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Abstract

Generating high quality geometric representations from real-world objects is a
fundamental problem in computer graphics which is motivated by manifold appli-
cations. They comprise image synthesis for movie production or computer games
but also industrial applications such as quality assurance in mechanical engineer-
ing, the preservation of cultural heritage and the medical adaptation of prostheses
or orthoses. Common demands of these applications on their underlying algo-
rithms are robustness and efficiency. In addition, technological improvements
of scanning devices and cameras which allow for the acquisition of new data
types such as dynamic geometric data, create novel requirements which rise new
challenges for processing algorithms. This dissertation focuses on these aspects
and presents different contributions for flexible, efficient and robust processing
of static and time-varying geometric data. Two techniques focus on the problem
of denoising. A statistical filtering algorithm for point cloud data building on
non-parametric density estimation is introduced as well as a neighborhood filter
for static and time-varying range data which is based on a novel non-local sim-
ilarity measure. The third contribution unifies partition of unity decomposition
and a global surface reconstruction algorithm based on the Fast Fourier Trans-
form which results in a novel, robust and efficient reconstruction technique. Con-
cluding, two flexible and versatile tools for designing scalar fields on meshes are
presented which are useful to facilitate a controllable quadrangular remeshing.

Kurzfassung

Die Erzeugung von hochqualitativen geometrischen Darstellungen realer Objekte
ist ein grundlegendes Problem der Computergraphik, welches von vielfältigen
Anwendungen motiviert ist. Diese umfassen die Synthese von Bildern zur Her-
stellung von Filmen oder Computerspielen, aber auch industrielle Anwendungen,
wie die Qualitätsprüfung im Maschinenbau, die Erhaltung von Kulturgütern und
die medizinische Anpassung von Prothesen oder Orthesen. Gemeinsame An-
forderungen dieser Anwendungen an die beteiligten Algorithmen sind Robustheit
und Effizienz. Zusätzlich erzeugen technologische Fortentwicklungen von Scan-
nern und Kameras, welche die Aufnahme von neuen Datentypen, wie dynami-
schen Geometriedaten, erlauben, Anforderungen, die neue Herausforderungen
für Verarbeitungsalgorithmen darstellen. Diese Dissertation betrachtet diese As-
pekte und präsentiert verschiedene neue Beiträge zur flexiblen, effizienten und
robusten Verarbeitung statischer und zeitlich dynamischer geometrischer Daten.
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Zwei Verfahren befassen sich mit dem Problem des Entrauschens. Ein stati-
stischer Algorithmus zur Filterung von Punktwolken, welcher auf nicht-parame-
trischer Dichteschätzung beruht, wird eingeführt, sowie ein Nachbarschaftsfilter
für statische und zeitlich variierende Entfernungsdaten, welcher auf einem neuen
nicht lokalen Ähnlichkeitsmaß basiert. Der dritte Beitrag verbindet eine Zer-
legung basierend auf der Partitionierung der Eins mit einem globalen Algorith-
mus zur Oberflächenrekonstruktion, welcher auf der schnellen Fouriertransforma-
tion beruht. Dies resultiert in einem neuen, robusten und effizienten Rekonstruk-
tionsverfahren. Abschließend werden zwei flexible und vielseitige Werkzeuge
zum Design von Skalarfeldern auf Netzen vorgestellt, welche eine steuerbare
Vierecksneuvernetzung ermöglichen.
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Summary

A central problem in computer graphics is the generation of high quality meshes
from real-world objects as they build the foundation for many graphics algorithms.
Their versatile applicability motivated intensive research which produced a broad
range of processing techniques. These methods focus on different problems of the
mesh generation process. Examples comprise the acquisition of geometry, data
preprocessing, surface reconstruction and remeshing. The different techniques
are applied in a sequence which is refered to as the geometry processing pipeline.

Demanding requirements on processing algorithms are robustness and efficiency.
In addition, the continuous improvement of scanning devices and digital cameras
drives the availability of new data types such as dynamic range data which entail
new challenges for processing algorithms.

This dissertation focuses on these aspects and presents different contributions for
the flexible, efficient and robust processing of static and time-varying geometric
data which address different steps of the geometry processing pipeline.

Two techniques consider the problem of denoising. The first method is devoted to
the robust filtering of point cloud surface data. It approaches the problem statisti-
cally. Building on non-parametric density estimation, a smooth probability func-
tion is defined to move noisy input points to their maximum likelihood positions.
The derived technique is insensitive to parameter variations, handles high noise
amplitudes properly and exhibits a good outlier resistance. The second technique
chooses a different approach to the denoising problem by filtering range scans in-
dividually before they are merged in a point cloud in order to be able to utilize their
inherent structure. The method focuses on denoising static and time-varying range
data whose acquisition has increasingly become feasible due to improvements in
scanning technology. The technique introduces a novel non-local similarity mea-
sure which determines the resemblance of two points on a range scan not only
by their local properties but by incorporating context information and comparing
the surface regions around them. The measure is utilized to develop a denoising
algorithm which produces a more accurate denoising result on range data than
previous state-of-the-art approaches while having a better feature-preservation.
Additionally, an extension is presented that enables a robust and stable treatment
of time-varying range data by augmenting the similarity measure into the time
domain.

The first chapters of this thesis advocate that data cleaning improves the perfor-
mance of subsequent processing steps such as surface reconstruction. In a new al-
gorithm, we use partition of unity decomposition to develop a novel local variant
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of a global surface reconstruction technique based on the Fast Fourier Transform.
The new approach is characterized by the robustness of the global technique while
being more memory efficient which allows it to achieve a higher reconstruction
accuracy.

The fourth contribution considers controllable quadrilateral remeshing. We in-
troduce two flexible and versatile tools for designing scalar fields on surfaces.
The first can enforce directional constraints which is useful to avoid tedious post-
processing, for instance, by aligning quads to important features while the second
utilizes quasi-harmonic fields to consider the surface as an inhomogeneous do-
main to endow it with attraction or repulsion properties.
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Zusammenfassung

Ein zentrales Problem der Computergraphik ist die Erzeugung hochqualitativer
Netze realer Objekte, da sie die Grundlage vieler Graphikalgorithmen darstellen.
Ihre vielseitige Anwendbarkeit motivierte intensive Forschung, was ein breites
Angebot an Verarbeitungstechniken hervorbrachte. Die Methoden betrachten ver-
schiedene Probleme des Netzgenerierungsprozesses. Beispiele sind die Akquise
von Geometrie, die Vorverarbeitung von Daten, Oberflächenrekonstruktion und
Neuvernetzung. Die verschiedenen Techniken werden sequentiell in einer Folge
angewendet, die als geometrische Datenverarbeitungskette bezeichnet wird.

Anspruchsvolle Anforderungen an die Verarbeitungsalgorithmen sind Robustheit
und Effizienz. Des Weiteren fördert die anhaltende Fortentwicklung von Scannern
und Digitalkameras die Verfügbarkeit von neuen Datenformen, wie dynamischen
Entfernungsdaten, welche neue Herausforderungen für Verarbeitungsalgorithmen
mit sich bringen.

Diese Dissertation betrachtet diese Aspekte und stellt verschiedene Beiträge zur
flexiblen, effizienten und robusten Verarbeitung statischer und zeitlich variieren-
der geometrischer Daten vor, die sich mit verschiedenen Schritten der geometri-
schen Datenverarbeitungskette befassen.

Zwei Verfahren behandeln das Problem des Entrauschens. Die erste Methode ist
der robusten Filterung von Punktwolken, welche Oberflächen darstellen, gewid-
met und nähert sich dem Problem statistisch. Aufbauend auf nicht-parametrischer
Dichteschätzung wird eine glatte Wahrscheinlichkeitsfunktion definiert, um die
verrauschten Punkte der Eingabedaten zu deren Positionen maximaler Wahrschein-
lichkeit zu verschieben. Das hergeleitete Verfahren ist unempfindlich gegenüber
Parameteränderungen, fähig große Rauschamplituden zu verarbeiten und zeigt
eine gute Beständigkeit gegenüber Ausreißern. Das zweite Verfahren wählt einen
anderen Entrauschungsansatz und filtert die Entfernungsdatenscans einzeln bevor
sie zu einer Punktwolke zusammengefasst werden, um deren inherente Struktur
nutzen zu können. Die Methode beschäftigt sich mit dem Entrauschen statischer
und zeitlich variierender Entfernungsdaten, deren Akquise zunehmend durch die
Fortentwicklung von Scannertechnologien ermöglicht wurde. Der Ansatz führt
ein neues nicht lokales Ähnlichkeitsmaß ein, welches die Ähnlichkeit zweier Punk-
te von Entfernungsdaten nicht nur durch deren lokale Eigenschaften bestimmt,
sondern deren Kontext einbezieht und Regionen der Oberfläche um sie herum
vergleicht. Das Maß wird zur Entwicklung eines Entrauschungsverfahrens ver-
wendet, welches ein genaueres Filterresultat auf Entfernungsdaten als bisherige
aktuelle Techniken erreicht und gleichzeitig Details besser erhält. Zusätzlich wird
eine Erweiterung vorgestellt, die eine robuste und stabile Verarbeitung zeitlich
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variierender Entfernungsdaten ermöglicht, durch eine Erweiterung des Ähnlich-
keitsmaßes in die zeitliche Dimension.

