first step is a visual representation
of global correlations in the form of color-coded spatial visualiza-
tions. Analyzing the details based on all pairwise correlations is not
feasible within an interactive setting for common data sizes. We,
therefore, propose to operate on homogeneous regions in our sec-
ond step. We extract regions using a hierarchical segmentation al-
gorithm. Then, we can operate on the segments to analyze all facets
of the data within an interactive visual analysis tool. Based on the

© 2021 The Author(s).
Computer Graphics Forum published by Eurographics - The European Association for Computer
Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.14326

https://doi.org/10.1111/cgf.14326


M. Evers, K. Huesmann, L. Linsen / Uncertainty-aware Visualization of Regional Time Series Correlation in Spatio-temporal Ensembles

hierarchical segmentation output, our tool allows for the analysis
of the time series at a continuous level of spatial detail. The time
series analysis includes the visualization of trends, time lags, and
uncertainties.

Our main contributions can be summarized as follows:

• We propose a global correlation visualization using color-coded
spatial visualizations, where color differences approximate cor-
relations.

• We propose a continuous spatial level-of-detail control based on
a hierarchical segmentation of global correlations.

• We present an interactive and uncertainty-aware visual analysis
of time series correlations including time lags and locally adapt-
able spatial granularity.

2. Related Work

Analyzing spatio-temporal simulation ensembles is complex due to
the multifaceted nature of the data [WHLS19,Cro18,KH13,WP09].
Thus, different approaches focus on different facets of the data, for
example, they provide visualizations aiming at an understanding of
a temporal evolution [HHB16,OJ14,BLLS17,FML16]. Visual ana-
lytics approaches for the analysis of spatio-temporal ensemble data
often focus on statistical properties [PWB∗09, SZD∗10]. There are
other approaches though that define spatial regions in simulation
data. Bordoloi et al. [BKS04] propose techniques to segment prob-
ability density function data without taking time dependency into
account. Kappe et al. [KBL19] use a topology-based feature detec-
tion to detect extrema. Köthur et al. [KSDD14] try and compare
different similarity measures and clustering methods in the spa-
tial domain and decide to use Euclidean distances and k-means.
They aim at a comparison between model output data and ref-
erence data. Similarly, Shu et al. [SGL∗16] use an inversion of
the Euclidean distance together with a k-means clustering to par-
tition the spatial domain. Topological methods like Morse-Smale
complexes have also been used to create a partitioning of scalar
data [TFL∗17,RWS11,GKK∗11,GBP18]. All these approaches try
to define spatial regions, but none of them investigates correlations
between the regions.

Correlation is a common similarity measure to define the simi-
larity of time series [PDW∗14, FSE12]. Sauber et al. [STS06] an-
alyze the correlations between different fields in multi-field scalar
data and create a correlation field based on the result. Other ap-
proaches also investigate the correlation between different fields
[JPR∗04, CWMW11]. These approaches do not consider the cor-
relations between different regions. Pfaffelmoser and Westermann
[PW13] showed that local correlations contain a lot of information
about the structure of the data. A relatively new approach to the
analysis of global correlations in climate data is the use of so called
climate networks, where a network is established based on the cor-
relation of spatial data samples [ACM∗19,BGR∗19]. This network
is analyzed using methods from complex network theory. Nocke et
al. [NBD∗15] summarize the state of the art in visual analytics of
climate networks. They highlight that occlusion and visual clutter
is a common problem and mainly focus on approaches to improve
node-link diagrams drawn on a map. Still, for global correlation
analysis, occlusion remains an issue when rendering node-link di-
agrams over spatial domains. Nocke et al. argue that matrix-based

visualizations have the disadvantage of being unable to convey the
geographic information. We instead propose to use matrix-based
visualizations and link them to spatial visualizations, which convey
the region information.

In machine learning, correlation clustering is a common ap-
proach to cluster data based on pairwise correlations [BBC04].
The methods aim to find an optimal number of clusters, where
the correlation inside a cluster is maximized and the correlation
between different clusters is minimized. Zhang et al. [ZHQL16]
build on k-means clustering and apply it on a distance metric for
time-varying multi-variate data that combines correlations with dis-
tances. Sukharev et al. [SWMW09] propose to treat time lines as
high-dimensional points and either apply k-means directly or re-
duce the dimensionality using principal component analysis (PCA)
and then use an image segmentation method. The latter variant is
closest to our correlation-based segmentation approach, but they
operate on the sample points directly instead of correlations.

