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Local Extraction of 3D Time-Dependent Vector Field Topology
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Figure 1: Time-dependent vector field topology of the von Kármán Vortex Street dataset at t=0.5 s, defined by attracting/repelling Lagrangian
coherent structures (LCS, blue/red surfaces), obtained as streak manifolds seeded along hyperbolic path surfaces (time slice by green lines).
Our local extraction yields a geometric representation of the temporal evolution of the LCS, which is consistent with ridges in the backward-
(blue) and forward-time (red) FTLE fields. Sections of the FTLE fields shown in the back half, streak manifolds clipped at the top for clarity.

Abstract
We present an approach to local extraction of 3D time-dependent vector field topology. In this concept, Lagrangian coherent
structures, which represent the separating manifolds in time-dependent transport, correspond to generalized streak manifolds
seeded along hyperbolic path surfaces (HPSs). Instead of expensive and numerically challenging direct computation of the
HPSs by intersection of ridges in the forward and backward finite-time Lyapunov exponent (FTLE) fields, our approach em-
ploys local extraction of respective candidates in the four-dimensional space-time domain. These candidates are subsequently
refined toward the hyperbolic path surfaces, which provides unsteady equivalents of saddle-type critical points, periodic orbits,
and bifurcation lines from steady, traditional vector field topology. In contrast to FTLE-based methods, we obtain an explicit
geometric representation of the topological skeleton of the flow, which for steady flows coincides with the hyperbolic invari-
ant manifolds of vector field topology. We evaluate our approach on analytical flows, as well as data from computational fluid
dynamics, using the FTLE as a ground truth superset, i.e., we also show that FTLE ridges exhibit several types of false positives.

CCS Concepts
• Human-centered computing → Visualization techniques; • Applied computing → Mathematics and statistics;

1. Introduction

During the last three decades, vector field topology has become
a well established and very successful approach for visualizing
vector fields. By separating their regions with qualitatively differ-
ent behavior, it provides a representation of their overall transport
structure. The traditional vector field topology [HH91] (VFT) ap-
plies to steady, i.e., time-independent vector fields, and separates
the regions by means of so-called separatrices. The separatrices
are obtained from saddle-type critical points (isolated zeros) and
saddle-type periodic orbits (isolated closed streamlines), where the
saddle property, also denoted hyperbolic, means that there is at least
one manifold of streamlines converging to the structure in forward
time, and at least one manifold converging to it in reverse time.
These manifolds are the separatrices, and they consist of stream-

lines integrated for infinite time in forward and reverse direction.
Although non-separating structures, such critical points / periodic
orbits of type sink (all streamlines converging in forward time)
and source (all streamlines converging in reverse time) as well
as invariant tori, are often additionally included in the topologi-
cal skeleton, they do not give rise to separatrices. Since, in addi-
tion, in time-dependent vector fields counterparts to separatrices
are widely present as Lagrangian coherent structures, but counter-
parts to sources and sinks exist only in special configurations, time-
dependent vector field topology is primarily concerned with the
separating structures. On the other hand, only comparably recently
it has been acknowledged that boundary switch curves [WTHS04]
and bifurcation lines [PC87, Rot00, MSE13] along with their sep-
aratrices need to be included in the topological skeleton to obtain
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all separating structures in VFT. Streamlines seeded along bound-
ary switch curves provide separatrices that separate “interior flow”
from flow that passes domain boundaries, whereas bifurcation lines
consist of “longest flow-aligned” sets of points of saddle-type flow
behavior that give rise to separatrices as well (see Figure 8a). The
steady VFT defined by saddle-type critical points together with pe-
riodic orbits, bifurcation lines, as well as attachment and separation
lines, in a suitable frame of reference, provides candidate structures
for our extraction of the time-dependent 3D vector field topology.

Due to its instantaneous nature, VFT cannot reflect the true trans-
port in time-dependent flow. Furthermore, its strictly infinite-time
concept would often not even be applicable, since aperiodic time-
dependent fields are typically defined on finite time domains. Pro-
viding a solution to both of these shortcomings, the finite-time Lya-
punov exponent (FTLE) has become a successful technique for di-
rect visualization of the finite-time separation of particles [Hal01].
Some ridges in the FTLE field represent Lagrangian coherent struc-
tures [SLM05] (LCS), the time-dependent counterpart to separa-
trices. A shortcoming with this approach is, however, that not all
FTLE ridges represent LCS, i.e., a substantial number of the ridges
can be induced by shear flow and is thus not separating. The LCS,
i.e., the separating ones, are also denoted hyperbolic FTLE ridges.
If one computes the FTLE field for steady vector fields, saddle-type
critical points coincide with intersections of forward and reverse
hyperbolic FTLE ridges, also called hyperbolic trajectories (HT).
That is, the concepts are consistent. In time-dependent flow, how-
ever, intersections of hyperbolic FTLE ridges do not necessarily
represent HTs, since such intersections can also be caused by FTLE
ridges emanating from remote hyperbolic trajectories [HS20]. Fur-
ther drawbacks with FTLE-based visualization include that the
FTLE field requires computationally costly integration of pathlines
seeded on a dense grid in space and time, and that the extraction of
ridges therefrom is numerically challenging [GGTH07, SP07].

An approach complementary to the FTLE obtains the LCS by
generating manifolds of streaklines, seeded along the HTs [SW10,
USE13,MBES16,HS20]. It has the advantage that the LCS are ob-
tained at much higher accuracy, since the streak manifolds are at-
tracted to the respective LCS during integration, and at much lower
computational cost, because only the streak manifolds of the LCS
have to be integrated, instead of computing the dense grid of path-
lines in the entire domain to obtain the FTLE field. The first ap-
proaches for streak-based topology extracted the HTs by comput-
ing the forward and reverse FTLE fields, extracting their ridges,
and intersecting them. The FTLE fields were either computed only
sparsely in time [SW10, USE13], which required integration of the
HTs from the intersections and involved exponential error growth
due to the repelling property of LCS in either time direction, or
the FTLE computation was dense in space and time [BSDW12],
which led to very high computational cost. Notice that the width of
FTLE ridges tends to decrease exponentially with increasing inte-
gration time, and thus very high spatial resolutions are required to
avoid aliasing [SJS20]. For 2D time-dependent vector fields, more
recent approaches obtain the HTs without the help of the FTLE,
by extracting them as bifurcation lines in the 3D (“stacked”) space-
time representation of the time-dependent field [MBES16], with
the most recent contribution [HS20] providing robust and highly
accurate extraction of the HTs and the resulting streak manifolds.

