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Abstract
We present a simple and concise discretization of the covariant derivative vector Dirichlet energy for triangle meshes in 3D
using Crouzeix-Raviart finite elements. The discretization is based on linear discontinuous Galerkin elements, and is simple to
implement, without compromising on quality: there are two degrees of freedom for each mesh edge, and the sparse Dirichlet
energy matrix can be constructed in a single pass over all triangles using a short formula that only depends on the edge
lengths, reminiscent of the scalar cotangent Laplacian. Our vector Dirichlet energy discretization can be used in a variety of
applications, such as the calculation of Killing fields, parallel transport of vectors, and smooth vector field design. Experiments
suggest convergence and suitability for applications similar to other discretizations of the vector Dirichlet energy.

1. Introduction

The covariant derivative ∇ generalizes the gradient of scalar func-
tions to vector fields defined on surfaces. As the gradient does for
scalar functions, the covariant derivative measures the infinitesimal
change of a vector field in every direction. As with the gradient’s
scalar Dirichlet energy, Escalar(u) := 1

2
∫

Ω
‖∇u‖2 dx for a smooth

scalar function u and a smooth surface Ω, the covariant derivative
has a corresponding vector Dirichlet energy,

E(u) :=
1
2

∫
Ω

‖∇u‖2
F dx , (1)

where u is a smooth vector-valued function on Ω, and ‖·‖F is the
Frobenius norm. Much like the scalar Dirichlet energy Escalar does
for scalar functions, the vector Dirichlet energy E measures the
smoothness of a vector field.

Just as Escalar is useful for scalar data processing, E has many
uses in vector field processing. While Escalar has been employed
in many geometry processing methods and applications, E has, in
comparison, seen less usage in practice. A key reason for the wide
adoption of Escalar is the existence of a simple, reliable, and read-
ily available finite element discretization: the cotangent Laplacian.
There are a variety of existing discretizations of E, but they can
not be implemented using quite as few lines of code as the cotan-
gent Laplacian. The matrix for the cotangent Laplacian can be con-
structed using only the expression Lcotani j =

1
2
(
cotαi j + cotβi j

)
for each vertex pair i, j (where αi j,βi j are the two angles opposite
the edge i j), as well as summation [MDSB03, (5)]. We advocate for
a discretization of E that aspires to the simplicity of the cotangent
Laplacian.

denoising a vector field by smoothing
transporting the

red vector (enlarged)
across the surface

Figure 1: Parallel transporting a vector across a surface with our
Crouzeix-Raviart discretization of vector heat flow (left), and de-
noising a vector field with our discretization of the vector diffusion
equation (right).

Our discretization is based on Crouzeix-Raviart finite elements.
Its most notable features are its simplicity and ease of implementa-
tion, without sacrificing any quality:

• the real, sparse Dirichlet energy matrix can be built in a single
pass over all faces using a simple formula depending only on
each (individual) triangle’s edge lengths;
• the degrees of freedom directly correspond to the edges of the

mesh, making the results easy to understand and visualize;
• no preprocessing or intermediate data structures beyond simple

matrices are required;
• applications, performance and convergence are similar to other

discretizations of E.
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The sparse 2m×2m-matrix L of the discrete energy E for a mesh
with m edges

1: for all faces f , consecutive edges ei,e j ∈ f do
2: li = len(ei), l j = len(e j), lk = len(ek) // ek 3rd edge
3: s = orientation(ei) ·orientation(e j) // can be 1 or −1
4: a = s(l2

i + l2
j − l2

k )
2/(4lil j area( f ))

5: b = s(l2
i + l2

j − l2
k )/(lil j)

6: L(ei,ei) += l2
i /area( f ); L(ei +m,ei +m) += l2

i /area( f )

// L(a,b)← x expands to L(a,b) = x; L(b,a) = x
7: L(ei,e j)← a; L(ei +m,e j +m)← a
8: L(ei,e j +m)← b; L(e j,ei +m)←−b

We demonstrate our discretization for three established applica-
tions of the vector Dirichlet energy—smoothing vector fields, cre-
ating Killing vector fields, and efficient parallel transport of vectors
(see Figure 1). We study the convergence of our method and two
previous methods, and we find that our method converges at the
same rate as previous methods.

The way we arrive at our discretization parallels the discretiza-
tion of Escalar by the cotangent Laplacian for applications in scalar
geometry processing. Desbrun et al. [DMSB99] adopted the well-
established cotangent Laplacian [Mac49], demonstrated its utility,
and spurred its adoption in geometry processing. Similarly, we
employ a discretization introduced by Stein et al. [SJWG20] as part
of a routine to process scalar functions, and demonstrate its utility
for vector field processing. Our discretization generalizes popular
and extensively studied methods from numerical analysis of finite
elements for flat domains in R2, which simplifies mathematical
study of the method.

2. Theoretical background

In this section we provide a brief overview of the covariant deriva-
tive and the vector Dirichlet energy. Readers who are already fa-
miliar with these topics, or who want to get straight to the appli-
cations, can safely skip this section. The discretization and matrix
implementation follow in Section 3.

2.1. The covariant derivative

For a vector field u, the covariant derivative ∇u generalizes the
gradient of a scalar function,∇ f [Lee97, Section 4].