Kumpf et al. [KRRW18] introduced the notion of correlation
cliques, which are regions of highly correlated points to a chosen
seed point, to analyze the sensitivity of weather forecasts based on
correlations. They allow for a subdivision of these regions, but do
not target the analysis of global correlation schemes. Thus, their
approach strongly depends on the choice of seed points. An inter-
active approach targeting the analysis of correlations in climate data
was proposed by Antonov et al. [ALI∗19]. Their approach focuses
on discovering so-called teleconnections, which are long-range in-
teractions of weather phenomena. However, they do not apply a
hierarchical approach which limits the analysis to one level of de-
tail. Additionally, their visualizations might get cluttered quickly
because drawing lines on maps quickly leads to occlusion if many
lines are needed. Like Kumpf et al., they also allow for selecting
a seed point and then only show local correlations to alleviate the
occlusion issue, which does not work for global correlation analy-
sis. Jänicke et al. [JBMS09] presented a method to make wavelet
analysis applicable to larger datasets that also contains a clustering
step. However, they use wavelet analysis as a base instead of full
correlations, and their approach does not apply to ensembles.

A more general approach aiming at the analysis of global cor-
relation structures was proposed by Pfaffelmoser and Westermann
[PW12]. They focus on uncertain spatial data, not on the correla-
tion of uncertain spatio-temporal data, i.e., they did not consider
time series correlations. Moreover, they only include one level of
spatial subdivision for a more in-detail analysis, which might not
be sufficient in some cases, e.g., for large climate simulation data
that also require an in-detail analysis of smaller regions. A hierar-
chical correlation clustering algorithm was proposed by Liebmann
et al. [LWS18]. They find a connection between the clustering den-
drogram and a joint tree to visualize the clustering as a topologi-
cal landscape. However, their approach does not generate spatially
connected components as in segmentations.

In conclusion, none of the approaches target global correlation
analysis for spatio-temporal ensemble data, but either consider
spatio-temporal data or uncertain spatial ensemble data. Also, no
existing approach allows for an interactive analysis of global time
series correlation for regions at a continuous level of spatial detail.
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Figure 1: Overview of processing pipeline from ensemble data via similarity image to interactive hierarchical correlation analysis.

3. Overview

Given a spatial-temporal ensemble, our approach for the
uncertainty-aware visualization of regional time series correlation
consists of two main steps that can be further subdivided into a
pipeline of sub-steps as depicted in Figure 1.

The first main step is the generation of a color-coded spatial visu-
alization of global correlations (Section 4). The visualization shall
provide a global understanding of correlations among spatial sam-
ples. We achieve this by assigning to each spatial sample a color
such that color distances relate to correlations. For its computa-
tion, we first need to define a correlation measure for time series
ensembles (Section 4.1). Since we want to assign colors using a
3D color space, the samples’ correlations are then mapped to a 3D
embedding (Section 4.2). Finally, the samples’ positions in the 3D
embedding are mapped to colors (Section 4.3), which then are used
for the spatial visualization.

The goal of the second main step is to allow for an interactive
uncertainty-aware visual analysis of the correlation among spatial
regions down to the level of analyzing the relation of time series
including time lags (Section 5). It builds upon the first main step
by starting with the color-coded spatial visualization and applying
a hierarchical segmentation algorithm to it (Section 5.1), which re-
sults in a region hierarchy with continuous level of detail. For an
in-detail analysis of these regions, we compute multi-level corre-
lations for all regions in the hierarchy including time lags (Sec-
tion 5.2). The multi-level computation assures that the user can
adaptively refine regions during an interactive session. All com-
putation steps up to here can be performed in a pre-processing
step. From here on, computations need to fulfill the requirement
that they can be executed within an interactive setting. We achieve
this by basing all subsequent analysis steps on the region hierar-
chy only. For the interactive analysis, we use multiple views that
link region visualizations (Section 5.3) to correlation visualization
(Section 5.4) and uncertainty-aware time series visualizations (Sec-
tion 5.5) using respective coordinated interactions (Section 5.6).

4. Spatial Visualization of Global Correlation

This section describes the details for the generation of a color-
coded spatial visualization of global correlations as introduced in
Section 3.

4.1. Time Series Ensemble Correlation

Given n spatial samples and m simulation runs, then we have for
each spatial sample xi and each simulation run rk a time series as
a function of time t, which we denote by sik(t). Now, our goal is
to define a correlation measure for a time series ensemble to com-
pute the pairwise correlation at two spatial sample locations xi and
x j. Thus, we want to compute the correlation between two sets of
functions {sik(t) : k = 1, . . . ,m} and {s jk(t) : k = 1, . . . ,m}. Please
note that the number of time steps may differ between simulation
runs, but we can assume that two time series sik(t) and s jk(t) of the
same simulation run have the same length.

In general, it is not clear, how a correlation between two sets of
functions can be defined. In the case of ensembles, it is obvious
that we should compute the correlations for time series that belong
to the same simulation run. An immediate choice would then be to
compute the correlation for all m time series individually and after-
wards compute their mean. However, the mean generally leads to a
significant loss of information such as the standard deviation from
the mean. Therefore, we decided against using the mean and, in-
stead, propose to use concatenated time series for correlation com-
putation. More precisely, we define the concatenated time series of
the m time series given at a spatial sample xi piece-wise by

fi(t) = sik

(
t −

k−1

∑
l=1

Tl

)
for

k−1

∑
l=1

Tl < t ≤
k

∑
l=1

Tl ,

where Tk denotes the number of time steps of simulation run rk
with k = 1, ..,m. The concatenation of the time series is also shown
schematically in Figure 1.

