
Tech Document

August 28, 2020

This tech document is organized into four sections. Section 1 covers in greater detail the
derivation of our pressure projection from the incompressible Euler equations. Section 2
discusses implementation details for the matrices derived in Section 1, including expressions
for the entries in terms of local cell indices. Section 3 goes into detail about our cut cell
formulation and the necessary modifications to the various matrices. Finally, Section 4
shows that standing pool is a solution of our discretized system.

1 Pressure Projection

After splitting, the weak forms of the incompressible Euler equations are∫
Ω

r · ρ
(

un+1 −w

∆t

)
dx =

∫
Ω
pn+1∇ · r + ρr · gdx−

∫
∂Ω
pn+1r · nds(x), (1)

∫
Ω
q∇ · un+1dx = 0 (2)

with boundary condition ∫
∂ΩD

µ
(
un+1 · n− a

)
ds(x) = 0. (3)

On the boundary ∂ΩN we have p = 0, and on the boundary ∂ΩD we have the Lagrange
multiplier pn+1 = λn+1. We can then rewrite (1) as∫

Ω
r · ρ

(
un+1 −w

∆t

)
dx =

∫
Ω
pn+1∇ · r + ρr · gdx−

∫
∂ΩD

λn+1r · nds(x). (4)

Let Ni be the multiquadratic B-spline basis function associated with cell center xi, and
let χc be the multilinear B-spline basis function associated with grid node xc.

We interpolate un+1, w, r, pn+1, λn+1, q, and µ using these functions as follows:

un+1
α = ūn+1

αi Ni,
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wα = w̄αiNi

rα = r̄αiNi

pn+1 = pn+1
c χc,

λn+1 = λn+1
b χb,

q = qcχc,

µ = µbχb,

where Greek subscripts (α, β, etc.) denote vector components and the subscript b in
place of c indicates that the grid node is a boundary node. Also note that we have used
summation notation.

Substituting these interpolations into the weak form above, we obtain the equations∫
Ω
r̄αiNiρ

ūn+1
αj − w̄αj

∆t
Njdx =

∫
Ω
pn+1
c χcr̄αi

∂Ni

∂xα
dx (5)

+

∫
Ω
ρr̄αiNigαdx

−
∫
∂ΩD

λn+1
b χbr̄αiNinαds(x),

∫
Ω
qcχcū

n+1
αi

∂Ni

∂xα
dx = 0, (6)∫

∂ΩD

µbχb

(
ūn+1
αi Ninα − a

)
ds(x) = 0. (7)

Rearranging the terms and using the Kronecker delta function δαβ, we can rewrite these
three equations as

r̄αi

(
δαβ

∫
Ω

ρ

∆t
NiNjdx

)(
ūn+1
βj − w̄βj

)
= r̄αi

(∫
Ω
χc
∂Ni

∂xα
dx

)
pn+1
c (8)

+ r̄αi

(∫
Ω
ρgαNidx

)
− r̄αi

(∫
∂ΩD

nαχbNids(x)

)
λn+1
b ,

qc

(∫
Ω
χc
∂Ni

∂xα
dx

)
ūn+1
αi = 0, (9)

µb

(∫
∂ΩD

nαχbNids(x)

)
ūn+1
αi = µb

(∫
∂ΩD

aχbds(x)

)
. (10)
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Since r̄αi, qc, and µb are arbitrary, we can eliminate them from the equations. Next,
we define the vectors Un+1, W, Pn+1, and Λn+1 to be the vectors with entries Un+1

αi =
ūn+1
αi ,Wαi = w̄αi, P

n+1
c = pn+1

c , and Λn+1
b = λn+1

b . In other words, they are the vectors
containing all ūn+1

i , w̄i, p
n+1
c , and λn+1

b , respectively.
Furthermore, we define the following matrices:

Mαiβj = δαβ

∫
Ω

ρ

∆t
NiNjdx,

Dcαi =

∫
Ω
χc
∂Ni

∂xα
dx,

Bbαi =

∫
∂ΩD

nαχbNids(x),

and vectors:

ĝαi =

∫
Ω
ρgαNidx,

Ab =

∫
∂ΩD

aχbds(x).