Die ersten Kapitel dieser Dissertation befürworten das Entrauschen von Daten, da
es die Performance nachfolgender Verarbeitungsschritte, wie Oberflächenrekon-
struktion, verbessert. In einem neuen Verfahren wird eine Zerlegung basierend auf
der Partitionierung der Eins verwendet, um eine neue lokale Variante einer glo-
balen Oberflächenrekonstruktionstechnik zu entwickeln, welche auf der schnel-
len Fouriertransformation basiert. Das neue Verfahren zeichnet sich durch die
Robustheit der globalen Methode aus, während es speichereffizienter ist und damit
eine höhere Rekonstruktionsgenauigkeit erlaubt.

Der vierte Beitrag beschäftigt sich mit der steuerbaren Neuvernetzung in Vierecks-
oberflächen. Es werden zwei flexible und vielseitige Werkzeuge zum Design
von Skalarfeldern auf Oberflächennetzen eingeführt. Das erste kann Richtungs-
einschränkungen festlegen, was nützlich ist, um umständliches Nachverarbeiten
zu vermeiden, z.B. bei der Ausrichtung der Vierecke an wichtigen Details. Das
zweite Werkzeug verwendet quasi-harmonische Felder, um die Oberfläche als un-
gleichförmige Umgebung aufzufassen und sie mit Anziehungs- oder Abstoßungs-
eigenschaften zu versehen.
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Chapter 1

Introduction

Computer graphics is a research field which is characterized by fast progress and
development making it a wide research area. Starting from early applications as,
for instance, the computer drawing device Sketchpad which allowed to draw sim-
ple primitives on a computer screen under the use of a light pen at the beginning
of the 1960s, it now spreads over diverse focus areas in geometry processing, ren-
dering and computer animation which are motivated by manifold applications in
industrial engineering and entertainment.

The foundation for many graphics algorithms is the availability of a digital model
of a real-world object. One option to create high quality models is their manual
design by skilled artists which usually takes extensive effort in terms of time and
labor. An alternative is the acquisition of a real-world model and its transfor-
mation into a geometric representation suitable for subsequent applications. This
process is performed in different steps which are combined in the geometry pro-
cessing pipeline whose automation and development is one of the fundamental
problems and a long standing goal in computer graphics research.

Geometric data is commonly represented in the form of tri- or quadrangular sur-
face meshes which are ideally composed of regular facets. Other applied rep-
resentations are, for instance, implicit surfaces which are described by the level
sets of a function or point clouds which can be rendered as splats if no explicit
connectivity is required.

The requirements on the resulting mesh are versatile and dependent upon the sub-
sequent applications which comprise image synthesis for feature production or
computer games or industrial applications as the acquisition of mechanical parts
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for design or surface analysis purposes such as tolerance testing for quality as-
surance. Other interesting applications are the preservation of cultural heritage
in a digital form to support their restoration process or the medical adaptation of
prostheses or orthoses.

These applications make great demands on the processing algorithms in terms of
robustness, accuracy, flexibility and efficiency. Furthermore, technological im-
provements of cameras and scanning devices drive the availability of new types of
data which rise new challenges for processing algorithms.

This thesis focuses on these aspects and presents new techniques for the robust and
efficient processing of static and time-varying range data which cover different
steps of the geometry processing pipeline.

1.1 Main Contributions

Contributions are made in the area of point cloud and dynamic range scan filtering.
By approaching the denoising problem statistically or by considering it as a non-
local problem, improvements in robustness and filtering accuracy are achieved.
Furthermore, the problems of surface reconstruction and quadrilateral remeshing
are addressed. The developed reconstruction approach combines the advantages
of an efficient local processing realized by partition of unity decomposition, which
is yet sufficiently global, indicated by the size of the reconstructed primitives, to
ensure a more robust and efficient reconstruction compared to recent state-of-the-
art techniques. The quadrangular remeshing approach presents novel tools for
the flexible design of scalar fields on meshes which are used for a controllable
remeshing of irregular triangular meshes.

This dissertation builds upon scientific articles which have been published in
various journals [Saleem07, Schall07a, Schall08a] and conference proceedings
[Schall05b, Isgro05, Schall05a, Schall06a, Schall06b, Schall07b, Schall08b]. A
compiled list of publications can be found in Appendix A. The main contributions
of this dissertation can be summarized as follows:

• A robust statistical point cloud denoising and clustering algorithm derived
from a non-parametric density estimation technique called Mean Shift.

• A non-local similarity measure to determine the resemblance of two points
on a range scan depending on their geometric neighborhood. The measure
was used to develop an efficient feature-preserving neighborhood filtering
technique for static as well as dynamic range data which is an interesting
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novel data format available due to important progress in the area of 3D video
acquisition.

• A robust and efficient surface reconstruction approach which unifies parti-
tion of unity decomposition and a global reconstruction technique based on
the Fast Fourier Transform.

• Flexible and versatile tools for designing scalar fields on surfaces. They can
enforce directional constraints by operating on the gradient of the scalar
field and area constraints by regarding the surface as an inhomogeneous
domain to endow regions with attraction/repulsion properties. These tech-
niques are used to develop a flexible algorithm for controllable quadrangular
remeshing.

1.2 Chapter Overview

This thesis starts with an overview of the geometry processing pipeline in Chap-
ter 2. Following the steps of the pipeline, the contributions of this dissertation
are presented. Chapter 3 describes the novel statistical point cloud denoising
approach. The filtering technique for static and time-varying range data (range
video) is introduced in Chapter 4 followed by the surface reconstruction approach
in Chapter 5. In Chapter 6, the quad-remeshing technique based on quasi-harmonic
fields which allows for design constraints is presented before this thesis is con-
cluded in Chapter 7 where all contributions as well as open questions are dis-
cussed.



4 Chapter 1: Introduction



Chapter 2

The Geometry Processing
Pipeline

Creating a geometric representation for a real-world object is a process which
consists of several steps. These steps are performed in a sequence combined in
the geometry processing pipeline. This chapter presents an overview of a pipeline
which focuses on reconstructing a well-behaved mesh representation from several
range scans obtained from a real-world object. Extending the focus of the pipeline
to subsequent processing, more steps than the ones introduced in this chapter are
possible. Examples comprise hole filling, surface simplification, the estimation
of differential quantities as for example curvature or surface parameterization and
modeling.

2.1 Geometry Acquisition

The first step of the pipeline is to capture the geometry of a real-world object in
form of points embedded in three-dimensional space. For this problem, different
approaches have been proposed in the past which can be categorized into different
groups according to their way of sampling the surface of the real-world object.
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2.1.1 Contact Approaches

Contact-based devices sample the object by physical touch using a probe. This is
performed either automatically or hand-driven. Application areas are for instance
manufacturing since the approaches can be very precise and the computer anima-
tion industry where hand-crafted models are digitized. Since contact is required
the probe has to be moved sequentially over the surface causing the methods to be
rather slow. Depending on the object such as historical artifacts another limitation
is that contact is not desired due to the risk of damage.

2.1.2 Non-Contact Approaches

Non-contact approaches sample the environment or object optically. For a given
position of the camera their goal is to reconstruct a depth map of the recorded
scene where each pixel of the image is associated with the distance from the image
plane to the recorded part of the surface. By obtaining multiple depth maps from
different viewing directions the geometry of a complete object can be acquired.
The alignment of the individual range images into a common coordinate system
is performed in a subsequent registration.

Two groups of techniques have been established. Active approaches emit light
into the scene or onto the object in order to support the depth estimation with
a priori knowledge. Passive methods, on the other hand, avoid light projection
which might be disturbing in the scene and rely solely on the image information.

Time-of-flight scanners estimate the distance to an object by the time laser light
emitted from the scanner requires to reach the object’s surface. Depth from fo-
cus/defocus techniques reconstruct depth from a set of images with different focal
planes. They can be passive as well as active by using camera or projector defocus
to reconstruct the depth of a scene.