We will be working on a smooth, orientable surface Ω. The
covariant derivative is an operator ∇ : T (Ω)× T (Ω) → T (Ω),
where T (Ω) is the space of tangent vector fields on the smooth
surface Ω. It is usually written as ∇vu for two vector fields v,u,
and when the subscript v is omitted, ∇u is interpreted as the op-
erator that takes v as an argument and returns ∇vu. In the flat Eu-
clidean space R3, with a vector field u written as a column vector
u =

(
ux uy uz

)ᵀ, the covariant derivative is simply componen-
twise differentiation,

∇u =

∂xux ∂yux ∂zux
∂xuy ∂yuy ∂zuy
∂xuz ∂yuz ∂zuz

 .

The covariant derivative on a smooth surface is this vector gradi-
ent of R3 restricted to the tangent space of the surface, where it
becomes dependent on the surface’s curvature (while this defini-
tion only works for surfaces embedded inR3, it generalizes to other
kinds of surfaces [Lee97, Section 5]).

Operators like ∇u, which consume a vector field and return a
vector field, have an associated inner product : that generalizes the
scalar product · . The operation : for X ,Y represented as matrices
can be written as X : Y := tr(XᵀY ), where Xᵀ is the transpose of
an operator X that takes the surface’s metric into account [Lee97].
XᵀY is sometimes also referred to as composing the adjoint of X
with Y .

The covariant derivative ∇ has an adjoint operator ∇∗, similar
to how the gradient of a scalar function is adjoint to the divergence
of a vector field. The adjoint covariant derivative is defined by in-
tegration by parts over a surface Ω,∫

Ω

∇u : X dx =
∫

Ω

u ·∇∗X dx+
∫

∂Ω

u ·X(n) dΓ

n unit boundary normal at ∂Ω ,
(2)

where X is an operator that takes a vector field and returns a vector
field, and u is a vector field. This adjoint operator is used to define
a Laplace operator for vector fields, the Bochner Laplacian (also
referred to as the connection Laplacian) [Pet06, pp. 209],

∆Bu =∇∗∇u .

In Rn, the Bochner Laplacian is (up to sign) the usual vector field
Laplacian defined by applying the scalar Laplacian in each coor-
dinate. It appears, for example, in the Navier-Stokes equations for
fluid mechanics [Fan19].

2.2. The vector Dirichlet energy

The Bochner Laplacian ∆B defines a vector Laplace equation,

∆Bu = 0 , (3)

which shares many properties with the scalar Laplace equation
∆u = 0, such as smoothness of the associated flow [BGV96, Chap-
ter 2]. In general, the right-hand side can be any function, but we
will assume that it is zero for simplicity.

The Bochner Laplacian has an associated energy, constructed us-
ing integration by parts. Let u,v be smooth vector fields on the sur-
face Ω. Then we can write (3), by multiplying with a test function
v and integrating, as∫

Ω

∆Bu ·v dx =
∫

Ω

∇u :∇v dx−
∫

∂Ω

∇nu ·v dΓ

n unit boundary normal at ∂Ω ,
(4)

where we used (2). By calculus of variation [Eva92, Section 8], the
solution u of (4) is the minimizer of the vector Dirichlet energy,

E(u) :=
1
2

∫
Ω

‖∇u‖2
F dx , (5)

where ‖X‖2
F := X : X is the Frobenius norm. The boundary term in

(4) implies that minimizers will fulfill the Neumann boundary con-
dition,∇nu = 0 at ∂Ω, if no explicit boundary condition is applied
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(Neumann conditions are the natural boundary conditions [GF63,
I.6]).

The vector Dirichlet energy (5) quantifies the smooth-
ness of a vector field, just like the scalar Dirichlet energy
Escalar( f ) = 1

2
∫

Ω
‖∇ f‖2dx does for scalar functions. This makes

the vector Dirichlet energy and its associated Laplace equation
useful for applications requiring a notion of vector field smooth-
ness (see Section 4).

3. Discretization

3.1. Scalar Crouzeix-Raviart finite elements

Our discretization of the vector Dirichlet energy is based on
Crouzeix-Raviart finite elements, a simple discontinuous finite
element. In this section, we introduce the scalar Crouzeix-
Raviart basis functions. More detail can be found in the book of
Braess [Bra07], Chapter III.

Scalar Crouzeix-Raviart elements are used for applications in
computer graphics such as simulation [BWH∗06,WBH∗07,EB08]
and geometry processing [HP04, HTWB11].

Consider a nondegenerate, manifold, and oriented triangle mesh
with vertices v ∈ V , edges e ∈ E and faces f ∈ F . There is one
Crouzeix-Raviart basis function per edge. The basis function be for
edge e is

• 0 outside the two triangles neighboring e;
• constant 1 at the edge e, and −1 at the vertices opposite e;
• 0 at the edge midpoints not on e;
• linear within the two triangles neighboring e.

Figure 2 features an illustration of Crouzeix-Raviart basis func-
tions. Linear combinations of the basis functions ∑e uebe are con-
tinuous only at edge midpoints, and in general discontinuous ev-
erywhere else. This makes the finite element nonconforming. When
formulating the Poisson equation, we look for solutions in the space
of all continuous, piecewise differentiable functions (to be more
precise, we look for solutions in the Sobolev space H1 of functions

Crouzeix-Raviart functionCrouzeix-Raviart basis function

1

-1

-1

Figure 2: A Crouzeix-Raviart basis function is 1 at its associ-
ated edge, and −1 on the opposing vertices (left). In general,
Crouzeix-Raviart functions are discontinuous, except at edge mid-
points (right).

that have one L2-integrable weak derivative). Since the Crouzeix-
Raviart functions are not continuous, they are not themselves con-
tained in the solution space. This is in contrast to, for example, La-
grangian piecewise linear per-vertex basis functions (the so-called
hat functions). They are continuous and piecewise differentiable,
and thus contained in the solution space—they are conforming.