With these definitions, the above equations can be rewritten in the form

M(Un+1 −W) = DTPn+1 −BTΛn+1 + ĝ, (11)

DUn+1 = 0, (12)

BUn+1 = A. (13)

These equations can be written as a single linear system M −DT BT

−D
B

 Un+1

Pn+1

Λn+1

 =

 MW + ĝ
0
A

 . (14)

Now define the gradient matrix

G =
[
−DT ,BT

]
.

Then equation (11) becomes

MUn+1 + G

(
Pn+1

Λn+1

)
= MW + ĝ. (15)

Multiplying by GTM−1 yields(
0
A

)
+ GTM−1G

(
Pn+1

Λn+1

)
= GT

(
W −M−1ĝ

)
, (16)
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where we have applied equations (12) and (13). By inverting the symmetric positive definite
matrix GTM−1G, we obtain an expression for Pn+1 and Λn+1:(

Pn+1

Λn+1

)
=
(
GTM−1G

)−1
(

GT
(
W −M−1ĝ

)
−
(

0
A

))
. (17)

Solving for Un+1 via equation (11), we obtain the velocity correction

Un+1 = −M−1G

(
Pn+1

Λn+1

)
+ W + M−1ĝ. (18)

2 Element Matrices

Let Ωe denote a voxel in the domain. Then we have element analogs of M, D and B:

M e
αiβj = δαβ

∫
Ωe

ρ

∆t
NiNjdx,

De
dαi =

∫
Ωe

χd
∂Ni

∂xα
dx,

Be
bαi =

∫
∂Ωe

D

nαχbNids(x).

On the element Ωe, there are only 4 grid node indices d and 9 cell center indices i in 2D
for which the corresponding functions χd and Ni are nonzero. Hence, we consider only
these indices which are local to this element. In 3D, the corresponding counts are 8 and
27, respectively.

2.0.1 Local to Global Mapping

Consider the mapping
φV e(η) = xe + ∆xη

from [−1/2, 1/2]2 to Ωe, where xe is the cell center. For 3D, we map from [−1/2, 1/2]3 to
Ωe.

2.0.2 Local Indexing

Let d̃ = (m,n) denote the local grid indices corresponding to d with m,n ∈ {0, 1}. Let
(ip, jp) be the global index of the lower left grid node for the cell. Then the local grid node
indices are related to the global grid node indices as follows:

d̃ = (m,n)→ (ip +m, jp + n) = d.
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Likewise, let ĩ = (i, j) denote the local cell center indices corresponding to i with
i, j ∈ {−1, 0, 1}. Let (ic, jc) be the global index of the cell center. Then the local cell
center indices are related to the global cell center indices in a similar manner:

ĩ = (i, j)→ (ic + i, jc + j) = i.

For 3D, we use d̃ = (l,m, n) and ĩ = (i, j, k). Note that now l corresponds to the first
coordinate, and not m.

2.0.3 Local Spline Functions

We also define the local functions

χ̃d̃(η) = χ̃m(η1)χ̃n(η2)

and
Ñĩ(η) = Ñi(η1)Ñj(η2),

with the 1D functions defined as follows:

Ñi(η) =


( 1
2
−η)

2

2 , i = −1
3
4 − η

2, i = 0
( 1
2

+η)
2

2 , i = 1

,

χ̃m(η) =

{
1
2 − η, m = 0
1
2 + η, m = 1

.

Then, we have
χd(x) = χ̃d̃

(
φ−1
V e(x)

)
= χ̃d̃ (η)

and
Ni(x) = Ñĩ

(
φ−1
V e(x)

)
= Ñĩ (η) .