Given two concatenated time series fi(t) and f j(t), we are now
in the position to apply any existing correlation measure. As the
Pearson correlation coefficient [BCHC09] is the most commonly
applied correlation measure for time series, we decided to use it
for our experiments, as well. It describes the linear dependence be-
tween the concatenated time series at two samples xi and x j by

Ci j =
∑p( fi(tp)−µi)( f j(tp)−µ j)√

∑p( fi(tp)−µi)2
√

∑p( f j(tp)−µ j)2
,

where µi and µ j denote the mean of fi(t) and f j(t), respectively.

We would like to point out that time lags are not considered here,
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Figure 2: a) 3D embedding of correlation-based distances between
spatial samples with assigned colors. b) Respective similarity im-
age of temperature for global climate simulation. Color differences
relate to correlations.

as two samples that exhibit a high correlation only when applying
a time shift shall not be assigned to the same region during the
later segmentation step. Additionally, performing the calculation
including time lags only on the level of segments, saves a signifi-
cant amount of computation time.

4.2. 3D Embedding

Having computed the pairwise correlations Ci j for all spatial sam-
ple pairs, we want to assign colors to the samples such that the
color differences relate to the correlations. Since color spaces are
three-dimensional, we would like to map the correlations to a 3D
space. The values Ci j form a correlation matrix. We first normalize
the values of the matrix such that its range [−1,1] is scaled to the
range [0,1]. We transform the normalized correlation matrix to a
distance matrix by subtracting it from the one matrix. Thus, the en-
tries of the distance matrix become di j =

1−Ci j
2 . Thus, time series

with a strong positive correlation have small distance values and
those with a strong negative correlation have large distance values.
Similar to our comment above about time lags, we would like to
point out that points with a strong negative correlation should not
be put into the same region during segmentation.

Given the distance matrix, we would like to find a 3D embedding
that preserves relative distances as much as possible. Thus, we are

interested in minimizing the stress function

σ =
√

∑
i̸= j

(di j −∥pi −p j∥2)2 ,

where pi denotes the position related to spatial sample xi in the 3D
embedding. Multi-dimensional scaling (MDS) [Wic03] is a dimen-
sionality reduction method for generating embeddings from dis-
tance matrices by minimizing the stress function σ. Consequently,
we decided to use MDS as a distance-preserving projection tech-
nique to compute points pi in the 3D embedding. In general, the
distances cannot be fully preserved, if the intrinsic dimensionality
is higher than three. However, we will use the resulting visualiza-
tion as an overview and starting point for in-detail analysis such that
small inaccuracies are acceptable here. Moreover, we can perform
an investigation of the eigenvalues to estimate the loss, if desired.

4.3. Color Mapping

Given the 3D embeddings pi of all spatial samples xi, we can assign
to each point a color in a 3D color space. This can be achieved
by simply using the positions of the points in the 3D embedding
as coordinates in the 3D color space. Since our goal is to relate
color distances to correlations, we should use a color model, where
Euclidean distances in color space relate to human perception. We
decided to use the CIE L∗a∗b∗ color space, as it is designed to be
perceptually uniform, i.e., Euclidean distances of points in the color
space correspond to perceptual differences of colors.

To map the points pi to a color in the CIE L∗a∗b∗ color space,
we first rotate the points such that the most distant points lie on the
diagonal of a cube and then re-scale the points to a range such that
we make the best use of the color space. The re-scaling is applied
by first scaling the positions pi to the unit cube [0,1]3 with the
same scaling factor for all axes. Then, we scale the three dimen-
sions by a factor 100 and translate them such that all points lie in
the range [0,100]× [−50,50]× [−50,50] of the CIE L∗a∗b∗ color
space. This mapping preserves the relative distances, even though it
does not use the complete color range available. However, we use
a wide range of colors. An example of a color-coded embedding
is shown in Figure 2a. Now, the image of the spatial domain can
be shown in the respective colors. The closer the colors appear to
an observer, the higher is the correlation between the underlying
time series. In the following, we are going to refer to the result-
ing image as similarity image. An example of a similarity image
can be seen in Figure 2b. Since the CIE L∗a∗b∗ color space uses
colors that may not be perfectly re-producible in the RGB color
space, the colors may be a bit off when displaying them on an RGB
color screen. However, as this is only the first step of our analysis,
where loss had already been introduced by the 3D embeddings, we
consider the slightly off colors as being acceptable for our visual-
izations here. The subsequent segmentation step will benefit from
using a larger set of color representations.