The finite element operators are constructed as one would with
conforming elements, with one subtlety: differential operators are
applied to the basis functions within triangles only, and we ig-
nore the jumps caused by discontinuities. These jumps are nonzero,
but they can be ignored without harming convergence for certain
classes of problems, such as the Poisson equation [Bra07, III]. The
Laplace matrix, which discretizes Escalar( f ) = 1

2
∫

Ω
‖∇ f‖2 dx, is

given by

Lscalareie j
=

∫
Ω

∇bei ·∇be j dx =−cotθeie j i 6= j ,

for edges ei,e j sharing a vertex, where θeie j denotes the angle be-
tween the edges ei,e j, and the diagonal terms are given by the fact
that rows must sum to zero [WBH∗07, p. 504]. The mass matrix,
which discretizes 1

2
∫

Ω
| f |2 dx, and contains only diagonal terms

(without having to use a lumped matrix), is given by

Mscalareiei
=

∫
Ω

b2
ei dx =

1
3

Aei ,

where Aei is the area of the two faces incident on ei.

As with every nonconforming finite element, one has to be care-
ful for which problem the method is employed. As the functions
themselves are not contained in a discrete subspace of the solu-
tion space, in general, they might not converge, or their limit might
not solve the smooth PDE. One needs to make sure that the finite
elements are actually amenable to the particular problem. For the
Poisson equation, the Crouzeix-Raviart finite element converges on
the order of h2, where h is the maximum edge length, given certain
triangle regularity conditions [Bra07, III.1.5].

3.2. Vector Crouzeix-Raviart finite elements

Using the scalar Crouzeix-Raviart element from Section 3.1, we
now construct a vector Crouzeix-Raviart element. This element ap-
pears in the work of Stein et al. [SJWG20], where it is used to

Crouzeix-Raviart Raviart-Thomas Nédélec

Figure 3: Trying to recover the linear planar vector field(x,0)ᵀ

on the unit disk by fixing its values on the boundary and then min-
imizing the Crouzeix-Raviart vector Dirichlet energy (left), as well
as vector Dirichlet energies constructed by integrating the point-
wise covariant derivatives of Raviart-Thomas (center) and Nédélec
(right) basis functions. Only the Crouzeix-Raviart version succeeds.
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compute the one-form Dirichlet energy as part of a larger routine
to minimize the Hessian energy of a scalar function (but not for
any vector field processing). We use their approach to construct a
discrete function space for tangent vector fields and discretize the
vector Dirichlet energy, and then minimize this energy directly for
vector field applications. Our matrices are almost the same as those
of Stein et al. [SJWG20], but differ by a scale factor for each ba-
sis function, as our degrees of freedom correspond to unit vectors
(which is only a difference of convention, and does not have any
practical implications beyond multiplying matrix entries by the re-
spective edge lengths).

The Crouzeix-Raviart finite element is used to discretize a va-
riety of problems in the numerical analysis of flat Rn. For an
overview, we refer the reader to the survey by Brenner [Bre15].

The linear Raviart-Thomas element (different from our dis-
cretization), which is related to the Crouzeix-Raviart element, is
another popular vector fields discretization [Gat14]. However, it
can only be safely used to compute divergence-like operations. The
same holds true of the Nédélec linear triangle element for curl-like
operations [Hip99] (also known as Whitney element), which is fea-
tured in Discrete Exterior Calculus [Hir03], and can be used to dis-
cretize the Hodge Laplacian (but not the Bochner Laplacian ∆B).

Both Raviart-Thomas functions and Nédélec functions consist
of one degree of freedom per edge, and every face supports three
basis functions: the two constant functions, plus (for Raviart-
Thomas) functions with zero curl and constant divergence, or
(for Nédélec) functions with zero divergence and constant curl.
Since on a flat triangle the space of linear vector fields is six-
dimensional, these approaches can not sample all linear vector
fields on each triangle. Our approach, on the other hand, will
use six degrees of freedom supported in each triangle, two per
edge, and feature exactly the six linear functions on each tri-
angle. Because they do not span all linear vector fields, both
Raviart-Thomas and Nédélec elements are ill-suited for discretiz-
ing the vector Dirichlet energy using simple per-face integrals. Nei-
ther encompasses the full space of linear vector fields—Raviart-

constant

missed by
Nédélec

missed by
Rav.-Thom.

missed by both

Thomas can not represent functions with
curl within the triangle, and Nédélec can not
represent functions with divergence. Even
combining both spaces would not suffice,
as one would still miss saddle-like linear
vector fields (see inset, which shows a ba-
sis of piecewise linear vector fields). These
saddle-like vector fields have non-zero vec-
tor Dirichlet energy E and thus matter for our
purposes.

This can also be seen by a short degree of
freedom argument: since both Nédélec and
Raviart-Thomas have three degrees of freedom per triangle, and
both contain all constant functions (two per triangle), both com-
bined can not cover more than four linearly independent functions
per triangle. There are, however, six linearly independent linear
functions per triangle. These are exactly the functions represented
by the six degrees of freedom of the vector Crouzeix-Raviart finite
element per triangle.

