Show simple item record

dc.contributor.authorAdamson, Andersen_US
dc.contributor.authorAlexa, Marcen_US
dc.contributor.editorLeif Kobbelt and Peter Schroeder and Hugues Hoppeen_US
dc.date.accessioned2014-01-29T08:19:48Z
dc.date.available2014-01-29T08:19:48Z
dc.date.issued2003en_US
dc.identifier.isbn3-905673-06-1en_US
dc.identifier.issn1727-8384en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SGP/SGP03/230-239en_US
dc.description.abstractPoint sets become an increasingly popular shape representation. Most shape processing and rendering tasks require the approximation of a continuous surface from the point data. We present a surface approximation that is motivated by an efficient iterative ray intersection computation. On each point on a ray, a local normal direction is estimated as the direction of smallest weighted co-variances of the points. The normal direction is used to build a local polynomial approximation to the surface, which is then intersected with the ray. The distance to the polynomials essentially defines a distance field, whose zero-set is computed by repeated ray intersection. Requiring the distance field to be smooth leads to an intuitive and natural sampling criterion, namely, that normals derived from the weighted co-variances are well defined in a tubular neighborhood of the surface. For certain, well-chosen weight functions we can show that well-sampled surfaces lead to smooth distance fields with non-zero gradients and, thus, the surface is a continuously differentiable manifold. We detail spatial data structures and efficient algorithms to compute ray-surface intersections for fast ray casting and ray tracing of the surface.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation of surfaces and contours I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations I.3.7 [Computer Graphics]: Ray Tracingen_US
dc.titleApproximating and Intersecting Surfaces from Pointsen_US
dc.description.seriesinformationEurographics Symposium on Geometry Processingen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record