A large group of approaches reconstructs depth using triangulation. The principle
of this type of depth estimation can be illustrated using simple trigonometric rules.
Please see Figure (2.1) for notations.

d · sinγ = h b · sinα = h

d
sinα

=
b

sinγ
(2.1)

As the angles form a triangle the following relation holds

α +β = π − γ
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b

dβ

α

γ

Figure 2.1: Schematic laser scanner setup. The triangulation is built from a
laser beam projected onto a surface point (top) which is observed by a cali-
brated camera (bottom). For more details on the depth computation please
see the text.

sin(α +β ) = sin(π − γ) = −sin(γ). (2.2)

Combining equation (2.1) and (2.2) the depth can be calculated as

d =
b · sinα

sinγ
= −

b · sinα
sin(α +β )

. (2.3)

In order to determine the unknowns, correspondences between the views need
to be established and the observers need to be calibrated to each other. Differ-
ent variations of this method exist. Well-known techniques comprise laser stripe
scanning, stereo vision, and depth from motion. In laser scanning the triangula-
tion is built from a laser emitter, a camera and the surface point to be measured.
Stereo vision utilizes two cameras whereas depth from motion applies only one
camera which is in motion relative to the scene to create a triangle by recording a
surface point at least at two different time instances. Furthermore, other methods
for multi-camera systems have been developed.

The emission of light is used by active techniques in order to simplify the detection
of correspondences. In structured light scanning a light stripe is projected onto a
surface and observed by a camera analog to the laser scanning principle. In or-
der to be able to acquire more geometric information of the object simultaneously,
more than one stripe is projected at once. In order to identify the individual stripes
a coded pattern is used. Variations of this method with color coded patterns have
been proposed to increase the robustness of the system regarding environment il-
lumination and object color. While traditional laser scanning and passive stereo
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detect correspondences only in the spatial domain, novel structured light meth-
ods make use of features in the spatio-temporal domain which allows for a more
stable and robust acquisition over time. Furthermore, capturing a time-varying
geometric sequence of non-rigid objects becomes feasible.

Other techniques do not estimate the depth to an object directly but aim to obtain
the surface normals of the object first. In a subsequent step the surface itself
can be derived as a height map by integration of the normal maps. This group
comprises techniques such as photometric stereo and shape from shading. For
photometric stereo the object is illuminated from different directions and captured
from a constant viewpoint. The normal map can be computed from the reflectance
maps of a Lambertian surface as their intensities are determined by the lighting
direction and the surface orientation. Shape from shading aims to recover the
normal map as well as lighting direction from the variation of shading in one
image.

2.2 Registration

As discussed earlier in the previous section the acquisition of a real-world object
is mostly conducted in multiple iterations from different directions in order to ob-
tain a complete scan covering the whole object. The relative orientation between
the scanner views is typically unknown. In order to align them, a subsequent
registration into a common coordinate system is necessary.

A famous technique for registration is the Iterative Closest Point algorithm (ICP).
For two raw scans it computes an affine transformation in order to merge them. It
finds for all points of one scan the closest point in the second scan. The position
of the first scan is then transformed to minimize the root mean squared error of
the distances between the point pairs. This process is iterated until the error falls
under a user prescribed threshold. The method is used for precise alignment of
scans as it requires an initial configuration close to the solution in order to con-
verge. Therefore, user interaction is often required in case the scans are highly
disaligned. Other approaches using shape descriptors alleviate this problem by
searching for similar feature points on the scans. Once potential corresponding
points are detected they are used to coarsely align the set of range images.
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2.3 Denoising

Data denoising or cleaning is an important part of the geometry processing pipe-
line. Since data acquisition is a physical process, it is inevitably imprecise which
is observable as noise present in the scanned data. Furthermore, larger errors in
depth estimation at grazing angles of the camera view to the surface of the object
create the problem that range scan pairs cannot be perfectly aligned. Novel reg-
istration techniques aim to handle this problem by performing a non-rigid align-
ment. Data cleaning can be performed at different steps of the pipeline. Early
algorithms focused on filtering already reconstructed surface meshes. In this dis-
sertation it will be demonstrated that denoising is recommendable also early in
the geometry processing pipeline as it simplifies and increases the robustness of
subsequent processing steps. It furthermore allows for the utilization of the struc-
ture given in the scanned data which is typically lost after further processing but
beneficial for denoising static but especially time-varying geometric data.

2.4 Surface Reconstruction

At this stage of the geometry processing pipeline range scans have been combined
into a point cloud which is often associated with oriented normals. Depending on
the acquisition approach they have been already obtained during scanning or they
can be easily computed and oriented using the neighborhood information given in
the scan and the viewing direction of the camera. Then the goal is to recover the
connectivity between the samples such that the resulting mesh is a discrete digital
image of the scanned object.

2.5 Remeshing

Despite a lot of advances in surface reconstruction, it is often the case that result-
ing meshes are not readily suitable for numerical computations required by sub-
sequent geometry processing algorithms. For instance, irregular changes in the
normal derivative due to acute triangles complicate the estimation of curvature of
the mesh. Therefore, one goal is to transfer the reconstructed surface into a well-
behaved mesh representation which consists mostly out of equilateral triangles or
quadrangles.

In the following chapters of this dissertation, the contributions will be presented
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which cover different parts of the geometry processing pipeline. Chapters 3 and 4
introduce denoising approaches for the robust processing of point cloud and tem-
porally varying geometric data. They are followed by the presentation of a robust
and efficient surface reconstruction approach in Chapter 5 and a flexible quad-
remeshing technique based on quasi-harmonic fields which allows for different
design constraints in Chapter 6.



Chapter 3

Robust Filtering of Noisy
Scattered Point Data

In this chapter, we develop a method for the robust filtering of a
noisy set of points sampled from a smooth surface. The main idea
of the method consists of using a kernel density estimation technique
for point clustering. Specifically, we use a mean-shift based cluster-
ing procedure. With every point of the input data we associate a local
likelihood measure capturing the probability that a 3D point is located
on the sampled surface. The likelihood measure takes into account the
normal directions estimated at the scattered points. Our filtering pro-
cedure suppresses noise of different amplitudes and allows for an easy
detection of outliers which are then automatically removed by simple
thresholding. The remaining set of maximum likelihood points deliv-
ers an accurate point-based approximation of the surface. We also
show that while some established meshing techniques often fail to re-
construct the surface from original noisy point scattered data, they
work well in conjunction with our filtering method.

3.1 Introduction

Point clouds have become increasingly popular in modeling and rendering ap-
plications [Pfister00, Rusinkiewicz00, Alexa01, Zwicker01, Botsch03, Pauly03]
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Figure 3.1: Filtering of a face scan acquired using a structured light scan-
ner. Initial scattered point data contains small-amplitude noise and outliers
(left image). Our method automatically removes the outliers and effectively
suppresses small-amplitude noise (right image).

due to improved graphics hardware and technologies for the acquisition of point
geometry. Specifically, robust processing of scattered point data is a subject of
intensive research [Stewart99, Mederos03, Pauly04, Fenn05, Steinke05, Jenke06,
Suessmuth07, Lipman07b]. Here robustness means that an estimation / filtering
technique works well on noisy data with a small fraction of gross errors (“out-
liers”). A concise introduction into the field of robust filtering and estimation is
available in [Press93]. In this chapter, we develop a technique for robust filter-
ing of noisy sets of points scattered over surfaces and containing outliers. Such
point datasets are routinely generated by optical and photometric range finders.
The left image of Figure (3.1) shows a typical output of a structured light scanner.
Beside usual small-amplitude noise the dataset contains many outliers. The right
image presents the result of our filtering technique. The outliers are automatically
removed and the small-amplitude noise is effectively suppressed.

While low-pass filtering [Linsen01], MLS fitting [Alexa01, Amenta04, Mederos04,
Weyrich04, Dey04b] and PDE-based [Lange05] approaches remove small-ampli-
tude noise well, eliminating outliers remains mostly a manual procedure. A con-
cept for the removal of distant outliers can be found in [Xie04]. Recently, Lipman
et al. [Lipman07b] presented an interesting projection-based geometry reconstruc-
tion approach which is parameterization-free in a sense that it does not rely on the
computation of a local normal or on local plane fitting and thus performs well
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in cases of ambiguous orientation. It provides a second order approximation to
the given data points. Other works focusing on the accurate reconstruction of
sharp features are introduced in [Fleishman05, Jenke06, Lipman07a]. Despite
of continuous progress in extending robust statistics, statistical learning tech-
niques and probabilistic approaches for processing scattered point data [Pauly04,
Ivrissimtzis04, Schölkopf05, Fenn05, Steinke05, Jenke06, Suessmuth07], the prob-
lem of automatic outlier identification and removal from scattered point data re-
mains a challenging task.

Our method can be considered as a non-parametric kernel density estimation
scheme [Rosenblatt56, Parzen62]. Given 3D scattered point data P={p1,. . .,pN},
we want to estimate an unknown density function f (x) of the data. A simple ker-
nel estimation f̂ (x) of f (x) is given by

f̂ (x) =
1

Nh3

N

∑
i=1

Φ
(

x−pi

h

)

. (3.1)

The smoothing parameter h is called the kernel size and Φ is the kernel function
which is usually chosen to be a Gaussian function. Figure (3.2) illustrates the
kernel-based density estimation approach. Local maxima of the kernel estimation
f̂ (x) naturally define centers of clusters in the scattered data P .