In order to illustrate the need to capture all degrees of freedom
of linear vector fields, we compared our approach to using the
discontinuous Raviart-Thomas and as Nédélec basis functions.
We employed Raviart-Thomas and as Nédélec basis functions
to construct a discrete vector Dirichlet energy by computing the
integrand from (5) for each basis function, ignoring discontinuities
(just as one would for Crouzeix-Raviart discontinuous Galerkin),
fix the boundary of a planar domain to the boundary values
of a Bochner-harmonic function u, and then trying to globally
recover u by minimizing the vector Dirichlet energy. For both
Raviart-Thomas as well as Nédélec, the matrix was not invertible,
so we regularized it with 10−14 Id. by minimizing the vector
Dirichlet energy. In Figure 3, this approach for a linear function
u using Raviart-Thomas and Nédélec basis functions fails, while
the Crouzeix-Raviart approach recovers the function exactly (up to
numerical error).

edge length h10⁰ 10⁻²edge length h10⁰ 10⁻²

L² error
10⁰

10⁻²

10⁻⁴

h² h² h²

L² error L² error

10⁻¹

10⁻³

10⁻⁵

edge length h10⁰ 2·10⁻¹

10⁰

10⁻²

10⁻⁴

Ours (CR)
[Knöppel et al. 2013]
[Knöppel et al. 2015]

log scale

Ours (CR)
[Knöppel et al. 2013]
[Knöppel et al. 2015]

Ours (CR)
[Knöppel et al. 2013]
[Knöppel et al. 2015]

Figure 4: L2 convergence plots of our method as well as the methods of Knöppel et al. [KCPS13, KCPS15] (the method of Knöppel et
al. [KCPS15] is also used by Sharp et al. [SSC19]) for the Dirichlet boundary value problem. The flat (left) and cylindrical (middle)
examples show convergence to the exact solution, the cow (right) shows convergence to the respective highest-resolution numerical solution.
The figures in the corners are colored by vector magnitude.
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To extend the Crouzeix-Raviart element to vectors, we multiply
the scalar basis functions be with appropriate vectors [SJWG20].
At the midpoint of each edge e, we represent all tangent vectors as
a linear combination of the following two vectors,

• v‖e , the unit vector parallel to e that points in the same direction
as the oriented edge e;
• v⊥e , the unit vector normal to e that correspoints to v‖e rotated by

π/2 in the tangent space.

ve
⟂

ve
⟂

ve
⟂ ve

⟂

extrinsic

intrinsic

At first glance, v⊥e seems to be
ambiguously defined, since there is
no unique normal at the midpoint
of e to rotate around. However, in-
trinsically, the tangent space of the
mesh (V,E,F), viewed as a polyhe-
dron, is well-defined away from ver-
tices [War06]. A pair of triangles on
its own is intrinsically flat. This means
that if, at each triangle adjacent to e,
we rotate v‖e around the respective tri-
angle normal, we get two different ex-
trinsic representations of v⊥e in each
triangle, each corresponding to the same intrinsic tangent vector
(see inset). v‖e is well-defined at the midpoint of e in both adjacent
triangles, as the edge e is contained in both triangles.

The vectors v‖e and v⊥e , defined at the midpoint of e, can be easily
extended along each of the two faces adjacent to e by transporting
them along the flat triangles. This allows us to define two vector
basis-functions per edge:

w‖e = bev‖e

w⊥e = bev⊥e .

The w‖e ,w⊥e ∀e ∈ E form the basis of our discrete vector space.

We now use them to compute a discretization of the vector
Dirichlet operator (5) by plugging each pair of basis functions into
the definition of the energy and integrating over triangles. The re-
sulting sparse symmetric matrix L has two degrees of freedom
(DOFs) for each edge e∈ E, which we will denote by the indices e‖

and e⊥. For a DOF vector u, 1
2u

ᵀLu will discretize E(u). The ma-
trix L is constructed using the following formula, which is looped
over all faces f ∈ F , and all pairs of consecutive edges ei,e j ∈ f ,

L
e‖i ,e

‖
i
, Le⊥i ,e⊥i

+=
|ei|2

| f |
L

e‖i ,e
‖
j
, Le⊥i ,e⊥j

= 2si j cotθi j cosθi j

L
e‖i ,e

⊥
j
,−L

e⊥i ,e‖j
= 2si j cosθi j ,

(6)

where |ei| is the length of ei, | f | is the area of f , and θi j is the an-
gle between ei,e j. si j is 1 if the local orientations of ei,e j within f
both agree or disagree with the global orientations of ei,e j, and
−1 if one of them disagrees (i.e., whether a halfedge in f has
the same orientation as an arbitrarily chosen global orientation for
every edge). We use the notation += to highlight that diagonal

edge length h

Ours (CR)
[Knöppel et al. 2013]
[Knöppel et al. 2015]

regular triangle refinement

0.8 0.2

10-1

10-2

10-3

L² error

h²

Ours (CR)

[Knöppel et al.
2013, 2015]

irregular triangle refinement

edge length h0.8 0.2

10-1

10-2

L² error

h²

Figure 5: Our method, like the methods of Knöppel et al. [KCPS13,
KCPS15], converges to the exact solution under regular triangle re-
finement. If the refinement is irregular (for example, because the re-
finement adds many more vertices in one dimension than the other),
no convergence is observed.

terms are visited twice when looping over all faces and edges, and
both entries must be accumulated. The off-diagonal entries must be
added in two places each, i.e., Lα,β = Lβ,α.