This paper can be seen as an extension of the previous
work [HS20] from 2D to 3D time-dependent vector fields. As we
will show, however, such extension is far from straightforward and
poses many new challenges that require different solutions. In addi-
tion, we address issues that have not yet been sufficiently addressed
in the 2D case [HS20]. Specifically, our contributions include:
• Local extraction of HT surface candidates in 4D space-time,
• robust and accurate refinement of the candidates to HT surfaces,
• demonstration of the necessity to additionally include unsteady

equivalents of bifurcation lines, spiral saddle critical points, a
class of saddle-type periodic orbits, and saddle connectors, and
• automatic selection of seeding lengths.

2. Related Work

An overview of time-dependent vector field topology was recently
presented by Bujack et al. [BYH∗20]. The authors propose a set
of desirable properties for time-dependent vector field topology,
which we relate to our approach in Section 4.5.

Üffinger et al. [USE13] extended the 2D streak topology [SW10]
described above to 3D time-dependent vector fields. Similarly to
Sadlo and Weiskopf, the authors seed path surfaces at intersec-
tion curves of the ridge surfaces in the forward and reverse FTLE
fields. In the 2D case, Machado et al. [MBES16] showed, that
hyperbolic trajectories can be more efficiently extracted as space-
time bifurcation lines, i.e., by refining parallel vectors [PR99] lines
extracted from the space-time vector field. As noted by Günther
et al. [GGT17], these parallel vectors lines correspond to tracked
critical points in the Galilean-invariant frame of reference defined
by the feature flow field [TS03]. The former authors solve linear
least squares problems in a local neighborhood to obtain optimal
frames of reference based on objective transformations. This ap-
proach has been extended to affine and displacement transforma-
tions [GT20, RG20]. Hadwiger et al. [HMTR18] propose a global
optimization scheme, which we do not consider here due to its high
computational cost. Its temporally smooth observers could, how-
ever, be used for more accurate initial candidates for refinement in
our approach. Hofmann and Sadlo [HS20] refined paths of critical
points in the optimal reference frames by employing a technique
for computing distinguished hyperbolic trajectories, originally pro-
posed by Ide et al. [ISW02], in order to obtain a more robust extrac-
tion of 2D time-dependent vector field topology. Branicki and Wig-
gins [BW09] extended the approach for extracting distinguished
hyperbolic trajectories to 3D, where they employ paths of critical
points in the lab frame as initial candidate lines. As shown by Üffin-
ger et al. [USE13], this approach based on hyperbolic trajectories
instead of hyperbolic path surfaces misses large parts of LCS in
typical numerical datasets. In this work, we base candidate extrac-
tion on the notion of bifurcation surfaces, which have been defined
in arbitrarily-dimensional flows by Hofmann and Sadlo [HS19] by
means of the dependent vectors operator. Similarly to the copla-
nar vectors operator for unsteady vortex core lines [WSTH07], a
direct application of the dependent vectors operator to the space-
time vector field would result in tracked bifurcation lines in the
Galilean-invariant frame of reference defined by the feature flow
field. However, such direct application fails for typical numerical
datasets, necessitating alternative approaches.
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Separatrices in our approach are obtained as generalized streak
surfaces, which, in analogy to generalized streaklines introduced
by Wiebel et al. [WTS∗07], are seeded along time-varying seeding
curves. For their computation, we employ the algorithm by Krish-
nan et al. [KGJ09], which outputs a representation of the entire
time-varying streak surface by recording the topological changes
to the triangle mesh alongside the required pathlines. We employ
a modification of their streak seeding approach based on time-
varying curves, tailored to the use of space-time seeding surfaces.

3. Fundamentals

We consider a 3D time-dependent vector field u(x, t) ∈ R3 with
x∈Ω⊆R3, defined over a finite time interval t ∈ [tmin, tmax]. Mass-
less particles move within this space along tangent lines x(t), i.e.,
dx(t)/dt = u(x(t), t) with initial value x(t0) = x0. The phase space
of its associated dynamical system is the four-dimensional space-
time domain Ω× [tmin, tmax].

3.1. Hyperbolic Trajectories

In this paper, we consider the qualitative structure w.r.t. separating
and attracting behavior of close-by particles. In first-order approx-
imation, the evolution of infinitesimal perturbations δδδx(t) along a
trajectory x(t) is described by the localized system [ISW02]

d
dt

δδδx(t) =∇u(x(t), t)δδδx(t) . (1)

Its fundamental solution matrix is the 3×3 matrix X(t) with initial
condition X(t0) = I, whose singular values σ1(X(t))≤ σ2(X(t))≤
σ3(X(t)) describe the lengths of the principal axes of the ellipsoid
spanned by the columns of X(t), which limits all maximum pertur-
bations at time t. Given, that the trajectory is defined over the time
interval t ∈ [t0, tN ], we obtain the finite-time Lyapunov exponents

λi =
1

|tN − t0|
lnσi(X(tN)) , i = 1,2,3 . (2)

We call a trajectory hyperbolic, if λ1 < 0 < λ3. In this case, λ1
describes the exponential rate of contraction along the trajectory,
and λ3 describes the exponential rate of expansion. Similarly to
saddle-type critical points in 3D steady vector fields, the medium
Lyapunov exponent λ2 can either be positive or negative. This
trajectory-centric view is formalized by the time-dependent coor-
dinate transform [ISW02]

T(t) = e(t−t0)DR(tN)X−1(t) , (3)

where D = diag(λ1,λ2,λ3) is the diagonal matrix containing the
Lyapunov exponents, and R(tN) is the right factor in the singular
value decomposition X(t) = B(t)S(t)R(t). The localized flow is
transformed by y(t) = T(t)δδδx(t) into the steady system

d
dt

y(t) = Dy(t) , (4)

where the attracting and repelling behavior is separated, and
thus enables decoupled refinement of a HT. Notice that without
such decoupling, there is repelling dynamics in both time direc-
tions, which impedes refinement (Section 4.2). The columns of
the inverse coordinate transform T−1(t) are the Lyapunov vec-
tors ξξξi(t) = T−1(t)ei, which describe the perturbation directions,