The main idea behind our filtering approach consists of defining a kernel esti-
mation f̂ (x) to determine those cluster centers which deliver an accurate approx-
imation of the sampled surface. To detect the local maxima of an appropriately
constructed kernel estimation f̂ the Mean Shift technique [Fukunaga75, Cheng95,
Comaniciu02] is used. Then clusters corresponding to the outliers are easily de-
tected by using a simple thresholding scheme. Although the basic concept of our
approach is well illustrated by (3.1) and Figure (3.2), the practical implementation
of our kernel-based clustering and filtering procedure introduces and deals with
much more complex kernels.

Recently, [Suessmuth07] presented a related approach with a different focus being
reconstructing curves and surfaces from unstructured point clouds. Similar to our
technique it is based on the observation that the curve or surface is located where
the point cloud locally has highest density. More precisely, they detect relevant
ridges of the density function. In practice, they evaluate first and second order
differential geometric quantities on a regular grid surrounding the point cloud,
perform a local analysis on the grid points and recover the curve or surface using
an isoline extraction algorithm.

In Section (3.3), we demonstrate that our robust filtering method is useful to pre-
process noisy data before it is used as input for surface reconstruction techniques.
We show that this largely improves their quality of reconstruction.
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Figure 3.2: Illustration of the kernel density estimation technique for 1D scat-
tered point data. Local maxima of the kernel estimation f̂ define cluster cen-
ters of the original data.

3.2 Likelihood and Convergence

In this section, we present our statistical method to filter noisy point cloud sur-
face data. We approach this problem by defining a smooth likelihood function L
reflecting the probability that a point x ∈ R3 is a point on the surface S sampled
by a noisy point cloud P . In order to filter the noisy samples we use an iterative
scheme inspired by Mean Shift [Cheng95, Comaniciu02, Fukunaga75] to move
the points along the gradient of L to maximum likelihood positions.

3.2.1 Likelihood Function

In order to define the likelihood function L we accumulate local likelihood func-
tions Li defined for every sample point pi ∈ P . We measure the likelihood Li(x)
for a certain x considering the squared distance of x to the least-squares plane fit-
ted to a spatial neighborhood of pi. Being more specific, we determine the fitting
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plane by computing the weighted covariance matrix

Ci =
N

∑
j=1

(p j − ci)(p j − ci)
T χ

(

||p j −pi||

h

)

, (3.2)

where h is the kernel size, χ is a monotonically decreasing weighting function and
ci is the weighted average of all samples inside the kernel. Since Ci is symmetric
and positive semi-definite, its eigenvalues λ l

i , l = 1,2,3, are real-valued and non-
negative: 0 ≤ λ 3

i ≤ λ 2
i ≤ λ 1

i . Furthermore, the corresponding eigenvectors vl
i

form an orthonormal basis. Thus the covariance matrix (3.2) defines the ellipsoid

Ei(x) = {x : (x− ci)
T C−1

i (x− ci) ≤ 1}, (3.3)

where the least-squares fitting plane is spanned by the two main principal axes
v1

i and v2
i of Ei and has the normal v3

i = ni. A 2D example is illustrated in Fig-
ure (3.3).

If normals are provided by the scanning device we use them instead of the es-
timated normals. Using the squared distance of x to the least-squares plane we
measure the likelihood Li(x) as

Li(x) = Φi (x− ci)
[

h2 − [(x− ci) ·ni]
2
]

. (3.4)

Thus positions x closer to the least-squares plane will be assigned a higher prob-
ability than positions being more distant. Additionally, we assume that the in-
fluence of a point pi on the likelihood of a position x diminishes with increasing
distance. To consider this behavior we use monotonically decreasing weighting
functions Φi to reduce the influence of each Li. In contrast to radial functions
in [Pauly04, Ohtake05] we use a trivariate anisotropic Gaussian function Φi which
is adapted to the shape of the ellipsoid Ei. This has the advantage that the weight-
ing function is also adapted to the point distribution in a spatial neighborhood of
pi.

To define the likelihood function L modeling the probability that a certain point
x is a point on the sampled surface S, we accumulate the local likelihoods Li(x)
contributed by all points pi.

L(x) =
N

∑
i=1

wiLi(x) (3.5)

Note that we can easily incorporate scanning confidence measures wi ∈ [0,1] as-
sociated with each point pi by scaling the amplitudes of the likelihood functions.
If no scanning confidences are provided we use wi = 1. Figure (3.4) shows an
example of a slice of the likelihood function L.
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Figure 3.3: 2D example of the weighted least-squares fitting plane and ellip-
soid kernel computation.

3.2.2 Convergence

After determining the likelihood function L(x) we use it to smooth the point cloud
by moving all samples to positions of high probability. This means we move the
samples to positions which are most likely locations on the sampled surface. To
find the local maxima of L(x) we use a procedure similar to a gradient-ascent
maximization. We freeze the weighting functions Φ j since they change slowly
and approximate ∇L(x) by

−2
N

∑
j=1

w jΦ j
(

x− c j
)

·
[

(x− c j) ·n j
]

·n j. (3.6)

To allow a fast convergence of the samples to probability maxima we choose the
step-size adaptive as

τ =
1

2∑N
j=1 w jΦ j

(

x− c j
) . (3.7)

This means that the step size is small near to the probability maximum and in-
creases to the border of each kernel. This provides a fast and stable convergence
of all sample points.

Combining equations (3.6) and (3.7) we get the resulting iterative scheme

p0
i = pi , pk+1

i = pk
i −mk

i (3.8)

mk
i =

∑N
j=1 w jΦ j

(

pk
i − c j

)

·
[

(pk
i − c j) ·n j

]

·n j

∑N
j=1 w jΦ j

(

pk
i − c j

) . (3.9)
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Figure 3.4: A slice of the likelihood function L of the noisy Dragon head model
(bottom left) and a zoom of the framed region (bottom right). The function
values are represented by colors increasing from deep blue to purple. Note
that L is a smooth function.

In order to filter the point cloud P we apply the iterative scheme individually to
every sample. We stop the iterative process if

||pk+1
i −pk

i || < 10−4h. (3.10)

Each sample usually converges in less than 10 iterations.

A feature of our filtering method is the inherent clustering property. As the number
of kernels is larger than the number of maxima in the likelihood function L (see
Figure 3.2), several sample points converge to the same probability maximum. We
cluster those samples and place one representative point at the local maximum of
L. See Table (3.1) for details on the point reduction rate.
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Figure 3.5: The effect of adaptive kernels. Left: The Dragon dataset is
smoothed using a fixed kernel size. Large amplitude noise at the right foot of
the dragon cannot be filtered due to maxima of L distant to the most likely
surface. Right: Filtering result of the same dataset using adaptive kernels.
Outlying maxima are well damped. Beside very few points, the noisy samples
in the rectangular region are filtered completely.

3.2.3 Adaptive Kernel Size

So far we only used a fixed radius h to compute the local neighborhoods for the
ellipsoidal weighting function and least-squares fitting plane computation. How-
ever, invariant kernels might not be suitable for datasets with varying sampling
density. To overcome this problem we use the k-neighborhood of each sample
pi for the PCA analysis to compute the ellipsoidal kernel Ei. In this manner we
not only adapt the kernel shape to the point sample distribution in a neighborhood
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Dataset N M kernels filtering h

Face 180K 114K 1.38s 18.45s 0.8
Bunny 362K+25K 324K 3.2s 52s 0.001

Sforza (front) 123K 81K 1.33s 21.32s 2
Sforza (side) 143K 95K 1.49s 24.94s 2

Bimba 1.9M 1.2M 16s 80s 1
Dragon head 485K 170K 23.22s 10m 53s 0.0015

Dragon 2.1M 796K 1m 43s 36m 26s 0.0015
Dragon 2.1M 795K 6m 40s 38m 05s k = 250

Table 3.1: Timings for the ellipsoid kernel computation and for filtering the
models presented in this chapter. The kernel size h is chosen in the interval
of one to ten times the average sampling density of the input data. The char-
acter N denotes the number of input samples and M the number of filtered
points. The parameter k indicates the number of nearest neighbors used for
the adaptive kernel computation. All results were computed on a 2.66 GHz
Pentium 4 with 1.5 GB of RAM.

of pi but also the kernel size to the spatial sampling density. The motivation be-
hind this choice can be observed in Figure (3.5). If a fixed radius h is used local
maxima of L are created distant to the most likely surface in regions of the point
cloud with large-amplitude noise. Those maxima also attract points during the
iterative filtering process creating a second layer of points around the most likely
surface (left). The usage of adaptive kernels leads to larger kernel sizes in these
regions due to the lower sampling density of large amplitude noise. Therefore,
kernels of both layers intersect which dampens the effect of local maxima. This
results in an improved filtering of large scale noise (right).