5. Interactive Hierarchical Correlation Analysis

This section describes the details for an interactive visual analysis
of multi-level correlations within a region hierarchy as introduced
in Section 3.
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5.1. Hierarchical Segmentation

Given the similarity image as described in the previous section,
we want to segment it into roughly homogeneous regions to allow
for further analyses based on segment means. A myriad of image
segmentation algorithms exists that could be applied. We want to
generate a hierarchical segmentation with continuous level of de-
tail, i.e., it should generate a hierarchy with continuously changing
granularity. Given the homogeneity of segments at finest granular-
ity, we can assume their smoothness at the highest level of detail.
Watershed algorithms are capable to produce such hierarchies. We
choose a graph-based watershed algorithm [CN11,NCP13], as this
algorithm can handle color images, provides large flexibility in the
choice of the geometry, and can also cover images defined on a
spherical surface like Earth climate data. Moreover, the algorithm
itself is very fast with a quasi-linear runtime complexity in the num-
ber of pixels. An efficient implementation is available [PCC∗19].

We first define an undirected graph G = (V,E) with vertices V
and edges E. Each vertex in V corresponds to one pixel in the
image. Adjacent vertices are connected by edges. This is shown
schematically for a one-dimensional image in Figure 3b. The graph
structure allows us to include non-flat geometries like the Earth,
where we insert additional edges between the vertices representing
the pixels on the left side of the image and those on the right.

Each edge e = {v1,v2} ∈ E is weighted by the gradient between
the two vertices v1 and v2 it connects. In the field of image seg-
mentation, a variety of methods for gradient image calculations is
available. We propose two methods. The first option is to use the
Euclidean distance between color values f (v) of the single pix-
els associated with vertex v ∈ V . This leads to rather sharp edges
and may cause oversegmentation for smooth color transitions, but
on the other hand, assigns the pixels accurately for clear edges
in the image. The second option is to use a Sobel filter [SF68],
which is among the simplest operators for edge detection in im-
ages. Here, we first calculate a gradient image, where each pixel
contains the gradient magnitude. Each edge is weighted with the
mean of the adjacent gradient image pixels. This second method
leads to smoother edges than the first one, but is better suited for
data with smooth transitions. We compute gradients with respect to
the CIE L∗a∗b∗ colors for intuitive interpretation, but, in principle,
the gradients could be computed in higher-dimensional spaces. The
mapping from the 3D embedding to the CIE L∗a∗b∗ color space is
a linear transformation that does not affect relative distances.

The algorithm to create a watershed hierarchy consists of two
main steps. First, a binary partition tree is created from the edge-
weighted graph. Second, for each edge in the tree, it is marked
whether it is a watershed edge or not. An edge is a watershed edge
if it merges segments that correspond to different minima. An ex-
ample is shown in Figure 3c. If the edges are already sorted, this
algorithm for the binary partition tree has an asymptotic time com-
plexity of O(|E| ·α(|V |)) where α(·) is the inverse of the single-
valued Ackermann function. On the resulting binary partition tree,
the watershed edges are labeled in a post-processing step that is
linear in |E|. By removing all edges without labels, we obtain the
watershed hierarchy. In this hierarchy, we remove consecutive tree
nodes with equal altitudes. Note that the tree representing the hier-
archy is not necessarily binary. In the following, we treat the small-

1 1 5 3 2 2

0 04 2 1

0 04 2 1

1 1 5 3 2 2

a)

b)

c) d)

0 04 2 1
e)

Figure 3: Example for watershed hierarchy generation: a) 1D im-
age. b) Edge-weighted graph with Euclidean distances as gradients
and minima shown in red. c) Binary partition tree with watershed
edge (blue). d) Watershed hierarchy with pruning line (grey). e)
Watershed segmentation with two segments for pruning line in d).

est watershed basins as the lowest level of the hierarchy. The whole
algorithm is schematically shown in Figure 3.

We store the obtained hierarchical segmentation in a tree data
structure, where each node represents one segment. The segments
in the lowest level of the hierarchy, i.e., the leaves of our tree, rep-
resent the smallest unit on which we will work in the subsequent
steps. Thus, the number of nodes in our tree structure does not scale
with the resolution of the data, but scales with the information con-
tained in the data. Increasing the spatial resolution of the given
data without adding further information, does not increase the size
of our tree structure.

We store additional aggregated data in the nodes of our tree. For
leaves, we store the spatial sample points associated with them. For
each node, we store means over the segment represented by them.
More precisely, we store the mean time series for each ensemble
member, to allow for their immediate access during an in-detail
analysis at interactive rates. We can assume that the segments at
the highest level of detail are by construction sufficiently smooth
to work on means. In addition, we store for each segment the min-
imal and maximal pair-wise correlation of the associated sample
points. This allows us to detect projection errors and points the
user towards segments with strong internal variations. To also save
computation times in the pre-processing stage, we make use of the
linearity of the mean: We only calculate the means of the leaves
directly from the input data, while for inner nodes and the root we
compute the mean of their children’s means weighted by the area
of the children’s segment. The altitude for each node as computed
by the watershed algorithm is also stored, which allows for a re-
finement of single segments based on the watershed level.

5.2. Multi-level Correlations

We calculate pair-wise correlations between the segments for all
ensemble members. We can restrict the computations to pairs of
segments that do not belong to one path within the tree. Addition-
ally, we make use of the symmetry of the correlation matrix.