(a) 10:9 (b) 2:1 (c) 4:1
Figure 2: Hyperbolic trajectories (HT) for a saddle-type critical
point (with different anisotropy ratios of λ1 : λ2) moving from left
to right. Only almost isotropic (a) configurations exhibit isolated
HTs, whereas a single HT (orange) only captures a subset of the
the FTLE ridge intersection in generic anisotropic cases (b),(c).
Hyperbolic path surface with time from green to white, forward
(red) and backward (blue) FTLE slices shown at the time depicted
by the spheres, where FTLE ridges intersect in a point ((a), ridge
line and ridge surface), and in a line ((b),(c), two ridge surfaces).

that the respective Lyapunov exponents belong to. We are going to
only consider hyperbolic trajectories, that are also instantaneously
hyperbolic, in the sense that the Jacobian∇u(x(t), t) has eigenval-
ues with positive and negative real parts for all t. We note, that un-
like in 2D flows, this condition does not imply that the Jacobian has
real eigenvalues. Existing literature [ISW02,BW09] only considers
isolated, distinguished HTs, often obtained from paths of critical
points. However, as we discuss next, in the 3D case it is necessary
to consider surfaces consisting of (non-distinguished) HTs.

3.2. Lagrangian Coherent Structures

As an indicator for separating behavior of trajectories, the flow
map φφφ

T
t0(x) is employed, which maps particles seeded at x at time t0

to their positions after integration time T . Given a trajectory seeded
at x(t0) = x0, the fundamental matrix X(t) of its localized flow
(Equation 1) coincides with the flow map gradient∇φφφ

t−t0
t0 (x0). The

finite-time Lyapunov exponent field ς
T
t0(x) is defined as the largest

Lyapunov exponent of the trajectory seeded at x at time t0,

ς
T
t0(x) =

1
|T | ln σ3

(
∇φφφ

T
t0(x)

)
. (5)

Ridge surfaces [EGM∗94] in the forward-time (T > 0) FTLE field,
that represent material surfaces and are locally most repelling, co-
incide with repelling LCS. Analogously, a subset of the ridge sur-
faces in the reverse-time FTLE field ς

−T
t0 (x) coincides with attract-

ing LCS. As introduced above, these forward- and backward-time
FTLE ridges are also denoted hyperbolic.

Intersections of hyperbolic ridges in the forward- and reverse-
time FTLE fields include hyperbolic trajectories. They are those
trajectories, that stay in an instantaneously hyperbolic region lo-
cally for the longest time [Hal01], and can also be regarded as
a finite-time approximation of distinguished hyperbolic trajecto-
ries (DHTs) [ISW02]. Note, that in 3D flows, such ridge surface in-
tersections are in general curves (Figure 2), and thus represent sur-
faces in the space-time domain [USE13], not curves. This means,
that due to the finite time interval, trajectories that pass through
these intersection curves cannot be distinguished and all equally
contribute to the organization of the flow. We call these surfaces hy-
perbolic path surfaces (HPS), if they do not represent intersections
of our streak manifolds generated from hyperbolic path surfaces,
i.e., they are generators (Section 5.3) of the unsteady topology.
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Figure 3: Overview of our approach: (a) Bifurcation lines αi (time purple to white) are extracted in w(x, t) at each time step and triangu-
lated (B) in space-time. (b) Streamlines of ū(x̄) constrained to B (β j, black, seeded at spheres) are refined toward hyperbolic trajectories (β̃ j,
green to white) within the hyperbolic path surface. (c) The major (ξξξ1) and minor (ξξξ3) Lyapunov vectors at the end points of each hyperbolic
trajectory are approximately perpendicular to the respective FTLE ridge, and used as seeding directions (white tubes, shown exaggerated),
resulting in seeding manifolds S0 (cyan), SN (orange). The medium Lyapunov vectors ξξξ2 are approximately tangential to the hyperbolic path
surface. (d) Space-time streamvolumes (transparent blue, forward only) are seeded at S0, SN , whose time-slices are streak surfaces (opaque
red and blue). A straightforward extension of the 2D method [HS20] would instead refine paths of saddle-type critical points ((a), yellow)
toward hyperbolic trajectories ((b),(c), yellow). The resulting streak line ((d)(i), yellow) would miss most of the surface-type LCS ((d), blue).

3.3. Streak-Based Topology

Instead of extracting ridges from the FTLE fields, LCS can also
be obtained by seeding generalized streak manifolds along the hy-
perbolic path surfaces (Sections 1 and 2). For each HT contained in
the HPS, a reverse-time streak 2-manifold is seeded on the segment
x(tN)± δ ·ξξξ1(tN) oriented along of the minor Lyapunov vector ξξξ1
(see Figure 3c) with segment length 2δ (discussed in Section 5.1),
yielding the repelling LCS ((iii) in Figure 3d). Seeding a respective
forward-time streak 2-manifold on the segment x(t0)±δ ·ξξξ3(t0) in
direction of the major Lyapunov vector ξξξ3(t0) yields the attract-
ing LCS ((ii) in Figure 3d), correspondingly. Notice that each LCS
is represented by the union of all respective 2-manifolds, resulting
in a 3-manifold in space-time, whose isotemporal section repre-
sents the LCS at a given time. The resulting space-time seeding
surfaces S0,SN (Figure 3c) exhibit varying initial times tk

0 , tk
N . A

straightforward extension to 3D [BW09] would only consider a sin-
gle, strongest DHT contained in the HPS (yellow in Figure 3).

Streak-based topology generalizes VFT to the time-dependent
case, because streaklines are identical to streamlines in steady vec-
tor fields, and because the notion of a critical point in steady VFT,
which corresponds to a streamline that degenerates to a single
point, is replaced with that of a HPS, which can be considered
a streak surface that degenerates to a streakline [SW10, USE13].
Since in the limit, as integration time approaches infinity, a sub-
set of the ridges in the FTLE field of a steady vector field corre-
sponds to the separatrices in steady VFT [FGRT17], the streak-
based topology coincides with VFT for steady flows defined by
saddle-type critical points and bifurcation lines (see Section 5.1).