3.3 Results and Applications

This section shows results of our point cloud data filtering technique. We apply
our method to real-world datasets from laser and structured light scanners. Fur-
thermore, we present the application of our algorithm to surface reconstruction. In
general, surface reconstruction is performed on noisy data reducing the efficiency
of surface reconstruction algorithms. We show that the results of well-known
surface reconstruction methods can be improved in conjunction with our filtering
method.
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Figure 3.6: Left: Raw registered range scans of the Stanford Bunny dataset
expanded by 25K random “salt and pepper” outliers. Right: Our method
accurately denoises the given point set and removes the dense cloud of outliers
properly.

3.3.1 Filtering and Outlier Removal

We demonstrate results of our filtering technique in Figure (3.1) and Figures (3.5) -
(3.9). All images are rendered using shaded points. Normals for illustrating the
results are computed using PCA analysis with small neighborhoods to avoid blur-
ring effects. Meshes in Figure (3.9) are displayed using flat shading in order to
show faceting. Table (3.1) summarizes our results and the parameters used to
generate them.

Figure (3.1) shows a point cloud face dataset acquired by a structured light scan-
ner before and after filtering using our method. The raw point cloud suffers from
several outliers and ridges which are typical artifacts caused by the structured
light scanning process. We show this comparison to illustrate the effectiveness of
our method for removing outliers and smoothing of difficult datasets. Due to the
clustering property of our method, groups of outliers usually converge to a set of
single points sparsely distributed around the surface samples. These points can
be characterized by a very low spatial sampling density compared to the surface
samples. We use this criterion for the detection of outliers and remove them us-
ing simple thresholding. Figure (3.6) shows an additional example with a large
amount of randomly generated points which can be interpreted as 3D “salt and
pepper” outliers. In the case of images, “salt and pepper” noise corrupts random
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Figure 3.7: Smoothing of two range scans of the Ippolita Sforza Bust. Note
that details in hair, mouth and eye regions are accurately preserved.

image pixels with intensity spikes. This means that a number of pixels in the im-
age have a very large intensity difference to neighboring pixels. For point clouds,
we can model this kind of noise by displacing points of the dataset far from the
smooth surface. In our example, we move points inside the bounding box of the
dataset. Additionally, we add noise to the normals by perturbing them with ran-
dom angles. Although the outlier density is high as shown in Figure (3.6), our
algorithm is able to remove the noise and the outliers properly.

In Figure (3.7) we demonstrate the filtering efficiency of our algorithm on laser
scan data. We show this comparison as laser scans are usually affected by different
types of noise compared to structured light scans. Due to the different acquisition
technique, laser scans are usually not corrupted by ridges and pits caused by struc-
tured light. Instead, they are affected by dense small-amplitude noise. Figure (3.7)
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Figure 3.8: Left: Raw registered range data of the Bimba model obtained
using a laser scanner. The data is corrupted by dense small-amplitude noise
and scanning artifacts close to the mouth and the right eye of the model.
Right: The artifacts are well dampened and noise is removed after filtering
with our method.

illustrates that high-frequency noise is removed by our method while lower fre-
quency details like hair, mouth and eyes of the Ippolita Sforza Bust are preserved.
Figure (3.8) illustrates a second example consisting of a set of raw registered laser
scans. The Bimba model suffers from the same small-amplitude noise and a few
scanning artifacts close to the right eye and mouth region of the dataset. After de-
noising the artifacts are well dampened and the noise is properly removed while
important details are preserved.

As noted previously, our method uses adaptive kernels to handle large scale noise.
Figure (3.5) shows that while the dragon scan cannot be accurately filtered using
a fixed kernel size, adaptive kernels provide a proper filtering of large amplitude
noise.

3.3.2 Surface Reconstruction

Surface reconstruction is one of the most fundamental problems in geometry pro-
cessing. One important group of reconstruction algorithms are Delaunay-based
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methods. Those techniques are supported by rigorous mathematical results and
provide correct reconstructions under specific sampling conditions. Furthermore,
they have the great advantage to be able to reconstruct surfaces from points with-
out normals. On the other hand, these methods are sensitive to data with noise
and outliers which cannot be avoided in physical acquisition processes. Most
Delaunay-based methods are therefore not practical to be applied to raw data.
Therefore, making these methods robust to noisy data is currently a field of inten-
sive research.

Our method can be used to filter real-world data before using it for surface recon-
struction by computational geometry methods. We apply our filtering technique
to noisy point clouds and reconstruct a surface from the preprocessed data. For
comparison we also reconstruct a surface from the same noisy point cloud without
cleaning it using our method. For surface reconstruction we use two well-known
Delaunay-based reconstruction algorithms, namely Power Crust [Amenta01] and
Tight Cocone [Dey03], which are available for scientific purposes. Figure (3.9)
shows results of the comparison. The direct reconstruction of the noisy scattered
data does not produce usable results. In contrast, results of both algorithms using
the filtered scattered data show significantly improved reconstructions.

3.4 Conclusion

In this chapter, a kernel based clustering approach for the robust filtering of point
cloud surface data has been introduced. It adapts to the density and distribution
of the given input points which allows the technique to remove noise of different
amplitudes accurately. Due to its inherent clustering property it permits an easy
detection of outliers. It was demonstrated that the algorithm is able to handle
even a large amount of “salt and pepper” outliers. The effectiveness of the ap-
proach was shown on real-world datasets acquired using structured light and laser
scanners. In addition, the method can be used in combination with surface re-
construction algorithms which significantly improves their results on noisy data.
Furthermore, a parallelization of the presented approach is imaginable as every
input point converges independently to a maximum of the likelihood function.

While the presented method operates on already registered scans and does not
require neighborhood information, the technique introduced in the next chapter
follows a different approach. It denoises range scans separately before they are
registered and is thus able to exploit the connectivity information between the
data points. The next chapter furthermore illustrates that the method extends to
the treatment of time-varying range data whose acquisition has recently become
an active research direction.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.9: Figures (a) and (b) present the head of the Dragon scans from
the Stanford Scanning Repository before and after our filtering procedure.
Figures (c) and (d) show zooms of the images (a) and (b) close to the tongue
region. Notice that noise is removed and that the filtered samples indicate
a surface. Figures (e) and (g) illustrate Power Crust and Tight Cocone re-
constructions from the noisy samples shown in (a). Figures (f) and (h) show
reconstruction results from the filtered data shown in (b). While the Power
Crust algorithm shows noticeably improved results with small defects (f), the
Tight Cocone algorithm reconstructs a smooth mesh (h).



Chapter 4

Feature-preserving
Non-local Denoising of

Dynamic Range Data

We present a new method for noise removal on static and time-varying
range data. Our approach predicts the restored position of a per-
turbed vertex using similar vertices in its neighborhood. It defines the
required similarity measure in a new non-local fashion which com-
pares regions of the surface instead of point pairs. This allows our
algorithm to obtain a more accurate denoising result than previous
state-of-the-art approaches and, at the same time, to better preserve
fine features of the surface. Furthermore, our approach is easy to im-
plement, effective, and flexibly applicable to different types of scanned
data. We demonstrate this on several static and interesting new time-
varying datasets obtained using laser and structured light scanners.

4.1 Introduction

With the increased usage of scanning devices, denoising of digitized models has
become one of the most fundamental problems in computer graphics. It remains
a challenging task to remove the inevitable noise created in every acquisition
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Figure 4.1: A raw laser scan of the Bimba model (top row), the denoised re-
sult obtained using our algorithm (middle row), and a closer view of the noisy
and denoised ear of the model (bottom row). For all images, the correspond-
ing mean curvature visualizations are shown. Notice that high-frequency
noise is properly removed after only one iteration of our method, while fine
details in hair, ear and eye regions are accurately preserved.
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process while preserving the details of the underlying image or shape. Espe-
cially, fine features are often lost if no special treatment is provided. The contin-
uous progress achieved by a variety of denoising approaches which have been
introduced in recent years in the fields of image processing and computer vi-
sion [Perona90, Rudin92, Tomasi98] as well as in computer graphics [Taubin95,
Desbrun99, Tasdizen02, Fleishman03, Hildebrandt04, Lipman07a], clarifies that
the development of reliable, accurate and versatile denoising techniques is a lively
area of research and the foundation for a wide range of applications.