To find global correlations, one is interested in regions with a
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synchronized behavior, but also in regions where there is a time lag
τ between the events hinting towards some causality. Thus, we cal-
culate the time-shifted cross-correlation ρi j,k(τ) between two time-
series sik(t) and s jk(t) of ensemble member rk with time lag τ as

ρi j,k(τ) =
E[(sik(t)−µi)(s jk(t + τ)−µ j)]

σiσ j
,

where E[·] is the expected value and σi and σ j are the standard devi-
ations of sik(t) and s jk(t) respectively. The bars above the variables
indicate that these are mean values of the segments. We calculate
these correlations for all τ ∈ {−τmax, . . . ,τmax} where τmax is an
application- and data-specific value to be defined by the user.

We compute a total (2τmax+1)m correlation values for m ensem-
ble members. We reduce this number by calculating the strongest
correlation. Here, strongest correlations could be both positive or
negative, thus, we use the maximum absolute value, but store the
sign to capture if negative or positive correlations dominate.

As we mainly want to identify whether strong correlations exist,
we threshold the correlations values leading to ternary values of
strong negative (-1), strong positive (1), or weak (0) correlations.
Subsequently, we compute the average of the binary values over
all ensemble members and normalize it by the number of ensemble
members m. As we assume that the ensemble members are rela-
tively similar, it is very unlikely that there exist ensemble members
with strong positive correlations as well as strong negative correla-
tions. If this occurs nevertheless, we alert the user about this issue
for further investigation. Otherwise, we obtain an average value,
that is either positive representing the percentage of runs with pos-
itive correlations above the threshold or negative representing the
percentage of runs with negative correlations below the (negative)
threshold. This percentage encodes the likelihood of the occurrence
of a strong correlation, which relates to the uncertainty within the
ensemble.

As it may be of interest to investigate the data for multiple thresh-
olds, we also support this option. These are pre-computations to the
interactive visual analysis session, during which the user then can
select from the pre-defined thresholds interactively. Calculating lots
of different thresholds comes at the cost of large memory require-
ments, but we expect few thresholds to suffice in all applications
we envision.

5.3. Region Visualization

For an in-depth analysis of correlations between regions, it is im-
portant that the user can relate the correlations to the regions within
the spatial domain. Hence, we support a spatial visualization of the
regions. The data sets used within the scope of this paper have 2D
spatial domains, which allows us to visualize the regions using a
2D map, see Figure 4. If data sets with 3D spatial domains were
used, the 2D maps would need to be replaced by 3D maps and dis-
played using volume visualizations such as slice-based viewers or
even direct volume renderer.

In the 2D map, we show the regions in the form of segments for a
user-defined watershed level. The watershed level can be changed
interactively to get an overview of the different levels in the seg-
mentation hierarchy. The segments are colored with the mean color

Figure 4: Region visualization using white borders: Four regions
are interactively selected, others are greyed out. Labeled region
(center) is shown with black dashed border. Region that is hovered
over (right) is shown with pink border.

of the colors assigned to the sample points in the similarity image
(cf. Section 4). This gives the user an impression of the similarity of
the segments. A comparison to the similarity image, that is always
shown juxtaposed with the segmentation, allows the user to evalu-
ate the quality of the segmentation. The mean color of the segment
represents the choice to use the segment’s mean of the time se-
ries for further correlation investigations. This chosen interpretable
color-coding can cause neighboring segments to have similar col-
ors. To assure that segments are clearly distinguishable, we render
a white boundary around each segment. The user can interactively
label segments for further analysis, where the labels are used in all
visualizations. As users typically label segments that are of special
interest, we highlight them by replacing the white boundary with a
black dashed frame.

Using our continuous level-of-detail hierarchy, segments can be
refined adaptively. Thus, the dataset can be analyzed following the
visual information-seeking mantra “Overview first, zoom and filter,
then details-on-demand” [Shn96]. This concept minimizes visual
overload in the beginning of the analysis process and supports a
correlation analysis on a more global level. Adaptive refinement is
performed by interactively selecting a subset of regions and chang-
ing the level of detail for the selection only. Thus, segments at
different levels of the hierarchy can directly be compared to each
other. The respective correlations are all pre-computed and readily
available for interactive investigations. Using coordinated interac-
tions with other views (cf. Section 5.6) segments can be filtered.
Filtered segments are highlighted by rendering all not selected seg-
ments in faint grey, which puts the focus on the filtered segments
while still allowing the user to see the boundaries between those
segments for context.