4. Method

The time-dependent 3D vector field topology is extracted in three
steps. We first locally extract candidate lines and surfaces in the 4D
space-time domain (Section 4.1), which, in a second, global step,
are refined toward HTs and HPSs (Section 4.2), and subsequently
used for streak manifold generation (Section 4.3). Figure 3 pro-
vides an overview. In Section 4.4, we discuss the consistency with

3D VFT, and in Section 4.5 the overall properties of our approach.
More details can be found in the supplemental material.

4.1. Candidate Surfaces and Lines

Taking an instantaneous view of hyperbolic path surfaces in
the steady 4D space-time vector field ū(x̄) := (u(x, t),1)>, x̄ :=
(x, t)>, they can be seen as bifurcation surfaces [HS19], i.e., lo-
cations where the space-time Jacobian ∇ū(x̄) has only real eigen-
values, and ū(x̄) lies in the plane spanned by its two eigen-
vectors η̄ηη2(x̄),η̄ηη3(x̄), that belong to its two medium eigenval-
ues µ2(x̄)≤ µ3(x̄). This is a direct extension of the concept of
swirling particle cores [WSTH07], which employs the reduced ve-
locity criterion [SH95]. Similarly, since the space-time Jacobian
has exactly one zero eigenvalue, whose eigenvector is the fea-
ture flow field f =−∇u−1ut , this definition is reduced to moving
3D bifurcation lines in the Galilean-invariant frame of reference
w(x, t) = u(x, t)− f(x, t). In order to avoid inversion of the ma-
trix∇u, we instead solve the linear least squares problem∫

x∈U
‖∇u(x, t)f(x, t)+ut(x, t)‖2→min (6)

for the unknown f(x, t) at each time step over a local neighbor-
hood U of 10 grid nodes, with ut(x, t) := ∂u(x, t)/∂t, using the
method by Günther and Theisel [GT20]. Generally, any reference
frame, that minimizes a time derivative [GT20, RG20], could be
employed. However, in our experiments, we were unable to achieve
more consistent results than using a Galilean-invariant frame of ref-
erence. This has, however, no impact on the Galilean invariance or
objectivity of the obtained topology (see Section 4.5).

Since two neighboring time steps w(x, t1), w(x, t2) belong to
different observers, we found that using temporal derivatives of
w(x, t) for constructing a feature flow field for parallel vectors
lines [TSW∗05], or temporal interpolation for tracking solutions in
space-time grid cells [BP02] leads to unreliable and noisy results.
Instead, we extract bifurcation lines in the 3D spatial domain by
applying apply the parallel vectors operator to each time step, and
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(a) (b) (c)
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b
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Figure 4: (a)–(c) Three time steps in the space-time triangula-
tion of parallel vectors lines. A front (orange) of polylines is tri-
angulated with polylines in the candidate set (green), started from
the nearest pairs of vertices (red). (d) Optimization of the seed-
ing length δ. A space-time streak surface (white) is computed from
an initially large offset (orange). At its end points, the FTLE val-
ues (spheres, white to blue) in relation to the FTLE λH of the HT
are used to determine (along arrows) the seeding offset (magenta).

filter the resulting lines by feature strength and length [MSE13].
The resulting sequence of polylines is triangulated in space-time
using an approach based on the ball-pivoting algorithm [BMR∗99]
for surface reconstruction of 3D point clouds. Similarly to the orig-
inal algorithm, we perform the triangulation by advancing a front
of edges. In each iteration, we insert the polylines of the next time
step into a set of candidates for triangulation. Edges in the front are
greedily advanced to candidate edges if they are closer than a cell
diagonal, creating new triangles. At the end of each iteration, the
remaining candidates are added to the front, and edges, which be-
long to time steps older than two, are removed from the front. See
Figure 4 for an illustration of the procedure.

Subsequently, we extract the paths of saddle-type critical points
in w(x, t). Those paths that are not contained in the obtained tri-
angulation are added to the set of candidate manifolds. These ad-
ditional paths address isotropic saddle-type (Figure 2a) and spiral
saddle-type critical points (Figures 5a and 5e).

4.2. Refinement

The candidate surfaces from Section 4.1 are first decomposed into
an ordered set of candidate lines. For this, we integrate the space-
time vector field ū(x̄) projected onto the surface. The projected 4D
vector field is converted into a piecewise constant vector field on
each triangle. We then seed a streamline at the center of each edge
on the boundary of the candidate surface, and integrate it according
to Tricoche at al. [TGS06]. If the projected velocity points outside
of the triangle at the boundary edge, we use backward-time integra-
tion. By construction of the space-time surface, streamline integra-
tion always starts and ends on the surface boundary. This allows us
to order the resulting candidate lines. Figure 3b shows an example.

We then refine each of the candidate lines using the method for
finding distinguished hyperbolic trajectories due to Branicki and
Wiggins [BW09], employing the modifications for increased sta-
bility for 2D flows [HS20], which extend to 3D straightforwardly.
This amounts to transforming the localized flow along the candi-
date line into separated coordinates (Equation 4), where attracting
and repelling directions can be integrated in opposing directions
using a fixed-point iteration. We refer to Section 1.2 in the sup-

plemental material for details. This computation also provides the
Lyapunov vectors along each of the obtained pathlines.

4.3. Streak Manifold Generation

Let us now look at the algorithmic aspects of streak manifold seed-
ing (Section 3.3). To generate a streak manifold from a single hy-
perbolic trajectory x(t) (isotropic case from Figure 2a), with cor-
responding Lyapunov exponents λi and Lyapunov vectors ξξξi(t), its
attracting and repelling streak manifolds would be seeded at the
end time tN and starting time t0, respectively, with a user-defined
segment length δ

−,δ+. For brevity, we only discuss seeding of the
repelling manifold at time t0. The attracting manifold is obtained
by reversing the role of time. If the repelling manifold is one-
dimensional, i.e., λ2 < 0 < λ3, we would seed a time line along
the line segment x(t0)± δ

± ·ξξξ3(t0) at time t0 (Figure 3c). For a
two-dimensional manifold, where λ1 < 0 < λ2 ≤ λ3, we would
seed a time surface from the elliptic disc x(t0)+ δsin(α)ξξξ3(t0)+
δcos(α)ξξξ2(t0) for α∈ [−π,π] at time t0, with user-defined length δ.