Using the chain rule, we also have

∂Ni

∂xα
(x) =

∂Ñĩ

∂ηβ

(
φ−1
V e(x)

) ∂φ−1
V eβ

∂xα
(x)

=
∂Ñĩ

∂ηβ

(
φ−1
V e(x)

) 1

∆x
δαβ

=
1

∆x

∂Ñĩ

∂ηα

(
φ−1
V e(x)

)
=

1

∆x

∂Ñĩ

∂ηα
(η) .
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2.1 Element Divergence Matrix

We use this change of variable to obtain

De
dαi =

∫
Ωe

χd
∂Ni

∂xα
dx

=
∆x2

∆x

∫
[−1/2,1/2]2

χ̃d̃

∂Ñĩ

∂ηα
dη

= ∆x

∫ 1/2

−1/2

∫ 1/2

−1/2
χ̃m(η1)χ̃n(η2)

∂

∂ηα

(
Ñi(η1)Ñj(η2)

)
dη.

In the case α = 1, we have

De
d1i = ∆x

(∫ 1/2

−1/2
χ̃m(η1)

∂Ñi

∂ηα
(η1)dη1

)(∫ 1/2

−1/2
χ̃n(η2)Ñj(η2)dη2

)
.

The first integral is∫ 1/2

−1/2
χ̃m(η1)

∂Ñi

∂ηα
(η1)dη1 =

i2(6m− 3) + 3i− 4m+ 2

12
,

and the second integral is∫ 1/2

−1/2
χ̃n(η2)Ñj(η2)dη2 =

−6j2 + j(2n− 1) + 8

24
.

Hence,

De
d1i = ∆x

i2(6m− 3) + 3i− 4m+ 2

12

(−6)j2 + j(2n− 1) + 8

24
.

For α = 2 we have the corresponding equation

De
d2i = ∆x

(−6)i2 + i(2m− 1) + 8

24

j2(6n− 3) + 3j − 4n+ 2

12
.

In 3D, the analogous equations are

De
d1i = ∆x2 i

2(6l − 3) + 3i− 4l + 2

12

(−6)j2 + j(2m− 1) + 8

24

(−6)k2 + k(2n− 1) + 8

24
,

De
d2i = ∆x2 (−6)i2 + i(2l − 1) + 8

24

j2(6m− 3) + 3j − 4m+ 2

12

(−6)k2 + k(2n− 1) + 8

24
,

De
d3i = ∆x2 (−6)i2 + i(2l − 1) + 8

24

(−6)j2 + j(2m− 1) + 8

24

k2(6n− 3) + 3k − 4n+ 2

12
.
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2.2 Element Mass Matrix

Using the above change of variable as above, we have the following expression for M e
αiβj,

with ĩ = (i1, i2) and j̃ = (j1, j2):

M e
αiβj = δαβ

∫
Ωe

ρ

∆t
NiNjdx

= δαβ
∆x2

∆t

∫
[−1/2,1/2]2

ρÑĩÑj̃dη

= δαβ
∆x2

∆t

∫ 1/2

−1/2

∫ 1/2

−1/2
ρÑi1(η1)Ñi2(η2)Ñj1(η1)Ñj2(η2)dη.

In the case where ρ is constant, we can write this as a product of integrals:

M e
αiβj = δαβ

ρ∆x2

∆t

(∫ 1/2

−1/2
Ñi1(η1)Ñj1(η1)dη1

)(∫ 1/2

−1/2
Ñi2(η2)Ñj2(η2)dη2

)
.

The analytic expression for the first integral is∫ 1/2

−1/2
Ñi1(η1)Ñj1(η1)dη1 =

167i21j
2
1 − 134(i21 + j2

1) + 5i1j1 + 108

240
,

and the second integral has the same form. Hence, the analytic expression for the element
mass matrix in this case is

M e
αiβj = δαβ

ρ∆x2

∆t

167i21j
2
1 − 134(i21 + j2

1) + 5i1j1 + 108

240

167i22j
2
2 − 134(i22 + j2

2) + 5i2j2 + 108

240
.

The 3D version is directly analogous.

2.3 Element Boundary Matrix

The boundaries require a slight modification of the above framework in both 2D and 3D.