In this chapter, we introduce a new method for range scan denoising called non-
local neighborhood filtering inspired by a image processing technique [Buades05]
which presents remarkable results. The main idea of neighborhood filtering in
general is to determine the denoised position of a vertex as a weighted average of
similar vertices in its vicinity. In particular, the choice of the similarity measure
has a strong influence on the efficiency of the denoising approach. Unlike previous
neighborhood filters which determine the similarity of two points locally using
only their positions and sometimes normals, our approach is non-local and defines
the similarity by comparing regions of the surface around the vertices instead.
This yields a more accurate denoising of the surface and improves the removal of
higher noise levels compared to previous state-of-the-art filtering approaches. At
the same time, fine shape features are better preserved. Another extension of our
method is that the size of the regions which are used to determine the similarity
measure and the restored point position are not constant over the whole dataset
but adapted close to the boundaries which allows it to obtain a more accurate
denoising result in these regions. In addition, our method is easy to implement
and can be flexibly applied to different types of noisy data obtained using laser
and structured light scanners. An example for the effectiveness of our method is
presented in Figure (4.1).

Our method addresses the denoising problem differently compared to most previ-
ous approaches since we denoise range scans before they are combined within the
scanning pipeline. This is more efficient since the given structure of the data can
be utilized in a simpler similarity measure which allows for a faster evaluation.
Furthermore, our approach extends more naturally to dynamic range data whose
acquisition has become feasible thanks to interesting improvements in scanning
technology [Zhang04, Davis05]. It is the first approach which is designed to filter
time-varying geometric data, and we believe that proper denoising is the first step
to open this new type of data up to various kinds of applications.
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4.2 Related Work

Denoising is a field of intensive research in image processing, computer vision,
and computer graphics which comprises different classes of algorithms. The main
approaches can be categorized into the following groups.

4.2.1 PDE Approaches

Early works in image processing which introduced PDEs for denoising are aniso-
tropic diffusion [Perona90] and total variation minimization [Rudin92]. Desbrun
et al. [Desbrun99] proposed a geometric diffusion flow algorithm for irregular
meshes and introduced the use of an implicit integration method which stabilizes
the flow to allow larger time steps. Later, a new variant of anisotropic mean cur-
vature flow which preserves non-linear features was introduced [Hildebrandt04].
This approach was extended in [Lange05] in order to denoise point clouds. Hilde-
brandt and Polthier [Hildebrandt07] presented a constrained-based fairing ap-
proach where the final smoothed surface remains in a user-prescribed distance
to the input mesh.

4.2.2 Spectral Techniques

Taubin [Taubin95] first introduced signal processing on meshes based on the def-
inition of the Laplacian operator on surfaces. In [Alexa02], Wiener filtering was
applied to meshes. Pauly and Gross [Pauly01] created a spectral decomposition
of a point cloud and denoised it by manipulating the spectral coefficients.

4.2.3 Neighborhood Filtering

Neighborhood filters were early addressed in [Yaroslavsky85]. In a later work,
Tomasi and Manduchi [Tomasi98] introduced the well known bilateral filter for
images which was extended to non-local neighborhoods in [Buades05]. Paris
and Durand [Paris06] proposed an interesting acceleration technique for the bilat-
eral filter which allowed it to be mostly expressed as simple linear convolutions.
Weiss [Weiss06] introduced a very fast vectorizable algorithm for median and
bilateral filtering. Other works adapted neighborhood filters for video enhance-
ment [Bennett05] and processing [Mahmoudi05]. Further interesting research ar-
eas used the information contained in local neighborhoods for other tasks, such
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as texture synthesis [Efros99, Wei00] and mesh completion [Sharf04]. Fleishman
et al. [Fleishman03] proposed an anisotropic mesh denoising algorithm derived
from the bilateral filter for images. Concurrently, Jones et al. [Jones03] introduced
a similar method based on robust statistics which uses local first-order predictors
of a surface. Yoshizawa et al. [Yoshizawa06] extended the non-local image filter
to meshes by computing a local RBF approximation to define the similarity mea-
sure. Our work approaches the problem in a different way by introducing a new
similarity measure for range scans, which avoids the computation of a local ap-
proximation and thus allows a much faster evaluation. Additionally, our approach
considers the denoising of time-varying geometric data.

4.2.4 Projection-based Approaches

Algorithms that attracted the interest of many researchers are moving-least squares
(MLS) approaches. They were first proposed by Levin [Levin98] and introduced
to computer graphics by Alexa et al. [Alexa01]. The main idea of MLS is the
definition of a projection operator which takes points scattered in the vicinity of
a surface onto the surface itself. More precisely, the MLS surface is defined by
the fixpoints of the given projection operator. Mederos et al. [Mederos03] applied
the MLS projection for point cloud denoising. Amenta and Kil [Amenta04] an-
alyzed different MLS operators by separating them into two components being a
vector field and an energy function. They used this representation to introduce
a new variant of MLS with a better behavior near sharp features. In a recent
work, Fleishman et al. [Fleishman05] chose a different approach and represented
sharp features by defining piecewise smooth moving least-squares surfaces us-
ing robust statistics. Dey and Sun [Dey05] proposed the AMLS operator which
provides reconstruction guarantees for the underlying surface of a point set with
a non-uniform sampling density. Lipman et al. [Lipman07a] introduced a data-
dependent variant of MLS which does not use a fixed approximation space as
for instance polynomials of a certain degree. For each projected point, it finds
a proper local approximation space of piecewise polynomials. The locally con-
structed spline accounts for singularities which may be present in the data.

4.2.5 Statistical Techniques

Pauly et al. [Pauly04] introduced a framework for measuring uncertainty in point-
sampled geometry based on statistical data analysis which can be used, for in-
stance, to merge range scans. Schall et al. [Schall05a] defined a global probability
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distribution function for a given noisy point set using locally defined kernels. Po-
sitions on a smooth surface were then found by moving every sample of the noisy
dataset to maximum likelihood positions. Jenke et al. [Jenke06] proposed how to
produce a smooth point cloud from a given noisy one using Bayesian statistics.
For image restoration, Awate and Whitaker [Awate06] obtained remarkable re-
sults with an unsupervised, information-theoretic, adaptive filter which improved
the predictability of a pixel by reducing the joint entropy between its neighbor-
hood and other pixel neighborhoods.

4.2.6 Dynamic Data Acquisition and Processing

The development of new scanning technology with the goal of acquiring dy-
namic geometric data opened a new interesting research direction. Zhang et
al. [Zhang03] and Davis et al. [Davis03] concurrently developed novel spacetime
stereo algorithms. While Zhang et al. focused on capturing dynamic scenes, the
main interest of Davis et al. was to develop a unifying framework for existing
more specialized depth from triangulation techniques. Building on this work,
Zhang et al. [Zhang04] presented an approach for the acquisition of facial geom-
etry. After obtaining the geometric data using a spacetime stereo algorithm they
fit a template mesh to the data in order to avoid denoising and to create a face
sequence with vertex correspondences. The resulting sequence can be manipu-
lated using a data-driven inverse kinematics technique. Bickel et al. [Bickel07]
presented a different approach which does not use a generic face template but a
high-resolution scan of the face for which motion data is obtained using a tra-
ditional marker-based motion capture system. The system is augmented by two
synchronized video cameras to track facial expressions. In order to transfer the
motion to the static face scan a shell-based mesh deformation method is used.
Wand et al. [Wand07] recently proposed a method for the reconstruction of de-
forming geometry in the form of a sequence of noisy point clouds. The method is
based on a statistical framework and reconstructs the geometry as well as dense
correspondences over time.

4.3 Non-local Denoising

We begin this section by describing the idea of non-local filtering for images in
more detail before we introduce our extension of this approach for denoising static
range data. Building on this extension, we then show how to apply our algorithm
to filter time-varying range data.
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Figure 4.2: The similarity of neighborhoods is computed based on the pixel-
wise difference of intensity values. Similar neighborhoods of p and q have a
large weight Φ(p,q), while different neighborhoods of p and r have a small
weight Φ(p,r).

4.3.1 Non-local Image Filtering

The non-local image filter [Buades05] belongs to the group of neighborhood fil-
tering schemes, which define the intensity value of a restored pixel of an image as
the weighted average of neighboring pixels with similar intensity values.

More precisely, if an image I = {I(u)|u ∈ P} is given, where u = (x,y) is a
pixel and I(u) is the intensity value at u, the smoothed pixel intensity I ′(u) can be
computed as the average of all pixel intensities in the image

I′(u) =
∑v∈P Φ(u,v)I(v)

∑v∈P Φ(u,v)
(4.1)

weighted by a similarity factor which measures the similarity between u and v as

Φ(u,v) = exp

(

−
∑o Ga(||o||) |I(u+o)− I(v+o)|2

h2

)

. (4.2)

Figure (4.2) illustrates the computation of the region-based similarity measure. It
depends on the pixel-wise intensity difference of two square neighborhoods cen-
tered at the pixels u and v. The vector o denotes the offset between the center
pixel and an arbitrary neighborhood pixel. The influence of a pixel pair on the
similarity falls with increasing Euclidean distance to the center of the neighbor-
hoods. For the distance weighting a Gaussian kernel Ga(·) with a user-defined
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standard deviation a is used. Additionally, the method depends on the parameter
h which controls the degree of smoothing.