In practice, we need to generate a streak manifold from a hy-
perbolic path surface instead, with the HPS given (Section 4.2)
as a sorted set of hyperbolic trajectories {x j(t)}, where each can
be considered to possess a seeding structure as described above.
Furthermore, all Lyapunov exponents λ

j
i are of equal sign for

fixed i, and the HPS is tangential to the medium Lyapunov vec-
tors ξξξ

j
2(t). For seeding the repelling manifold, we construct a

space-time triangle mesh by triangulating the family of line seg-
ments x j(t j

0)+δ
± ·ξξξ j

3(t
j
0). Note, that the initial times t j

0 are in gen-
eral not constant. Analogously, also a 2-manifold seeding structure
in space-time is obtained for the attracting manifold (see Figure 3c).

4.3.1. Streak Integration

We compute the time lines, seeded from the seeding segments, as
streamsurfaces [Hul92] in the space-time vector field, which adds
time as a fourth component to the vertex coordinates. From this
streamsurfaces, a streakline at time t is obtained as the contour at
isovalue t of the time component stored on the surface mesh.

The streak surfaces (“time surfaces”) could be computed simi-
larly to stream volumes in the space-time vector field, where isosur-
faces of the time scalar would yield the streak surfaces. However,
we found, that this leads to prohibitively large four-dimensional
tetrahedral meshes for long integration times in turbulent flows.
Therefore, the streak surfaces are computed using a minor modi-
fication of the time surface algorithm by Krishnan et al. [KGJ09].
Starting from the smallest time value in the space-time seeding
mesh, we iteratively step forward in time. At each time step t, those
vertices in the space-time mesh, that have a time value below t,
are advected toward the current time step t, using a dynamically
sized integration step. The remaining parts of the algorithm are per-
formed as described in the original work, which results in a set of
pathlines and a representation of the streak surface across the en-
tire integration time. The resulting streak surfaces at time t, which
contain vertices at times greater or equal to t, are clipped by time.

4.3.2. Determination of Seeding Lengths

Typically, the lengths δ
−, δ

+, and δ are user-defined and depend
on the dataset as well as the available time interval for integration.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5: Steady topological structures (top row), and their unsteady counterparts (bottom row). Spiral saddle-type critical point (a)(e),
non-spiral saddle-type critical point on a bifurcation line (b)(f), bifurcation line without critical point (c)(g), and closed bifurcation line (d)(h)
representing a saddle-type periodic orbit. Green: hyperbolic trajectories and hyperbolic path surfaces, blue/red: attracting/repelling LCS.

Branicki and Wiggins [BW10, Appendix B] have shown, that for
sufficiently small choices, the resulting manifolds are guaranteed to
be contained within the respective finite-time invariant manifolds,
and that the influence of this choice diminishes with increasing ad-
vection time. However, numerical datasets typically have limited
time domains, making it important to select a length that is as large
as possible, to ensure that the streak manifolds grow large enough
in the available space-time domain of the dataset and the lifetime of
the HT/HPS. We determine such a length using the following ap-
proach (see Figure 4d). From a user-defined maximum length δmax,
we compute the resulting streakline as a space-time streamsurface
over the time interval of the hyperbolic trajectory, where we obtain
the set of pathlines that are involved in its computation. If a new
seed is inserted during the adaptive extraction [Hul92], we linearly
interpolate the two involved pathline seeds, instead of the triangle
edge, to obtain pathlines over the entire time interval. This results
in a mapping between points on the regularly sampled streakline
and its initial points on the seeding segment. Finally, starting from
the hyperbolic trajectory, we determine the closest seeding point,
such that the reverse-time localized FTLE [KPH∗09] of the corre-
sponding point on the streakline falls below a percentage of 50% of
the FTLE λH at the HT, for which we obtained good results in our
experiments. This approach is demonstrated in Figures 11g–11i.

4.4. Consistency with Steady Vector Field Topology

VFT of steady vector fields is known to coincide with the topol-
ogy indicated by ridges in the FTLE fields, in the limit as advection
time tends to infinity [FGRT17]. We further note, that for steady
vector fields, the medium Lyapunov exponent λ2 is zero, since the
medium Lyapunov vector ξξξ2 describes perturbation in direction of
the flow ξξξ2(t) = u(x(t), t), and therefore HPSs degenerate to points
or lines. We thus verify in the following, that the structures ex-

tracted from a steady vector field u(x, t) = us(x) by our approach
coincide with saddle-type critical points and bifurcation lines, and
their invariant manifolds in the steady vector field us(x).

A steady vector field has zero time-derivative ut(x, t) = 0, and
thus any reference frame, which minimizes a time derivative, coin-
cides with the vector field itself, i.e., w(x, t) = us(x) and f(x, t) = 0.
Saddle-type critical points, which do not lie on bifurcation lines, are
thus extracted as temporal candidate lines (x(t) = const), and the
subsequent refinement does not change their location, since they
are already hyperbolic trajectories. Candidate surfaces consist of
temporal copies of the bifurcation lines in us(x). These are decom-
posed into surface streamlines (Section 4.2), which again represent
copies of the bifurcation lines in us(x) with an additional time-
parametrization. Refinement of these candidate lines toward hy-
perbolic trajectories is equivalent to refining the steady bifurcation
lines toward streamlines. This process is similar to the technique
of Machado et al. [MSE13,MBES16], who use the same algorithm
for extraction of 3D bifurcation lines and 2D hyperbolic trajectories
in space-time. And thus, our seeding manifolds coincide with the
usual seeding approaches for saddle-type critical points and bifur-
cation lines in traditional VFT. Our concept is consistent with VFT,
since streak surfaces and streamsurfaces are identical for steady
vector fields. Non-hyperbolic features from steady VFT, such as
source- or sink-type critical points and periodic orbits as well as
invariant tori, do not have to be considered, as discussed next.