By the same approach, the discretization of 1
2
∫

Ω
‖u‖2

F dx, the
diagonal mass matrix, is given by

Me‖,e‖ , Me⊥,e⊥ =
Ae

3
, (7)

where Ae is the sum of the areas of the two triangles adjacent to e.

The formulas for the matrices in (6) and (7) are very concise.
They involve no preprocessing, and no complicated mathematical
operations—simply a loop over all faces, and short formulas in-
volving basic trigonometry with edge lengths. This is reminiscent
of the simple construction of the scalar cotangent Laplacian [PP93],
which has become ubiquitous in geometry processing due to its
simple construction and good performance.

3.2.1. Other vector Dirichlet energies in literature

Many discretizations of the vector Dirichlet energy for non-planar
triangle meshes exist, and in this section we aim to give a short
overview over alternatives to our discretization. The main differ-
ence between most of these methods and our discretization is the
simplicity of our matrix assembly: the matrix expressions are very
simple, and the operators for the entire mesh can be constructed in
one parallelizable loop over all faces using basic operations.

Knöppel et al. [KCPS13] use a finite element method with de-
grees of freedom on vertices. At each vertex, the vertex neighbor-
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right-hand side

zero Dirichlet
zero Neumann

(natural)

Figure 6: Solving the Bochner-Poisson equation with nonzero
right-hand side (left). Fixing all boundary degrees of freedom to
zero gives a solution with zero Dirichlet boundary conditions (cen-
ter), where all isolines are parallel to the boundary. Fixing no de-
grees of freedom gives the natural zero Neumann boundary condi-
tions (right), where isolines are perpendicular to the boundary.

hood is locally flattened, and its tangent space then parametrized
using C. The local flattening of the vertex neighborhood requires
a preprocessing step and introduces curvature at every point in the
flattened triangle that needs to be accounted for when constructing
finite element operators. The method of Knöppel et al. [KCPS13]
is generalized by Liu et al. [LTGD16], who introduce discrete con-
nections to improve results for certain applications. The prepro-
cessing step for constructing globally optimal discrete operators in-
volves solving an optimization problem. Knöppel et al. [KCPS15]
and Sharp et al. [SSC19] use a finite-difference-like method that
evolves the approach of Knöppel et al. [KCPS13]: the same vertex
flattening preprocessing is performed, but then a finite-difference-
like approach is used to construct discrete operators. Custers and
Vaxman [CV18] present a subdivision scheme for per-face tangent
vectors using a data structure of scalar quantities on halfedges, and
apply it to vector design and optimal transport. Their basis func-
tions are constructed using mesh subdivision. A different vertex-
based approach is presented by Jakob et al. [JTPSH15] and ex-
tended by Huang et al. [HJ16].

The methods mentioned so far place their degrees of freedom
(DOFs) on vertices or faces (halfedges). The fact that our method
has its DOFs on edges, is neither an advantage nor a drawback com-
pared to vertices or faces. Some applications desire DOFs on edges,
as vertex DOFs can lead to locking [EB08]. For other applications,
DOFs on vertices or faces might be more appropriate. For yet oth-
ers, there is no preference.

Some methods do not discretize vector fields on meshes di-
rectly, and work on a proxy instead. In the work of Azencot et
al. [AOCBC15], all computations are performed in the spectral do-
main, circumventing the need for discretizing vector fields. This
approach is extended by Azencot et al. [ACBCO17]. Corman and
Ovsjanikov [CO19] leverage a functional approach to compute the
covariant derivative of vector fields.

3.3. Experimental evaluation

Convergence experiments for the Dirichlet boundary value problem
of ∆Bu = 0 solved with our Crouzeix-Raviart discretization of the

[Knöppel et al. 2013] Ours (Crouzeix-Raviart)

Fitting a smooth vector field to the red vectors 

Figure 7: Minimizing the vector Dirichlet energy subject to con-
straints is a useful tool for designing smooth vector fields. Our
Crouzeix-Raviart discretization (right) produces outputs similar to
the discretization of Knöppel et al. [KCPS13] (left). The figure is
in log scale.

vector Dirichlet energy can be found in Figure 4. We observe con-
vergence on the order of h2, similar to the methods of Knöppel et
al. [KCPS13] and Knöppel et al. [KCPS15], Sharp et al. [SSC19].

Figure 5 shows that a certain degree of triangle regularity is re-
quired for convergence. Triangle regular refinement means that the
maximum ratio between circumcircle and incircle for all triangles
remains bounded. If this ratio is not appropriately bounded (irreg-
ular refinement) the method diverges. This regularity condition oc-
curs in other finite element methods [Bra07].

The boundary behavior of our Crouzeix-Raviart discretization is
explored in Figure 6 where the Bochner-Poisson equation ∆Bu = f
is solved with different boundary conditions. If all degrees of free-
dom (parallel and perpendicular) corresponding to boundary edges
are fixed to a given value before minimizing the vector Dirichlet
energy, the solution u is subject to Dirichlet boundary conditions,
u|∂Ω = g. If no degrees of freedom are explicitly fixed, natural
boundary conditions apply, the zero Neumann boundary conditions
∇nu|∂Ω = 0 (see Section 2.2). This mirrors the standard way to
enforce Dirichlet and Neumann boundary conditions for the cotan-
gent Laplacian [Bra07].