4.3.2 Static Range Data

We want to adapt this approach from the 2-dimensional plane to range data. This is
not a straight-forward task due to two fundamental differences between intensity
images and range scans. Firstly, image pixels are usually aligned on a regular
and equispaced grid which is in general not true for range images. Secondly,
removing noise from a range scan is more complex than from intensity images
since noise on a range scan is not necessarily additive to the surface but can,
for instance, be dependent on the view of the scanner camera. In the case of
images, noise is usually only additive to the intensity values. Therefore, we have
to consider different displacement directions for vertices from range images which
makes range scan denoising different and more difficult than image denoising.

We assume that the data is given in the form of points pi which are arranged on a
grid structure. In this way, the neighborhood information for all points is known,
but they are not required to be equispaced. Since this data representation can be
easily computed from the output of different scanning devices, our algorithm is
easily applicable to filter different types of range data.

We find counterparts for the intensity values of an image by the distance of points
p j from a defined plane computed at a given point pi. Thereby, the orientation
of the plane is orthogonal to the displacement direction di of a vertex pi. By
determining the weighted average of the offsets, we find the displacement for pi,
to remove the noise component from the range scan surface. In order to adapt
to different types of noise such as view-dependent or additive noise, we choose
different displacement directions di. In the case of additive noise, we first estimate
normals ni for all points pi by least-squares fitting to their local neighborhoods and
choose di = ni. For view-dependent noise, we select di to be the line-of-sight of
the camera of the scanning device. In general, we determine the filtered points p′

i
by computing

p′
i = pi −

∑p j∈N (pi) Φd Φs[(pi −p j) ·di]di

∑p j∈N (pi) Φd Φs
(4.3)

where Φd represents the distance and Φs the similarity weight.

Unlike the non-local image filtering algorithm, we do not sum over all point posi-
tions to filter a point but over a local square neighborhood N (pi) surrounding pi.
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(a) (b) (c)

Figure 4.3: A face scan obtained using a structured light scanner (a) is de-
noised using uniform neighborhood sizes (for N (·) and Sim) (b) and using
adaptive neighborhoods (c). Figure (c) shows that the denoising result close
to the boundary is improved and that artifacts are removed.

Additionally, we separate the distance weighting factor from the similarity mea-
sure. This allows us a more efficient computation of the similarity weight and the
denoised point position p′

i.

The fundamental difference of our method from previous neighborhood filtering
approaches for meshes is the selection of the similarity weight Φs. Unlike the
bilateral filtering algorithm, where Φs only weights the similarity between the
two points pi and p j, our approach considers the similarity of their geometric
neighborhoods:

Φd(pi,p j) = e−
||pi−p j ||

2

d2 Φs(pi,p j) = e−
Sim(pi,p j)

2

s2 (4.4)
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Sim(pi,p j) =
∑o∈O |(pi+o −p j+o) ·di|

2

||O||
. (4.5)

This results in a more accurate filtering performance. We determine the point-
wise difference of two square neighborhoods centered at pi and p j and project
the distances onto the displacement direction di. In the process, invalid points
in the neighborhoods N (pi) and N (p j) are ignored. The result is the point-
wise height difference of both neighborhoods which is averaged by the number
of points inside the neighborhood (equal to the number of offsets ||O||) to com-
pute the non-local similarity Sim(pi,p j). Our similarity measure automatically
compensates for translational movements of the neighborhoods along the defined
plane. We also conducted experiments with a similarity measure that additionally
compensates for rotations by aligning the directions di and d j with each other
before the similarity computation but it was more expensive to compute and did
not improve the results significantly. We use Gaussian weighting functions for Φd

and Φs and an automatic procedure to determine their bandwidths d and s. For
this, we first choose random points pk of the range scan. We then determine the
maximal distance of the points of N (pk) to pk and the standard deviation of all
offsets to the plane defined at pk. The average maximal distance and standard de-
viation over all random samples are then assigned µd and σs. We set d = 0.75µd

and s = σs.

The user-defined parameters of our algorithm are thus only the size of the neigh-
borhood N (pi) which controls the degree of smoothing and the size of the neigh-
borhood used to determine Sim(pi,p j) which regulates the homogeneity of the
filtering result.

The size of the neighborhoods is usually chosen to be uniform over the dataset.
According to our experiments the results of our approach can be improved if adap-
tive neighborhoods are used. If the neighborhood square N (p) of a point p con-
tains insufficient information due to too many invalid points which is likely to
happen mostly at the boundary of the dataset, our experiments showed that is it
better to reduce the size of N (p) stepwise in order to optimize the ratio of its
valid to its complete number of points. The effect of this enhancement is shown
in Figure (4.3). It is important to mention that the adaptation of the neighborhood
size is optional and that our method does not require special boundary treatment
which is important as scanned data is not closed and often has holes.
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Figure 4.4: Denoising results for two acquired noisy range sequences. The raw input from the structured light
scanner (top row) is denoised using bilateral filtering (middle row) and our technique (bottom row). Coloring by
mean curvature is used to illustrate the smoothness of the range data. Note that our algorithm is able to remove noise
more properly while accurately preserving surface features.
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4.3.3 Time-varying Range Data

Building on the previous section, we extend our approach to process time-varying
range data. The data is given as a sequence of frames each of which is a static
range scan. When we apply our algorithm to each frame independently, we obtain
a result that is satisfying for each frame but which is not temporally stable.

Therefore, we extend N (pi) which is usually only defined as a spatial neigh-
borhood by the temporal domain. This means that we choose sample points for
N (pi) not only inside the current frame but also in neighboring frames. We usu-
ally consider one frame before and after the current frame for N (pi). In the
following, we use the notation Nk(pi) for the slice of the neighborhood N (pi)
which is contributed by the frame k. Consequently, we have to adapt Φd and Φs

to weight the distance and the similarity between pi and p j which can be points in
different frames. We adapt the bandwidths of Φd and Φs depending on the frame
with which p j is associated. We detect the parameters automatically as described
in Section (4.3.2) for each frame k and identify the weighting functions as Φdk

and Φsk.

Similar to the spatial domain, we want that neighborhoods from distant frames
contribute less to the new point position. We therefore introduce the temporal
distance factor Ψdk which weights the contribution of the frame k. If c is the
index of the current frame, we select Ψdk = (1/2)|k−c|. Additionally, we can
weight a frame based on its noise level. Neighborhoods from frames with a higher
amount of noise can contribute less to a smooth solution and should thus have a
lower weight. We obtain an estimate for the noise-level from the bandwidth sk

of Φsk for each frame k. We use these values to set the weighting factor Ψsk =
exp(−s2

k/maxk{sk}
2). By combining all elements, we determine the denoised

point position as

p′
i = pi −

∑k ΨdkΨsk ∑p j∈Nk(pi) ΦdkΦsk [(pi −p j) ·di]di

∑k ΨdkΨsk ∑p j∈Nk(pi) ΦdkΦsk
. (4.6)

One advantage of our approach is that we do not necessarily need to compensate
for motion between frames as the similarity of the whole temporal neighborhood
is evaluated. If the motion is high, the similarity of the whole neighborhood will
be low and it will only marginally contribute to the new point position. In this
way, our approach also automatically accounts for scene changes.
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4.4 Results

We demonstrate results of our denoising approach in Figure (4.1) and Figures (4.4) -
(4.6). We test our method on scanned data from various sources. It is applied to
laser scanned models Figures (4.1) + (4.5) as well as to a face and hand sequence
Figure (4.4) and to the Bust model Figure (4.6) which were acquired using two
different structured light scanners. We compare our result to the bilateral filtering
algorithm. Table (4.1) summarizes the timings for our results and the parameter
settings used to generate them.

In Figure (4.1), we show the filtering efficiency of our approach on real-world
laser scanned data. The images show that high-frequency noise on the Bimba
model is removed after only one iteration of our algorithm while lower-frequency
details such as hair, ear and eye are accurately preserved.

Figure (4.4) illustrates results of the bilateral filter and our algorithm on three
frames of two acquired structured light sequences. To filter the scans, we ap-
ply two different kernel settings for each algorithm. First, we filter with a larger
kernel size to remove the stripe artifacts created due to the projection of regular
line patterns onto the scanned object during the acquisition process. As the stripe
pattern varies over time, we let both methods filter across frames to increase the
temporal stability of the smoothed sequence. We consider one frame before and
after the current frame while filtering both sequences. High-frequency noise dis-
tributed over the whole scan does not show any temporal coherence. Therefore,
we subsequently filter every frame separately with a smaller kernel size. The pa-
rameters are chosen such that each algorithm has its optimal performance. Our
experiments show that using a larger kernel size for the bilateral filter than cho-
sen in this comparison does not yield a smoother result. Instead, we allow the
bilateral filtering algorithm to iterate twice over the sequences with both kernel
sizes to make the runtimes of the bilateral filter and our algorithm match (see
Table 4.1). Figure (4.4) shows that our method removes the stripe artifacts and
high-frequency noise properly and achieves a more accurate result than the bilat-
eral filter due to our region-based definition of the similarity measure which adds
more geometric information into the filtering process. Furthermore, our algorithm
preserves high-curvature regions accurately, for instance, the eyes of the face scan
and the wrinkles of the hand model.