4.5. Properties of our Unsteady Vector Field Topology

We now discuss the desirable properties for unsteady topology, as
proposed by Bujack et al. [BYH∗20]. Our method is consistent with
the subset of steady vector field topology (Section 4.4) defined by
saddle-type critical points and bifurcation lines. As we only con-
sider hyperbolic structures, consistent with LCS, the missed fea-
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(a)

(i)

(ii)

(iii)

(iv)

(b) (c) (d)
Figure 6: Steady 3D vector field topology of a single time step in the Convective Flow (saddle-type critical points and bifurcation lines
green, invariant manifolds red and blue). Rakes (i–iv in (a),(b): seeds magenta, streamlines with integration time orange to white) show, that
shear-induced ridges in the FTLE fields (section) are not included in the steady VFT. Seeding invariant manifolds of a saddle-type critical
point (c) instead of its bifurcation line (d) misses parts of the FTLE ridges at same integration times (box). Enlarged region, see box in (a).

tures in steady VFT are those, that do not contribute to hyperbolic
separation. The spatial domain is only partially partitioned due to
time-dependence, and since LCS and FTLE ridges need sufficient
time to grow. This also implies, that Lagrangian invariance and a
non-trivial spatial partition are generally mutually exclusive. Most
non-trivial partitions are induced by intersections of the streak man-
ifolds themselves, i.e., at the presence of unsteady saddle connec-
tors (Section 5.3). Our topology is Lagrangian-invariant, as it is
defined by pathlines and streak surfaces, and thus also Galilean-
invariant and objective. Note, that even the extraction using initial
candidates in a possibly not even Galilean-invariant frame of ref-
erence would yield objective topological features in our approach,
albeit some initial candidates could possibly be missed. We refer to
Branicki and Wiggins [BW10, Sec. 2] for an in-depth discussion.

5. Results

In the following, we first discuss properties of 3D steady vector
field topology in relation to the FTLE and our 3D time-dependent
topology at specific synthetic examples. We then evaluate the
performance and accuracy, and apply our approach to numerical
datasets. Our prototype is implemented in C++, with OpenMP
for parallelization. All computations were performed on a desk-
top computer with 64 GB of RAM and an Intel i7-7700K CPU. We
note, that large parts of the algorithm, such as the parallel vectors
extraction, could be further parallelized on the GPU. For compari-
son with the work of Rojo and Günther [RG20], we extended their
2D prototype to 3D, and used a neighborhood of 413 nodes. Ridge
surfaces were extracted using the prototype provided by Schultz et
al. [STS09]. We refer to the accompanying video for animations of
the figures. Additional analysis of the stability of our method can
be found in the supplemental material.

5.1. FTLE and Separation in Steady Vector Fields

Instantaneous Convective Flow. We consider the instantaneous
topology of a single time step of the Convective Flow dataset (Sec-
tion 5.8), and compare it with FTLE ridges (Figure 6a–6d). For this,
we integrate the invariant manifolds of the VFT using the same
integration time as the FTLE. In this dataset, the FTLE exhibits
many more ridges than captured by the separatrices (Figure 6a). In-
vestigating their separating behavior by seeding rakes across these

ridges (Figure 6b), we find, that ridges not captured by VFT are
shear-induced. We conclude, that employing the FTLE for flow
analysis requires careful examination of the separating behavior of
each ridge. The dataset further contains saddle-type critical points,
which lie on bifurcation lines. Comparing the corresponding invari-
ant manifolds, that can be either seeded from the critical point (Fig-
ure 6c) or the bifurcation line (Figure 6d), we find that seeding from
the bifurcation line results in topological structures more consistent
with the FTLE. For this reason, our unsteady approach favors bi-
furcation lines over critical points, i.e., we omit critical points lying
on bifurcation lines (e.g., Figure 11c).

Bounded ABC Flow. The ABC flow with standard parameters
A=
√

3,B=
√

2,C = 1 is an analytical solution of Euler’s equation,
which is commonly used as a benchmark for Lagrangian analy-
sis [Hal01]. Generally, periodic spatial boundaries with fundamen-
tal domain [0,2π]3 are assumed. However, when taking this steady
vector field as bounded, as is common for numerical datasets, it
exhibits no VFT structures, i.e., no critical points, nor periodic or-
bits or invariant tori. The FTLE, on the other hand, exhibits ridges,
which separate the domain into regions of similar flow behavior.
Separatrices of bifurcation lines also extract these structures (Fig-
ure 8a), which motivates their inclusion in VFT and thus in our
time-dependent topology.

5.2. Kinematic Test Cases

We construct a set of simple test cases by translating a steady vec-
tor field along a curve, i.e., the unsteadiness is of kinematic rather
than dynamic nature. Such synthetic examples are commonly used
as benchmark for unsteady topology [BW09,SW10,USE13]. Note,
that this translation does not correspond to a reference frame trans-
formation of the steady vector field. Starting from steady configu-
rations of topological structures, we construct their unsteady coun-
terparts, as captured by our unsteady topology, by translation along
a Lissajous curve [USE13]. Figure 5 shows the constructed cases,
which provide the building blocks for 3D unsteady vector field
topology. Instantaneous saddle-type critical points, which do not
lie on a bifurcation line, are typically found in regions, where the
Jacobian exhibits complex eigenvalues, since in that case two of
their real parts are equal in a numerically stable way (Figure 5a and
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(i)

(ii)

(a)

(i)

(ii)

(b)
Figure 7: Saddle connectors: heteroclinic (yellow) and homoclinic
(magenta) orbits between two hyperbolic path surfaces ((i),(ii),
green), in a single time step (a) and time projection (b) including
the connectors from (a). The repelling (orange/red) and attracting
(cyan/blue) manifolds intersect along surfaces in 4D space-time.
Ridges in the forward- and backward-time FTLE fields intersect
both along hyperbolic path surfaces and along saddle connectors.

5e; see also Figure 2). Bifurcation lines can either be open (Fig-
ure 5c and 5g) or closed (Figure 5d and 5h), and they may contain
a saddle-type critical point (Figure 5b and 5f). As discussed in the
previous section, we favor bifurcation lines over critical points if
both are present. Note, that bifurcation lines do not extract general
saddle-type periodic orbits, but only those that entirely represent
bifurcation lines [MSE13]. Those parts of the hyperbolic path sur-
face, on which pathlines have enough time to recirculate, coincide
with recirculation surfaces [WRT18].