2.3.1 2D

The boundary ∂ΩD consists of line segments. Let ∂Ωe
D denote such an element. Consider

the mapping

φBe(ξ) =
xe0 + xe1

2
+ ξ (xe1 − xe0)

from [−1/2, 1/2] to ∂Ωe
D, where xe0 is the left (or bottom) grid node and xe1 is the right (or

top) grid node.
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Consider a horizontal line segment. On this segment, there are only 2 grid node indices
b and 6 cell center indices i for which the corresponding functions χb and Ni are nonzero.
So as in the case of the volume integrals, we only consider the local indices.

Let b and ĩ = (i, j) denote local indices corresponding to b and i with b ∈ {0, 1},
i ∈ {−1, 0, 1}, and j ∈ {0, 1}. Here, j = 0 denotes cell centers below the line segment, and
j = 1 denotes cell centers above.

Using the definitions above, we have

χb(x) = χ̃b
(
φ−1
Be(x)

)
= χ̃b(ξ)

and

Ni(x) = Ñi

(
φ−1
Be1(x)

)
Ñj

(
φ−1
Be2(x)

)
=

1

2
Ñi (ξ) .

Note that the last function is independent of j.
With this change of variable, we have

Be
bαi =

∫
∂Ωe

D

nαχbNids(x)

=

∫ −1/2

−1/2
χ̃b(ξ)

1

2
Ñi (ξ)nα||xe0 − xe1||dξ

= nα∆x

∫ −1/2

−1/2

1

2
χ̃b(ξ)Ñi (ξ) dξ,

The integral has the analytic solution∫ −1/2

−1/2

1

2
χ̃b(ξ)Ñi (ξ) dξ =

(−6)i2 + i(2b− 1) + 8

48
,

so

Be
bαi = nα∆x

(−6)i2 + i(2b− 1) + 8

48
.

For a vertical line segment, the formula is the same except with j in place of i (note that
the ranges of the indices i and j are also swapped in this case).

2.3.2 3D

For 3D, ∂Ωe
D is a square instead of a line segment. There are three cases, depending on

whether n in the x, y, or z direction. In any case, consider the mapping

φBe(ξ) =
xe0 + xe1 + xe2 + xe3

4
+ ξ1(xe2 − xe0) + ξ2(xe1 − xe0)

where the points xe are the grid nodes incident to the square, with xe0 and xe3 being opposite
vertices. For example, consider the case where n points in the x direction. Then we have
xe1 = xe0 + ∆xez, xe2 = xe0 + ∆xey, and xe3 = xe0 + ∆xey + ∆xez.
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Here, there are only 4 grid node indices b and 18 cell center indices i for which the
corresponding functions χb and Ni are nonzero.

Let b̃ = (b, c) and ĩ = (i, j, k) with b, c ∈ {0, 1}, j, k ∈ {−1, 0, 1}, and i ∈ {0, 1} denote
the corresponding local indices. Here, i = 0 corresponds to the 9 cell centers behind the
square, and i = 1 corresponds to the 9 cell centers in front of the square.

Analogous to the 2D case, the formula is independent of the index i:

Be
bαi =

∫
∂Ωe

D

nαχbNids(x)

=

∫
[−1/2,1/2]2

χ̃b(ξ)Ñĩ (ξ)nα||(xe2 − xe0)× (xe1 − xe0)||dξ

= nα∆x2

∫ −1/2

−1/2

∫ −1/2

−1/2
χ̃b(ξ1)χ̃c(ξ2)

1

2
Ñj (ξ1) Ñk (ξ2) dξ1dξ2

= nα∆x2 1

2

(∫ −1/2

−1/2
χ̃b(ξ1)Ñj (ξ1) dξ1

)(∫ −1/2

−1/2
χ̃c(ξ2)Ñk (ξ2) dξ2

)
.

The integrals are the same as the one calculated above, so we obtain the formula

Be
bαi = nα∆x2 1

2

(−6)j2 + j(2b− 1) + 8

24

(−6)k2 + k(2c− 1) + 8

24
.