5.4. Regional Correlation Visualization

Having defined hierarchical regions, we want to investigate their
correlations including time lags and uncertainty. The task is closely
related to climate networks known from climate analysis. They are
usually visualized by node-link diagrams on top of a map to in-
clude the spatial information. However, such visualizations suffer
from occlusion, which may lead to severe visual clutter. Visually
encoding additional information such as time lags or uncertainty
seems impossible. Therefore, we decided to encode the correlations
in a separate linked view. Our visualization shows a heatmap of
the matrix containing the correlation probabilities which are calcu-
lated as described in Section 5.2. The heatmap scales much better
to large amount of segments, allows for customization during inter-
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Figure 5: Correlation heatmap for correlation threshold 0.8: Cor-
relation probability is shown using a diverging red-white-blue
color map. The colors on the axes correspond to the colors of the
segments in the region visualization. The pink highlighting of the
lowest row/rightmost column indicates that the corresponding seg-
ment in the region visualization is hovered over. The small squares
inside of each heatmap field show the time lag for its strongest cor-
relation using a diverging magenta-white-green color map.

active analysis, and can be enhanced with additional information.
Relations to spatial information about the regions can be easily es-
tablished via coordinated interactions (Section 5.6) to the region
visualization (Section 5.3) as well as by using a consistent color-
ing scheme for segments in all views (in addition to the option to
assign labels). Using separate views also comes with the advantage
of intuitive interactions such as brushing in both views.

The heatmap uses color to encode the percentage of ensemble
members that surpass the selected correlation threshold, either posi-
tively or negatively. Since we want to differentiate between positive
and negative correlations a diverging color map should be used. We
also support displaying only positive or negative correlations, re-
spectively. The heatmap view can be customized in multiple ways.
First, since we want to analyze strong correlations, one may reduce
the size of the matrix by suppressing rows and columns with no
strong correlations. This decision is left to the user though. The
size of the heatmap can further be reduced via interactive filtering
operations within the heatmap view or in linked views. When re-
gions are selected, we render the selection in the heatmap with full
saturation and decrease saturation of all other regions.

To identify groups of highly correlated segments, we use ma-
trix reordering methods as they are known from network analysis.
The thresholded correlation matrix can also be seen as an adja-
cency matrix where the percentage of strong correlations among
the segments corresponds to the strength of the connection. Our
main goal of the matrix reordering is the identification of clusters
which could then be investigated in more detail. In a survey about

Figure 6: Uncertainty-aware visualization of time series ensem-
ble displays median curves of the segment means with uncertainty
bands depicting the ensemble’s variance. Curves are color-coded
according to the color of their respective segments.

matrix reordering methods, Behrisch et al. [BBHR∗16] conclude
with a guideline on which clustering algorithm should be used in
which application case. They state that for cluster identification,
a hierarchical clustering is recommended. We follow this recom-
mendation. As the choice of the linkage scheme used in hierarchi-
cal clustering might strongly depend on the underlying dataset, we
leave this choice to the user, who can interactively test different
linkage algorithms during the exploration of the matrix view. We
include (i) single linkage which uses minimal distances between
two points, (ii) complete linkage which uses maximal distances,
(iii) average linkage with the unweighted pair-group method for
arithmetic averages (UPGMA), (iv) linking based on the distance
of the centroids of the clusters, (v) median linkage which is similar
to the previous method but uses the average of the child centroids
instead of calculating the centroid from the original points, and (vi)
Ward’s minimum variance method. For the hierarchical clustering,
we use the implementation provided by SciPy [VGO∗20].

Our heatmap encodes probabilities of strong correlations and the
type of correlation (positive or negative). In addition, it is of inter-
est to investigate, for what time lag τ this correlation was observed.
We enhance our heatmap visualization by rendering a color-coded
square inside of the field of the matrix that represents the corre-
sponding correlation probability, see Figure 5. Since τ can have
positive as well as negative values, a second diverging color map
should be used that is distinguishable from the one used above and
automatically fitted to [−τmax,τmax]. It is also possible to select a
certain time lag and only show the regions that have a strong posi-
tive or negative correlation (above the threshold) with the selected
time lag.

5.5. Uncertainty-aware Time Series Visualization

Having detected strong correlations between selected regions, one
would then still like to see the actual time series. Thus, we provide
a direct visualizations of the time series data as graphs of a func-
tion over time. We visualize the time series means over the chosen
segments. To convey the uncertainty captured by the ensemble, we
visualize their statistical data using an approach that was inspired
by functional boxplots [SG11], see Figure 6. As for functional box-
plots, we determine the median by ordering the time series by band
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Figure 7: Correlation analysis for synthetic dataset. a) Regional characteristics of time series (ground truth) for ensemble generation.
Underlying functions are shown here, too. b) Similarity image for global correlations. c) Segmentation of similarity image matches ground-
truth regions.

depth choosing the one with the largest band depth [SP10]. This
corresponds to the most central time series. We surround the me-
dian by bands that capture the variation within the ensemble. How-
ever, here we deviate from the functional boxplots approach, since
we experienced the ensemble data to be rather noisy, which led to a
large number of outliers in functional boxplots. Thus, we decided to
instead display bands that spread to the full range that is covered by
the ensemble members, which is also referred to as the 100% band.