5.3. Saddle Connectors

Intersections of streak manifolds play an important role in un-
steady flow analysis [MW98], and they manifest themselves as
false-positive HTs (FTLE ridge intersections). Analogously to 2D
unsteady flows [HS20], where such connectors can be related to
saddle connectors in the corresponding steady 3D space-time vec-
tor field [TWHS03], the corresponding configurations in 3D un-
steady flow can be found in the steady 4D space-time vector
field [HRS18]. As indicated by the authors, two 4D saddle-type
critical points can posses surfaces of saddle connectors. To demon-
strate, that 3D unsteady flow can also exhibit such configurations,
we extend the synthetic 2D example [HS20, Figure 6] to 3D. Fig-
ure 7 shows the resulting hyperbolic path surfaces as well as their
homoclinic and heterclinic connection surfaces, which we extracted
geometrically by intersecting the resulting streak manifolds. Our
approach does not extract these (false-positive) saddle connectors,
as opposed to FTLE-based approaches [USE13].

5.4. Scale-Dependency of the FTLE

The separation, that induces an FTLE ridge, is defined by its cur-
vature [SLM05]. This makes analysis using FTLE ridges even
more challenging, since the curvature depends on the spatial
scale/resolution of the FTLE field. The choice of resolution implies
a choice of scale, as we demonstrate at two simple 2D examples in
Figure 8. These examples contain a small hyperbolic region, where
we extract a hyperbolic trajectory, of varying strength (large in Fig-
ures 8b and 8c, small in Figures 8d and 8e). In both cases, the corre-
sponding FTLE ridge can be extracted with high or low curvature,

(a)

time

(b)

time

(c)

time

(d)

time

(e)
Figure 8: (a) ABC Flow: while traditional VFT is empty, bifurca-
tion lines (green) and their invariant manifolds (red/blue) capture
the separating behavior of the flow consistently with the FTLE. (b)–
(e) Scale-dependency of the FTLE (red, bottom). Strongly separat-
ing LCS (b) appears weak at smaller scales (c). Weakly separat-
ing LCS (d) appears strong at larger scales (e). Hyperbolic trajec-
tory (green) and attracting/repelling streak manifolds (blue/red).

(a) (b)
Figure 9: Performance analysis. Forward- and backward-time
FTLE ridge extraction at each time step (a), and our method over
the entire dataset (b). Notice the time scale difference of about 105.

depending on FTLE resolution. Our locally extracted topology, on
the other hand, has no such scale parameter. Instead, the resulting
streak manifolds exhibit different levels of growth. In practice (see
also Section 5.8), hyperbolic trajectories can be filtered by strength
in order to obtain only the most relevant topological structures.

5.5. Performance

We compare the computational costs of our approach with the di-
rect extraction of LCS from FTLE fields (Figure 9) at the synthetic
unsteady saddle dataset (Section 5.2). The direct approach requires
the computation of a dense set of pathlines. For comparison, we
keep a rather low fixed resolution of 3003 samples and extract ridge
surfaces in the forward and backward FTLE fields for a varying
number of time steps (Figure 9a). The computational costs depend
linearly on both the number of samples and number of integration
steps, however the extraction needs to be repeated at each time step,
leading to an asymptotically quadratic complexity with respect to
the number of time steps. In practice, one would need to increase
the resolution of the FTLE fields with increasing advection times
in order to accurately resolve the stretching and folding of the LCS,
which would result in exponential computational complexity. Our
method, on the other hand, has no resolution parameter, but only
extracts parallel vectors lines from each original grid cell, which is
resolved at 413 nodes. Its computational costs also depend linearly
on the number of nodes, and thus on the number of time steps (Fig-
ure 9b). Since the refinement and streak integration is performed
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time

(a) ground truth

time

(b) raw features

time

(c) HTs

(d) 1003 (e) (f) 6003 (g)
Figure 10: Convergence of FTLE ridges to streak topology. The
distance of parallel vectors lines (b) to FTLE ridge intersections (a)
is decreased by refinement toward hyperbolic trajectories (c). Dis-
tance in dark green (zero) to white (one cell diagonal). The tem-
poral evolution (time evolves upward) of sections with the plane
z=5 is shown (Figure 11). For increasing resolutions of FTLE,
ridges (d)(f) converge toward streak manifolds (e)(g). Distance to
FTLE ridge shown in color from white to black (one cell diagonal).

over the entire time span of the dataset, this computation yields the
LCS for all times. We thus conclude, that our method is typically
several orders of magnitude faster than a direct extraction, and ad-
ditionally no numerically challenging evaluation of the flow map
or ridge extraction is necessary.

5.6. Accuracy

We compare the hyperbolic trajectories and streak manifolds ob-
tained using our method with ridges in the FTLE fields, at the ex-
ample of the von Kármán Vortex Street dataset (discussed in detail
in Section 5.7). On the plane z = 5, we compute the forward and
backward FTLE fields with resolution 2000× 1000 at each time
step of the dataset. We extract local maxima in the product of the
two FTLE fields, where we simplify the scalar topology by filtering
critical point pairs with persistence below 2% of the maximum, us-
ing the implementation in the Topology Toolkit [TFL∗17]. Due to
numerical aliasing, we obtain false-positives near the obstacle (Fig-
ure 10a), but otherwise a reasonable, computationally feasible ap-
proximation of the FTLE ridge intersections. From these, we obtain
the distance of the sections of the parallel vectors lines as well as
the refined hyperbolic trajectories (Figure 10b and 10c). We find,
that the raw solutions are refined well toward FTLE ridge intersec-
tions. Note, that the lines in Figure 10a–10c depict the evolution
of sections rather than pathlines. Finally, we compare distances of
part (Figure 11f, box) of the attracting streak manifold to the cor-
responding FTLE ridge surfaces (Figure 10d–10g). The distance
decreases with FTLE resolution and thus accuracy increases. The
same ridge filter parameters were used for all resolutions, which
makes numerical aliasing in the FTLE computation visible.