For squares with the normal pointing in the y or z directions, the formula is obtained by
making appropriately replacing j and k in this formula with the correct indices.

3 Cut Cell

Each grid node is either inside (denoted with a −) or outside (denoted with a +) according
to a given level set. Between each pair of adjacent grid nodes with opposite signs, there
will be a level set crossing.

Let u1 and u2 denote the values at two such nodes. We may approximate the location
of the crossing using linear interpolation and solving for the location of the zero. Since we
map the element to the square [−1/2, 1/2]2, we have:

t =
1

2

u1 + u2

u1 − u2
, t ∈ [−1/2, 1/2].

This gives either the x or y coordinate of the crossing (depending on whether it is a vertical
or horizontal edge), and u1 always corresponds to the left or bottom node.

3.1 Cases

In 2D, a given cell has 24 = 16 possible combinations of + and− on the 4 grid nodes incident
to that cell. We take the domain to be the triangulation produced by the Marching Squares
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algorithm. In 3D, there are 8 grid nodes incident to a cell and therefore 28 = 256 possible
combinations of + and −, and as in 2D we use the Marching Cubes algorithm to generate
the domain as a collection of tetrahedra.

3.2 2D

3.2.1 Element Divergence Matrix

Given the triangulation of the domain over the element, we compute

De
dαi =

∫
Ωe

χd
∂Ni

∂xα
dx = ∆x

∫
[−1/2,1/2]2

χ̃d̃

∂Ñĩ

∂ηα
dη

as a sum of integrals over the triangles.
Let K be such a triangle with vertices r1, r2 and r3. Consider the following mapping

from the unit square to K:

r(u, v) = r1(1− u) + [r2(1− v) + r3v]u,

which is one to one on the interior of the unit square. The Jacobian determinant of this
mapping is J = 2|K|u, so for a given function f we have the change of variable:∫

K
f(η)dη = 2|K|

∫ 1

0

∫ 1

0
f(r(u, v))ududv.

Let f equal χ̃d̃∂Ñĩ/∂ηα, and let η1(u, v) and η2(u, v) denote the components of r. Note
that for fixed v, both η1 and η2 are linear in u. Since χ̃d̃ is a product of linear functions

in η1 and η2, the composition χ̃d̃ ◦ r is quadratic in u. Likewise, since Ñĩ is a product of

quadratics but we are taking one derivative, ∂Ñĩ/∂ηα ◦ r is a polynomial of degree 3 in u.
The integrand f(r(u, v))u is therefore a polynomial of degree 6 in u.

We may therefore evaluate the first iterated integral exactly using 4 point Gaussian
quadrature. Let gK(u, v) = f(r(u, v))u for convenience. Then

2|K|
∫ 1

0
gK(u, v)du = 2|K|1

2

4∑
r=1

wrgK

(
xr + 1

2
, v

)
,

where wr and xr are the quadrature weights and nodes. Note that this is the form Gaussian
quadrature takes on the interval [0, 1].

This is now a polynomial of degree 6 in v, so we may use Gaussian quadrature again
to evaluate the second iterated integral:

2|K|
∫ 1

0

∫ 1

0
gK(u, v)dudv = 2|K|1

4

4∑
r,s=1

wrwsgK

(
xr + 1

2
,
xs + 1

2

)
.
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Hence, the element divergence matrix is

De
dαi =

∆x

2

∑
K

|K|
4∑

r,s=1

wrwsgK

(
xr + 1

2
,
xs + 1

2

)
.

3.2.2 Element Mass Matrix

On the same triangulated domain Ωe, we compute

M e
αiβj = δαβ

∫
Ωe

ρ

∆t
NiNjdx = δαβ

∆x2

∆t

∫
[−1/2,1/2]2

ρÑĩÑj̃dη

as a sum of integrals over the triangles as with the element divergence matrices. The
only change is that here, f equals ρÑĩÑj̃ and hence the integrand f(r(u, v))u is now a
polynomial of degree 9 in u (assuming once again that ρ is constant). Increasing the
number of Gaussian quadrature points to 5 allows for exact integration.