To link this view to the other views, we again use the colors
that were assigned to the regions also for the respective time series.
Even though this might lead to rather similar colors for highly cor-
related segments, we found this not to be problematic and noticed
that the different colors for negatively correlated or uncorrelated
time series facilitate the analysis.

5.6. Coordinated Interactions

The region visualization (Section 5.3), the correlation heatmap
(Section 5.4), and the time series view (Section 5.5) display dif-
ferent facets of the spatio-temporal ensemble data. Thus, the views
complement each other. For a comprehensive analysis, these facets
have to be considered jointly, which we support by coordinated in-
teractions between the three views, which are best documented in
the accompanying video.

Hovering over the region map directly highlights the respective
region in the heatmap, and vice versa. The highlighting of a seg-
ment using a pink frame is shown in Figure 4. In order to select
individual regions, we can directly select them in the region map or
brush in the heatmap. Not selected regions are de-emphasized by
attenuating the colors. Time series of selected regions can be inves-
tigated in the time series view. We also support selecting a specific
time lag or a specific correlation probability by clicking the respec-
tive colors in the color legends at the bottom of Figure 5. Having
made a selection, the data can be filtered accordingly. To easily go
back to the previous level of detail, a new tab is created for the anal-
ysis of the filtered data, where the same interaction mechanisms are
available. In this new tab, the non-selected segments are greyed out
in the region map and are hidden in the heatmap, which frees space
in this view for the in-depth investigation of the selection. Such an
in-depth investigation may, for example, involve an adaptive refine-

ment of the regions by adjusting the watershed level. The filtering
mechanisms can be executed consecutively at different levels of
detail, thus, supporting a top-down adaptive hierarchical investiga-
tion. At every point of the investigation, one can easily switch back
to the previous level of detail by just going back to the respective
tab, thus providing provenance information.

6. Results

In the following, we will demonstrate the effectiveness of our meth-
ods by applying them to a synthetic dataset with known ground
truth (Section 6.1) as well as to a real-world dataset from climate
simulations (Section 6.2) which we discuss with a domain expert.

6.1. Synthetic Dataset

We verify our approach using a synthetic dataset. For each spatial
sample, we create a time series using different functions as depicted
in Figure 7a. Each function in is sampled at 300 time steps with a
resolution of 0.1. We generate 10 ensemble members by adding
noise (with uniform distribution between [0,0.1]) to the respective
functions. The resulting similarity image can be seen in Figure 7b.
Here we observe 5 different colors, where the color belonging to
region R6 is similar but not identical to that of R4, R5, and R8,
which was expected as they have a correlation > 0.8. Colors of
regions R1 and R7 are identical though, as their time series are per-
fectly correlated. Region R2, which by definition is anti-correlated
to R1, R7, and R9 exhibits a quite different color. When apply-
ing our proposed segmentation technique to this similarity image
with watershed level 20, we obtain a segmentation as shown in Fig-
ure 7c. The detected segments are identical to the ground truth in
Figure 7 a). To verify that our segmentation works correctly for cir-
cular datasets as in global climate science, we also assume a circu-
lar domain here. In our segmentation, regions R1 and R9 as well as
R3 and R8 form indeed connected regions. Regions R3, R4, and R8
share the same function, but due to the spatial distance between R4
to R3/R8 they indeed are represented by two separated segments.

The corresponding correlation heatmap is shown in Figure 5.
The lower-right block shows that the gray segments (R3/R8, R4,
and R6) are strongly correlated (≥ 0.8) to each other, but not to any
other time series, which is the expected result. When increasing the
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Figure 8: Correlation analysis for MPI-GE temperature field: a) Regions visualization for watershed level 20. b) Regions visualization
filtered for regions with 6-months time-lag correlations. c) Regions visualization filtered for regions with anti-correlations. d) Correlation
heatmap for selected regions of a) with threshold 0.9. e) Correlation heatmap for selected regions of b) with threshold 0.9.

threshold, we can observe that the correlation between the regions
with a linear (R3/R8 and R4) and a quadratic function (R6) van-
ishes. As expected, the orange-colored region (R2) shows an anti-
correlation to the black segments (R1 and R7). The cyan-colored
segment (R5) is anti-correlated to R2 and correlated to R1, R9, and
R7 with a time lag of 15, which is equivalent to shifting the curve
by approximately π/2. We can conclude that all observations are in
line with our expectations and that our proposed approach is work-
ing for this kind of dataset.

6.2. Global Climate Simulation

We also applied our approach to the Max Planck Institute Grand
Ensemble [MMSG∗19] dataset (MPI-GE) and discussed the re-
sults with a scientist who has been working with climate data for
decades. With 100 members for each scenario, MPIM-GE is to date
one of the largest climate simulation ensembles worldwide. We first
used the mean monthly surface air temperature fields of the simu-
lation of scenario RCP8.5, which covers the years 2006-2099 at a
spatial resolution of 192x96.