5.7. Von Kármán Vortex Street

The CFD flow of a von Kármán vortex street forming behind a
cuboid obstacle was computed on a domain with extent [0,60]×

[0,10]× [0,10] m3 on a 61× 41× 61 uniform grid. The dataset
contains 801 time steps on the time interval [0,0.8] s. The inflow
velocity varies linearly from 200 m s−1 to 250 m s−1 with distance
from the base wall. Since our dataset exhibits large amounts of
numerical noise, we computed derivatives using convolution with
derivatives of Gaussians, with standard deviations σs = 0.4m for
spatial derivatives, and σt = 0.002s for time derivatives. Com-
putation across the entire dataset took 6546 s in total (derivatives
and frame of reference: 3197 s, parallel vectors: 2261 s, refinement:
276 s, streak integration: 812 s). The raw features and resulting hy-
perbolic trajectories are shown in the accompanying video. Extrac-
tion of the ridges in Figure 10f, on the other hand, took 253 s, and
the corresponding flow map took 2800 s, which only yields a small
part of the attracting LCS in a single time step.

In previous work, Branicki and Wiggins [BW09] propose to use
critical points in the lab frame of reference as candidates for refine-
ment toward HTs. For comparison, we compute the time-dependent
topology from critical points in our Galilean-invariant frame of ref-
erence (Figure 11c). This only captures small parts of those LCS,
where the corresponding bifurcation lines contain a saddle-type
critical point. Rojo and Günther [RG20] propose to extract steady
VFT in their optimal frame of reference, which results in struc-
tures, that are not well aligned with LCS (Figures 11d and 11e),
and exhibit additional deviations in vertical direction. Furthermore,
the computationally more demanding optimal reference frame does
not yield better initial candidates than the Galilean-invariant frame
of reference. We also found, that integration along observer mo-
tion f(x, t) of both frames of reference is unstable near the obstacle
(Figures 11a and 11b), and we were thus unable to recover missing
features using the method proposed by Hofmann and Sadlo [HS20].

5.8. Convective Flow

This dataset has extent [0,10]× [0,5]× [0,10] m3 on a 61×31×61
uniform grid. It contains a CFD simulation of bouyant air flow in
a closed container with no-slip boundaries. To ease discussion of
this turbulent flow, we select 200 time steps over the time inter-
val [4,9] s. Computation took 810 s in total (derivatives and frame
of reference: 375 s, parallel vectors: 177 s, refinement: <1 s, streak
integration: 257 s). The FTLE computed from this dataset exhibits
a large amount of thinly folded ridges. However, we found, that
most of them correspond to weak separation and shear flow (see
also Sections 5.1 and 5.4). Figure 12 shows pathline rakes for some
of these cases. This makes flow analysis using the FTLE infeasible,
since it is unclear how to filter false-positive ridges. In the Galilean-
invariant frame of reference, the dataset contains only short lived
bifurcation lines, which our method is unable to accurately re-
fine. The separating structure is largely generated by strongly hy-
perbolic spiral saddle critical points at the domain center, which
our approach captures. It also extracts the many weakly hyperbolic
saddle-type critical points, which possess streak manifolds of lim-
ited growth (I–III in Figure 12a), and which could be filtered by a
hyperbolicity threshold.

5.9. Discussion and Limitations

Our method has two major limitations. First, it depends on extract-
ing bifurcation lines in a suitable frame of reference using the par-
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allel vectors operator. This extraction can exhibit false negatives,
especially for feature lines with high curvature [MSE13]. Finding
an optimal frame of reference is also challenging in the presence of
turbulence (see Section 2.2 in the supplemental material). A good
frame of reference for these cases has yet to be found and would be
required for ensuring a robust extraction of the topology. Further-
more, the refinement of candidates toward hyperbolic trajectories
depends on the temporal length of the candidate lines. This is not
only limited by the time domain of the dataset, but also on the life-
time interval of the raw feature line. The available integration time
may also be further shortened if domain boundaries are reached.
The accuracy of the refinement can be assessed by computing the
FTLE in the vicinity and time interval of the feature line. If no sharp
ridges are present, no accurate refinement can be guaranteed.

6. Conclusion

We presented an approach to local extraction of vector field
topolgy in 3D time-dependent vector fields, which extends previous
streakline-based approaches [MSE13, HS20] from 2D to 3D. We
have identified the necessity of including spatial bifurcation lines,
we have shown that our topology is aligned with LCS defined by the
FTLE, and that for steady flows, our approach coincides with a sub-
set of traditional steady vector field topology. Unlike FTLE-based
approaches, we obtain an explicit geometric LCS representation,
and our approach does not suffer from false-positive FTLE ridges
(intersections). We demonstrated that our geometric representation
lends itself to further flow analysis, and that our approach is typ-
ically orders of magnitude faster and more accurate than FTLE-
based approaches. As future work, we would like to further investi-
gate unsteady topology induced by shear, and unsteady equivalents
to invariant tori, i.e., elliptic structures.
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Figure 11: Backward-time integration along observer mo-
tion f(x, t) for Galilean-invariant (a) and displacement-based (b)
optimal frames of reference started on bifurcation lines in w(x, t0).
Considering saddle-type critical points in w as initial candidates
for hyperbolic trajectories, i.e., a straightforward extension of the
2D method [HS20], misses most of the topological structure (c),
while vector field topology in an optimal steady reference frame is
not aligned with LCS (d),(e). Computed from a Galilean-invariant
frame of reference, our method captures large parts of the topology,
and is aligned with LCS (f),(g). Green: saddle points and bifurca-
tion lines, blue/red: attracting/repelling LCS. Raw features shown
in magenta in (g). (e) and (g) show cross-sections from (d) and (f),
with manifolds slices shown in black. (g)–(i) Streak manifolds with
seeding lengths (Section 4.3.2) from different percentages of FTLE.
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Figure 12: Convective Flow dataset on time interval [4 s, 9 s].
(a) At t=5.5 s, the flow is governed by a strongly hyperbolic un-
steady spiral saddleH. Streak manifolds of weakly hyperbolic tra-
jectories (I–III) exhibit limited growth. Most FTLE ridges are not
captured by our topology because they are shear-induced or corre-
spond to weak separation ((i)–(iv), pathline seeds magenta, path-
lines in (b)). (c) Slice of the streak manifold (black) at t=6.5 s, for
comparison. Notice point symmetry, where (A) corresponds to (B).
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