Further evaluation of the discretization, such as analysis of its
performance and spectrum, can be found in Appendix A.1.

4. Applications

We use our discretization for three popular applications in geome-
try processing: the design of smooth vector fields, the construction
of Killing fields, and efficient parallel transport of vectors. In all
of these applications we take an established method and use our
Crouzeix-Raviart discretization to discretize it. We achieve compa-
rable results to previous methods.

Unless otherwise noted, figures in this section are colored by
vector magnitude.
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Our methodRotation around
symm. axis (exact)

[Ben-Chen
et al. 2010]

boundary
fixed as
input

mesh
closed at
bottom to
improve
method
output

Figure 8: A Killing field generated with our Crouzeix-Raviart dis-
cretization with regularization α = 10−4 (right) is similar to the
vector field generated by rigidly rotating the shape around the z-
axis (center) (ground truth), and the Killing field generated with
the method of Ben-Chen et al. [BCBSG10] (left).

4.1. Smooth vector field design

A simple application of the vector Dirichlet energy is find-
ing the smoothest vector field given certain constraints. This
is an important basic operation of vector field design, and
forms a building block for many such applications [KCPS13,
DVPSH14, DVPSH15, KCPS15, AOCBC15, dGDT16, LTGD16,
VCD∗16, BSEH18, LZC∗18].

For this application we solve the following quadratic optimiza-
tion problem using the Crouzeix-Raviart vector Dirichlet energy L,

argmin
u

1
2

uᵀLu, u(x1) = u1, . . . ,u(xk) = uk ,

for given fixed points x1, . . . ,xk, and given values u1, . . . ,uk. The
result is a smooth vector field that satisfies the given constraints.

Figure 7 shows an application of this energy minimization to
design a smooth vector field on a surface. The result is simi-
lar to the vector field produced by minimizing the same smooth
vector Dirichlet energy with the discretization of Knöppel et
al. [KCPS13].

We can also use the vector Dirichlet energy to denoise data by
smoothing it. This is achieved by performing one step of the diffu-
sion equation, ∂u

∂t =−∆Bu. This is a popular approach for smooth-
ing scalar data on meshes and images [DMSB99, YKWT94]. Us-
ing our matrices L and M, the implicit Euler implementation is
(M+ tL)ut = Mu0 for a noisy input function u0. Examples of de-
noising can be seen in Figures 1 and 9.

4.2. Killing fields

A vector field u on the surface Ω is called a Killing field if the geo-
metric flow generated by following the vector field is an isometry,

Unperturbed function Noisy input Denoised with our method

15 steps
t=2·10-5

Figure 9: Solving the vector diffusion equation, we can denoise
noisy vector fields (center) to get a smooth result (right) which
matches the unperturbed function before adding noise (left).

i.e., it does not change the geometry of the shape. Such flows can
be useful to find intrinsic symmetries of shapes [BCBSG10], for vi-
sualization [GMDW09], to compute deformations [SBCBG11], for
surface reconstruction [SBCI17], and as a part of a larger tangent
vector field processing routine [ABCCO13, AOCBC15].

The vector field u is a Killing field if and only if its covari-
ant derivative ∇u is a skew-symmetric tensor [Pet06, pp. 188],
(∇u)ᵀ = −∇u. This motivates the definition of a Killing energy
measuring how skew-symmetric the covariant derivative of u is,

EKilling(u) =
1
2

∫
Ω

∥∥∇u+(∇u)ᵀ
∥∥2

F dx . (8)

We can minimize the Killing energy EKilling to find fields
that are as-Killing-as-possible, subject to certain constraints. The
discretization of ‖∇u‖2

F and
∥∥(∇u)ᵀ

∥∥2
F is given by our usual

Crouzeix-Raviart vector Dirichlet energy discretization. We also
add a small amount of additional smoothing, αE(u), to the opti-
mization as a regularizer to make it more robust—otherwise there
are spurious minimizers. The mixed term containing both ∇u and
(∇u)ᵀ,

∫
Ω
∇u : (∇u)ᵀ dx, can be straightforwardly implemented

following the vector Crouzeix-Raviart approach. Its entries are,
looping over all faces f ∈ F and all pairs of consecutive edges
ei,e j ∈ f ,

Se⊥i ,e⊥i
+=
|ei|2

| f | , S
e‖i ,e

‖
j
=−2si j sinθi j ,

Se⊥i ,e⊥j
= 2si j cotθi j cosθi j , S

e‖i ,e
⊥
j
,−S

e⊥i ,e‖j
= 2si j cosθi j ,

where |ei| is the length of edge ei, | f | is the area of face f , and
θi j is the angle between ei,e j. si j is 1 if the local orientations of
ei,e j within f both agree or disagree with the global orientations of
ei,e j, and −1 if one of them disagrees. The notation += signifies
that diagonal terms are visited twice when looping over all faces
and edges, and both entries must be accumulated. The off-diagonal
entries must be added in two places each, i.e., Sα,β = Sβ,α.