3.2.3 Element Boundary Matrix

The boundary segments will be the lines joining the points where the level set crosses the
element. If the level set isocontour intersects a voxelized boundary, there will also be a
boundary segment parallel to the voxelized boundary being intersected.

Let ∂Ωe
D denote any such line segment. Since the line segment generally does not align

with the grid, the local index b̃ will range over 4 grid node indices instead of 2, and the
local index ĩ will range over 9 cell center indices instead of 6. In other words, the indexing
scheme is the same as that of the 2D divergence and measure elements. We then compute

Be
bαi =

∫
∂Ωe

D

nαχbNids(x) = nα

∫
∂Ωe

D

χ̃b̃

(
φ−1
V e(x)

)
Ñĩ

(
φ−1
V e(x)

)
ds(x)

via Gaussian quadrature. Note that we have used φV e instead of φBe here.
Let L be such a line segment with endpoints r1 and r2. With the usual parametrization

(denoted r) of this line segment, we have (for a given function f):

nα

∫
L
f(x)ds(x) = |L|nα

∫ 1

0
f(r(u))du.

Proceeding as before, we note that each component of r is a linear function of u. So
gL(u) = χ̃b̃

(
φ−1
V e (r(u))

)
Ñĩ

(
φ−1
V e (r(u))

)
is a polynomial of degree 6 and we use 4 point

Gaussian quadrature:

|L|nα
∫ 1

0
gL(u)du = |L|nα

1

2

4∑
r=0

wrgL

(
xr + 1

2

)
.

11



Then the element boundary matrix is

Be
bαi =

1

2

∑
L

|L|nα
4∑
r=0

wrgL

(
xr + 1

2

)
.

3.3 3D

3.3.1 Element Divergence Matrix

In 3D, we compute

De
dαi =

∫
Ωe

χd
∂Ni

∂xα
dx = ∆x2

∫
[−1/2,1/2]3

χ̃d̃

∂Ñĩ

∂ηα
dη

as a sum of integrals over tetrahedra. Let K be such a tetrahedron with vertices r1, r2, r3,
and r4. Consider the following mapping from the unit cube to K:

r(u, v, w) = r1(1− u) + [r2(1− v) + [r3(1− w) + r4w] v]u

which is 1− 1 on the interior of the unit cube. The Jacobian determinant of this mapping
is J = 6|K|u2v, so for some function f we have the change of variable:∫

K
f(η)dη = 6|K|

∫ 1

0

∫ 1

0

∫ 1

0
f(r(u, v, w))u2vdudvdw.

As in the 2D case, let f equal χ̃d̃∂Ñĩ/∂ηα. Counting degrees as in the 2D case but

noting that χ̃d̃ and Ñĩ are now products of 3 functions, we see that f(r(u, v, w))u2v is
now a polynomial of degree 11 in u, and hence we use 6 point Gaussian quadrature. Let
gK(u, v) = χ̃d̃(r(u, v, w))∂Ñĩ/∂ηα(r(u, v, w))u2v. Then we proceed as in the 2D case and
do Gaussian quadrature 3 times:

6|K|
∫ 1

0

∫ 1

0

∫ 1

0
gK(u, v, w)dudvdw = 6|K|1

8

6∑
r,s,t=1

wrwswtgK

(
xr + 1

2
,
xs + 1

2
,
xt + 1

2

)
.

Hence, the element divergence matrix is

De
dαi =

3∆x2

4

∑
K

|K|
6∑

r,s,t=1

wrwswtgK

(
xr + 1

2
,
xs + 1

2
,
xt + 1

2

)
.
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3.3.2 Element Mass Matrix

In this case, we once again compute

M e
αiβj = δαβ

∫
Ωe

ρ

∆t
NiNjdx = δαβ

∆x3

∆t

∫
[−1/2,1/2]3

ρÑĩÑj̃dη

as a sum of integrals over tetrahedra. The integrand f(r(u, v, w))u2v is now a polynomial
of degree 14 in u (once again assuming that ρ is constant), and we therefore need 8 point
Gaussian quadrature for exact integration.