First, we looked into the raw temperature fields. The similar-
ity image in Figure 2b exhibits a prominent difference in the per-
ceived colors between the northern and southern hemisphere. The
northern regions have a bright color, the southern regions a dark
color, which highlights the strong difference of the underlying time
series. The boundaries between continents and oceans are clearly
visible, e.g., the contours of the northern continents can be iden-
tified by the pink, the southern continents by the blue colors. For

our analysis we start with watershed level 20, dividing the similar-
ity image into 111 segments, see Figure 8a. The contours of the
continents are still recognizable. In the correlation heatmap in Fig-
ure 8d, some segments with anti-correlations (red) stand out. We
interacted with the time lag color map to choose a time lag of 6
months to select all segments that show the corresponding time-
shifted correlation to another segment, see Figure 8b. We obtain
the northern and southern hemispheres without most equatorial re-
gions. This time lag of 6 months between North and South is very
plausible due to the natural seasonality of the Earth’s global tem-
peratures. We also filtered regions by negative correlations to ob-
tain the segmentation and correlation heatmap in Figures 8 c) and
e), respectively. Each of these segments shows a negative correla-
tion ≤ −0.9 to at least one other segment, but we observe that the
uncertainty of the correlation varies. Some regions in North Africa
and East Asia are strongly (≤ −0.9) anti-correlated with Antarc-
tica. The northernmost Antarctic segment shows a strong correla-
tion with the shown pink segments, but only when applying a time
lag of 5 months (pink/green squares in the heatmap’s correspond-
ing rows/columns). Thus, the correlation with time lag of 5 months
is larger than the given anti-correlation without time lag.

The pointwise variance of monthly temperature data is mostly
dominated by the seasonal cycle. In order to enable analysis of cli-
mate variability and changes, we derived anomalies with respect to
the climatological mean monthly values of the period 2006-2015.
In order to study the climate variability and its related changes due
to increasing greenhouse gas concentrations, we focus on the de-
rived temperature anomaly data in our second analysis. Observing
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Figure 9: Analysis of the temperature anomalies: a) Similarity image. We overlaid coastlines for better orientation. b) Region visualization
for watershed level 20. Two interesting segments are selected (dashed border) for their time series visualization showing the El Niño (c) and
a warming hole phenomenon (d).

the similarity image as depicted in Figure 9a, we observe that many
regions display a similar color, while some exhibit distinct different
colors. First, we select the green region in the center of the image
(Pacific Ocean) using the segmentation in Figure 9b, and analyze
its time series in Figure 9c. While the plot reveals a large variation
in the ensemble, the mean curve shows a repeating increase in the
temperature anomaly every 3-5 years, which can be explained by
the El Niño phenomenon. Another region that stands out and has
caught the domain scientist’s interest is a dark purple area in the
top-right corner of the similarity image (North Atlantic Ocean).
This region is known as a “warming hole”, i.e., a region that does
not encounter much warming or is even slightly cooled in a globally
warming climate. This phenomenon is likely linked to ocean circu-
lation changes [KMJ∗20]. We investigate this behavior in more de-
tail by selecting the corresponding segment, see Figure 9b and 9d.
After around 30 years, we observe a small increase of temperature
accompanied by a prominent annual oscillation with decreasing
ensemble uncertainty. The domain expert pointed out that our tool
is helpful to find characteristic climate phenomena. While he im-
mediately recognized some well-known patterns, he acknowledged
that our approach might be helpful to observe new phenomena.
For future work, he suggested to include a more in-detail analysis
of climate research attributes to better investigate phenomena like
the increased annual fluctuations in the northern Atlantic.

7. Discussion and Conclusion

We presented a new approach for global correlation analysis in
spatio-temporal ensembles. In a first step, we color-code the corre-
lations in a spatial visualization. In a second step, we hierarchically

segment the spatial domain and continue with an in-detail analysis
on regions with adaptive refinement. We proposed an interactive vi-
sual analysis with coordinate views on different facets of the spatio-
temporal ensembles. We presented examples to demonstrate the
functionality and effectiveness of our approach. The only param-
eters we introduced are the maximum time lag and the correlation
threshold. Those depend on the application and should be left to the
domain expert user. Our approach does not depend on the choice of
methodological parameters such as weights to combine correlation
with spatial information (cf. [ZHQL16]), which are non-intuitive
for domain experts and may affect the stability of the approach.
Concerning scalability of our approach, the bottleneck is the cre-
ation of the 3D embedding. The size of the distance matrix grows
quadratically with the number of grid points of the simulation data.
However, if this becomes an issue, there exist solutions that allow
the application of MDS for large data sets [Pla05]. The segmenta-
tion scales quasi-linearly in the number of grid points. After seg-
mentation, the approach scales quadratically in the number of re-
gions in the hierarchy, which generally is much lower than the num-
ber of spatial samples. Hence, analyses can be performed within
an interactive setting. While the presented examples had 2D spatial
domains, all steps in principle also work for 3D spatial domains.
The main challenge would be to find a suitable visualization strat-
egy for the segmentation that provides a global overview without
suffering from occlusion. We provide our source code at https:
//github.com/marinaevers/regional-correlations.
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