An example of an application of the minimization of EKilling can
be seen in Figure 8, where we use it to find an approximate Killing
field on a surface. The result is compared to the rotation around
the object’s symmetry axis (an almost exact Killing field), and a
discrete Killing field produced with the method of Ben-Chen et
al. [BCBSG10].
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Ours (Crouzeix-Raviart)

transporting the red vector (enlarged) across the surface

[Sharp et al. 2019]

Figure 10: Parallel transport of vectors using the heat method
discretized with the Crouzeix-Raviart vector Dirichlet energy
(right) yields very similar results to the discretization of Sharp et
al. [SSC19] (left). The color on the mesh is the (scalar) heat dis-
tance from the prescribed vector location. The parameter t in the
vector heat method is set to correspond to the mean edge length.

4.3. Efficient parallel transport

Sharp et al. [SSC19] introduce the vector heat method, an efficient
way to compute the parallel transport of vectors based on the heat
method for geodesics [CWW13]. They employ the Bochner Lapla-
cian of vector fields, ∆Bu, to solve a vector-valued heat equation,
which is then used in combination with a scalar heat equation to
propagate vectors over the entire surface efficiently.

We discretize the vector heat equation using our Crouzeix-
Raviart vector Dirichlet energy L and the associated Crouzeix-
Raviart vector mass matrix M for the vector parts, and the scalar
Crouzeix-Raviart Dirichlet energy Lscal and mass matrix Mscal for
the scalar parts. The discretized vector heat equation becomes
(M+ tL)vt = Mv0, and the discretized scalar heat equation be-
comes (Mscal + tLscal)ut = Mscalu0. It is easy to naively com-
bine scalar functions and vector fields discretized with Crouzeix-
Raviart: as there are two vector degrees of freedom (DOFs) for each
scalar DOF, whenever a vector needs to be multiplied with a scalar
(which happens in step IV of Algorithm 1 by Sharp et al. [SSC19]),
both vector DOFs corresponding to the edge e are multiplied with
the scalar DOF corresponding to e.

In Figure 10, we use this algorithm to efficiently compute the
parallel transport of a vector across a complicated shape. The
Crouzeix-Raviart discretization produces a similar result to the
discretization used by Sharp et al. [SSC19]. Another example is
shown in Figure 1.

5. Discussion

A limitation of this work is the lack of a convergence proof of the
Crouzeix-Raviart discretization of the vector Dirichlet energy, even
though we do present numerical evidence. Without such a proof, we
cannot be completely sure that our approach correctly discretizes
the Dirichlet energy. However, as far as we know, no convergence

Ours (CR)

integrated mean
curvature error
(with respect to highest resolution)

edge length h 10-4

10-1

10-3

101

Error of CR shape operator
(integrated quantities, with
 respect to exact solution)

10-1
Cot. Laplacian

edge length h 10-310-1

101

10⁻2

10⁻5
h²First principal curv.

Second principal curv.

Gauss curv.

Figure 11: Top: computing principal curvature on a variety of
shapes colored by Gaussian curvature (log scale, also computed
using the shape operator). Bottom: preliminary convergence exper-
iments suggest similar behavior as other methods (mean curvature
compared to cotangent Laplacian [DMSB99]).

proofs exist for any of the discretizations of the vector Dirichlet
energy for non-planar surfaces mentioned in Section 3.2.1.

Such a convergence proof is an interesting direction for future
work. A convergence proof exists for flat domains U ⊆ R2 [Bra07,
Theorem II.1.5], forming a natural starting point for a proof of con-
vergence for our discretization. Additionally, it would be interest-
ing to explore which features of the smooth vector Dirichlet energy
carry over to our Crouzeix-Raviart discretization. Which no-free-
lunch properties of Laplacian discretizations [WMKG07] hold for
the vector Crouzeix-Raviart discretization? Does it admit a version
of Rippa’s theorem [Rip90]?

Crouzeix-Raviart finite elements can be unstable for some appli-
cations (see, for example, the discussion by Quaglino [Qua12] for
the scalar case). While our discretization of the vector Dirichlet en-
ergy appears to be robust under appropriate regularity conditions,
the discretization of the Killing energy of Section 4.2 requires
normalization with a small amount of the vector Dirichlet energy to
have a good minimizer—otherwise spurious minimizers can occur.

6. Further uses of the Crouzeix-Raviart covariant derivative

The Crouzeix-Raviart discretization of the vector Dirichlet energy
is attractive because of its simplicity, which does not come at the
cost of quality. The Crouzeix-Raviart approach itself, however, can
also be used to discretize other differential geometric operators.
While not our primary focus, and not necessarily as simple to im-
plement as our discretization of the vector Dirichlet energy, it is
intriguing that the same approach can be used to discretize a whole
family of operators, and we would be remiss not to mention this.

As an example, consider the Hessian of a function u, ∇∇u. It
can be used, among other things, to construct the shape operator S
of a surface [Pet06, p. 96]. The shape operator encodes all extrin-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

88



O. Stein, M. Wardetzky, A. Jacobson & E. Grinspun / A Simple Discretization of the Vector Dirichlet Energy

sic curvature information of a shape: the largest and smallest local
curvatures (the principal curvatures) and their directions. S can be
expressed in terms of the coordinate functions of the embedding of
the surface in R3, x,y,z.

S(v,w) =−N ·

(∇∇x)(v,w)
(∇∇y)(v,w)
(∇∇z)(v,w)

 , (9)

where N is the surface normal, and v,w are tangent vectors. The
gradient can be discretized using standard piecewise linear hat
functions, and the covariant derivative can be discretized using vec-
tor Crouzeix-Raviart finite elements (see Appendix A.2).