3.3.3 Element Boundary Matrix

The boundary now consists of a collection of triangular faces. If the level set isocontour
intersects a voxelized boundary, the part of that boundary which is inside the level set
can also be decomposed into a union of triangles. Hence, we only consider integrals over
triangles here.

Let ∂Ωe
D denote any such triangle. As with the 2D cut cell case, the boundary normal

generally is not grid aligned, and hence the local index b̃ will range over 8 grid node indices
instead of 4 and the local index ĩ will range over 27 cell center indices instead of 18. We
then compute

Be
bαi =

∫
∂Ωe

D

nαχbNids(x) = nα

∫
∂Ωe

D

χ̃b̃

(
φ−1
V e(x)

)
Ñĩ

(
φ−1
V e(x)

)
ds(x)

via Gaussian quadrature. As with 2D cut cell, we have used φV e instead of φBe.
Let K denote such a triangle with vertices r1, r2, and r3. Using the same parametriza-

tion as in the 2D divergence calculation, we have ( for a given function f):

nα

∫
K
f(x)ds(x) = 2|K|nα

∫ 1

0

∫ 1

0
f(r(u, v))ududv.

Proceeding as before, we note that each component of r is a linear function of u with v
fixed, and a linear function of v with u fixed. So gK(u, v) = χ̃b̃

(
φ−1
V e (r(u, v))

)
Ñĩ

(
φ−1
V e (r(u, v))

)
u

is a polynomial of degree 10 in u, so 6 point Gaussian quadrature is sufficient to integrate
exactly:

2|K|nα
∫ 1

0

∫ 1

0
gK(u, v)dudv = 2|K|nα

1

4

6∑
r,s=1

wrwsgK

(
xr + 1

2
,
xs + 1

2

)
.

Thus, the element boundary matrix is

Be
bαi =

nα
2

∑
K

|K|
6∑

r,s=1

wrwsgK

(
xr + 1

2
,
xs + 1

2

)
.
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4 Standing Pool

We show here that standing pool is a solution of the system. We consider the y direction
to be the vertical direction for both 2D and 3D, and assume that ρ is constant.

Let pc = ρg (h0 − yc), where yc is the y coordinate of grid node c and h0 is the
elevation of the surface, and g is the magnitude of gravity. We also set λb = ρg (h0 − yb),
as λ corresponds to the pressure on the boundary ∂ΩD.

Since linear B-splines reproduce linear functions, we observe that with this choice of
pc,

pcχc(x) = ρg (h0 − y) .

Similarly,
λbχb(x) = ρg (h0 − y) .

Then,

(DTP−BTΛ)αi =

∫
Ω
pcχc

∂Ni

∂xα
dx−

∫
∂Ωe

D

nαλbχbNids(x)

=

∫
Ω
ρg (h0 − y)

∂Ni

∂xα
dx−

∫
∂Ωe

D

nαρg (h0 − y)Nids(x)

=

∫
Ω
ρg (h0 − y)

∂Ni

∂xα
dx−

∫
∂Ωe

nαρg (h0 − y)Nids(x),

where the last line follows from the fact that nαρg (h0 − y) is zero on ∂Ωe
N , the part of the

boundary corresponding to y = h0. Continuing,

(DTP−BTΛ)αi =

∫
Ω
ρg (h0 − y)

∂Ni

∂xα
dx−

∫
∂Ωe

nαρg (h0 − y)Nids(x)

= −
∫

Ω

∂

∂xα
(ρg (h0 − y))Nidx

= −
∫

Ω
ρgαNidx

= −ĝαi,

for all αi, with g = [0,−g, 0]T . Hence,

DTP−BTΛ + ĝ = 0.

If W = 0, it then follows that U = W = 0. By the nature of the physical system, we
expect that this is the only solution for the system. It’s possible that there could be other
numerical solutions, but in practice we observed standing pool in various geometries.
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