A few preliminary results for this discretization of S can be seen
in Figure 11, and suggest that integral operators derived from the
shape operator can be discretized in a convergent way. It would be
interesting future work to try to apply this discretization to some
of the applications of the shape operator, such as the computa-
tion and optimization of geometric energies like the Willmore en-
ergy [CPS13], thin shell bending energies [GSH∗04], and others,
and compare the discretization to the many existing discrete shape
operators [GGRZ06, GSH∗04, Wei12].

A natural question is whether the vector Crouzeix-Raviart ap-
proach is suitable for all differential geometric operations involv-
ing vectors. This is not the case. Non-conforming (discontinuous)
finite elements like Crouzeix-Raviart should always be used care-
fully. Just because they correctly discretize one differential oper-
ator of a certain order, does not mean that they can be used for
other such operators. A simple example, for which our Crouzeix-
Raviart discretization of vector fields cannot be used, is the energy
1
2
∫

Ω
‖curlu‖2 dx. By definition, the curl of basis functions normal

to the edge is always zero, and thus these basis functions do not
contribute to the energy—any minimizer of the discretized energy
can have an arbitrary normal component at any edge. For such op-
erators, other discretization methods are more appropriate [Hip99].

Beyond the shape operator, interesting future work would be
the direct application of the weak covariant derivative to vector
fields directly (which does not occur in this work, as we only
compute the covariant derivative in the context of energies outside
of this section) [ABCCO13, dGLB∗14, HH16, YCL∗19], as well
as discretizing higher-order vector Dirichlet energies used in data
processing and learning [SW12, LHZJ13, LYHY14, Wu17] or in
physics [MTW73], where the covariant derivative appears in the
Einstein field equations of general relativity.
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Figure 12: Repeating the experiment from Figure 4 (right), with
regular refinement, but on a mesh with varying triangle sizes. The
same convergence behavior is still observed.
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Appendix

A.1. Further experiments

In this appendix, we present a few more evaluations of our
Crouzeix-Raviart discretization of the vector Dirichlet energy. Fig-
ure 12 shows that convergence is not impacted by varying triangle
sizes across a mesh, as long as refinement is still regular. In Figure
13, the error of the method with respect to runtime is evaluated,
and compared with previous methods. Asymptotically, all methods
perform similarly. Figure 14 analyzes the spectrum of the vector
Dirichlet energy. By comparing to a known exact solution, we see
that the first eigenvalue of our discretization converges on the same
order as other methods.

A.2. Shape operator

To discretize the shape operator with Crouzeix-Raviart finite ele-
ments, (9) is discretized in two parts: the gradients ∇x,∇y,∇z are
computed using the discrete gradient operator G that maps from the
space of piecewise linear hat functions with degrees of freedom on
vertices to tangent Crouzeix-Raviart vectors. Looping over all faces

Ours (CR)
[Knöppel et al. 2013]
[Knöppel et al. 2015]

L² error

h²

matrix solve time in s10-2 100

10-1

10-3

10-5

h

Figure 13: Repeating experiment from Figure 4 (center), plotting
the error with respect to matrix solve time on a 2017 13” Mac-
book Pro. All methods convergence at similar rates (have similar
performance).

edge length h

Ours (CR)
[Knöppel et al. 2013]
[Knöppel et al. 2015]

error in 1ˢᵗ eigenvalue

10-1 10-2100

10-4

10-2

10-0

h²

Figure 14: Convergence plot of the first eigenvalue of the vector
Dirichlet energy on the sphere, the exact solution is 1. Convergence
is observed for all tested methods on the same order.

f ∈ F and all triples of consecutive edges ei,e j,ek ∈ f , the discrete
gradient of a hat function u is

G(u) = M−1D(u)

D(u)
e‖i

+=
si| f |
3ei

(u j−ui)

D(u)e⊥i
+=− si

12|ei|

(
|ei|2(u j +ui)+(|ek|−

∣∣e j
∣∣)(u j−ui)

)
+

siei

6
uk ,

where |ei| is the length of edge ei, ui is the function u evaluated at
the tail of ei (with respect to the orientation of ei within the face),
and | f | is the area of face f . si is 1 if the local orientation of ei
within f agrees with the global orientation of ei, and −1 if it dis-
agrees. The notation += signifies that a term is visited twice when
looping over all faces and edges, and both entries must be accu-
mulated. The gradient G(u) is computed for all three coordinate
functions.

The discrete per-face shape operator S is computed using the dis-
crete gradient of the coordinate functions, G(x),G(y),G(z). Loop-
ing over all faces f ∈ F and all edges ei ∈ f , the discrete shape
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operator is

S f +=
si|ei|
| f |

N f ·


G(x)

e‖i
G(y)

e‖i
G(z)

e‖i


v⊥i (v‖i )

ᵀ

+
si|ei|
| f |

N f ·

G(x)e⊥i
G(y)e⊥i
G(z)e⊥i


v⊥i (v⊥i )ᵀ ,

where |ei| is the length of edge ei, v‖i is the normalized edge vector
belonging to ei (with respect to the orientation of ei within the face),
v⊥i is v‖i rotated by π

2 , N f is the normal vector of the face f , and
| f | is the area of face f . si is 1 if the local orientation of ei within
f agrees with the global orientation of ei, and −1 if it disagrees.
The notation += signifies that a term is visited twice when looping
over all faces and edges, and both entries must be accumulated. The
term involving v‖i is zero away from the boundary.
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