Figure (4.5) shows a comparison of the bilateral filter and our approach concerning
feature preservation. Note that our algorithm creates a smoother result of the
Turbine Blade model than the bilateral filter while preserving sharp features more
accurately.
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raw input bilateral filt. our approach

Figure 4.5: Comparison of feature-preservation properties of bilateral fil-
tering and our approach on a laser range scan of the Turbine Blade model.
The zoomed mean curvature visualizations show that our approach preserves
sharp features more accurately than bilateral filtering while simultaneously
producing a smoother result.
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(a) (b) (c)

Figure 4.6: The raw structured light scan of a Bust model (a) is corrupted
by view-dependent noise. Simple denoising using an additive noise model,
which is usually assumed or required by previous approaches, does not de-
liver satisfactory results (b). Due to the generality of our method, it is able to
utilize additional information as, for instance, the camera viewing direction.
This allows it to obtain a more accurate and detailed denoising result (c). For
the computation of the results in (b)+(c) the same number of iterations and
parameters are used for our method (see Table 4.1).
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bilateral filtering
model P Sim N (·) time/frame
Blade 59K – 11x11 2.8s

Face Sequence 192K – 23x23 94s
(2 iterations) – 11x11 16s

Hand Sequence 131K – 23x23 68s
(2 iterations) – 11x11 13s

our approach
model P Sim N (·) time/frame
Blade 59K 5x5 7x7 5.6s
Bimba 212K 5x5 7x7 7.4s
Bust 358K 9x9 13x13 240s

(2 iterations) 5x5 11x11 48s
Face Sequence 192K 9x9 13x13 95s

(1 iteration) 5x5 11x11 18s
Hand Sequence 131K 9x9 13x13 69s

(1 iteration) 5x5 11x11 13s

Table 4.1: Parameter settings and timings for the results presented in this
chapter. The parameter P labels the average number of input points per
frame. Sim denotes the size of the neighborhood considered to compute
the similarity measure of our algorithm. All results were computed on a
2.66 GHz Pentium 4.

In Figure (4.6), we illustrate the adaptability of our method to different noise
models. This is an important property since many previous approaches are bound
to the case of additive noise where it is assumed that vertices are mostly displaced
into the normal direction of the underlying smooth surface of the range scan. This
yields a bad denoising performance if the noise present in the data differs largely
from the imposed model. Figure (4.6 a) shows an example with an unprocessed
structured light scan which is corrupted by view-dependent noise. By simply
denoising the dataset with our method using the additive noise model, it is clearly
noticeable that surface features are not well preserved and that smoothing artifacts
are introduced (see Figure 4.6 b). In Figure (4.6 c), we use the identical parameter
settings for our denoising algorithm but use the viewing direction of the scanner,
which is usually available from the scanner calibration data, for the displacement
directions di. This yields a significantly more accurate denoising result and a
better preservation of high-curvature regions.
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4.5 Conclusion

In this chapter, we presented a new similarity-based neighborhood filtering tech-
nique for static and dynamic range data which is the standard output of scanning
devices and, in particular, of recently developed 3D video cameras. We intro-
duced a new non-local similarity measure which determines the resemblance of
two points on the surface not only by utilizing their local properties like position or
normal but by also comparing the region of the surface surrounding the vertices in-
stead. We demonstrated on several different types of scanned data that the idea of
adding context information to the similarity definition allows our method to pro-
duce a more accurate denoising result than previous state-of-the-art approaches
while having a better feature preservation. Additionally, we showed that the us-
age of adaptive neighborhoods improves the denoising result in the vicinity of
boundaries of the given input. Furthermore, our method is easy to implement and
flexibly adaptable to scans with different noise properties. It thus delivers a prac-
tical, versatile and powerful tool for filtering range data. In this way, our approach
naturally fits into the scanning pipeline by denoising range scans before they are
combined for further processing, which is more efficient since the given structure
of the data can be utilized. Furthermore, we showed an interesting extension of
our approach for filtering time-varying geometric data which is important since
we expect a wider use of 3D video cameras in the future. It exploits the tempo-
ral coherence of the sequence in order to guarantee smoothness along the time
domain.

The last two chapters introduced two novel denoising algorithms for static and
dynamic geometric data. While both methods approach the denoising problem
in different ways by either denoising the given geometric data before or after the
registration step, the output of both methods is a clean point cloud with associated
oriented normal information. The next chapter, introduces an adaptive surface
reconstruction method which takes this type of data as input and is based on the
Fast Fourier Transform (FFT) as well as on partition of unity composition.
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Chapter 5

Error-guided Adaptive
Fourier-based Surface

Reconstruction

In this chapter, we propose to combine a FFT-based approach to
surface reconstruction from oriented points with adaptive subdivision
and partition of unity composition. This removes the main drawback
of the FFT-based approach which is a high memory consumption for
geometrically complex datasets. This allows us to achieve a higher
reconstruction accuracy compared to the original global approach.
Furthermore, our reconstruction process is guided by a global error
control determined by the Hausdorff distance of selected input sam-
ples to intermediate reconstructions. The advantages of our surface
reconstruction method also include a more robust surface restoration
in regions where the surface folds back to itself.

5.1 Introduction

Many of today’s applications make use of 3D models reconstructed from digi-
tized real-world objects such as machine parts, terrain data, and cultural heritage.
In spite of progress in developing speedy and reliable methods for surface re-
construction from scattered data [Dey05, Fleishman05, Kazhdan05, Mederos05,
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Nehab05, Ohtake05] (see also references therein), the quest for fast, accurate, and
adaptive surface reconstruction techniques capable of processing large and noisy
datasets remains a major research issue in computer graphics and geometric mod-
eling areas [Hornung06, Jenke06, Kazhdan06, Sharf06, Walder06, Schall06a].

Kazhdan [Kazhdan05] introduced a novel and elegant FFT-based reconstruction
technique. His approach reconstructs a solid, watertight model from an oriented
point set by determining a characteristic function which has the value one inside
and the value zero outside of the resulting solid. The method allows for a robust
and fast reconstruction from noisy samples. On the other hand, the approach has
a high memory requirement due to its global nature. The integral of the char-
acteristic function has to be sampled on a uniform grid for the whole volume in
order to be able to apply the inverse FFT. This limits the maximal reconstruction
resolution of the approach on today’s computers to a level where the reconstruc-
tion of fine details of the input data is not possible. Furthermore, the approach
has no global error control and its globality prevents the accurate reconstruction
of regions which are close to each other but represent disconnected regions of the
surface. Our work proposes a simple solution to overcome these limitations while
preserving the advantages of the global approach.

The general idea of our technique is to employ an error-guided subdivision of the
input data. For this, we compute the bounding box of the input and apply an octree
subdivision. In order to decide whether an octree leaf cell needs to be subdivided,
we compute a local characteristic function for the points inside the cell using the
global FFT-based approach. This is a non-trivial task since the points inside a cell
do in general not represent a solid. We propose a solution to that problem to avoid
that surface parts are created which are not represented by points. If the resulting
local approximation inside the cell is not accurate enough, the cell needs to be
subdivided. By iterating this procedure, we compute overlapping local character-
istic functions at the octree leaves for each part of the input with a user-defined
accuracy. We obtain the final reconstruction by combining the local approxima-
tions using partition of unity and by extracting the surface using a polygonization
algorithm. One advantage of our adaptive approach is that the characteristic func-
tion is only determined close to the surface and not for the whole volume. As the
reconstruction accuracy is mainly limited by memory requirements, this allows us
to obtain higher reconstruction resolutions. Additionally, the adaptiveness allows
us a more accurate reconstruction of strongly bended regions of the input.

The rest of this chapter is organized as follows. Section (5.2) reviews related
work on surface reconstruction. In Section (5.3) we present details on the data
partitioning step as well as of the local characteristic functions of our approach.
After this, their integration into a global function and the extraction of the final
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surface is explained. We show results of our technique in Section (5.4) before we
conclude in Section (5.5).

5.2 Related Work

Surface reconstruction is a research area with a long tradition and a large variety
of techniques.

5.2.1 Delaunay-based Techniques

One important group of surface reconstruction methods which were already men-
tioned in Chapter 3 in the context of statistical point cloud denoising for improving
reconstruction performance are Delaunay- or Voronoi-based approaches. They are
mainly investigated in the area of computational geometry and exhibit interesting
properties. One of them is that they are supported by rigorous mathematical re-
sults and provide reconstruction guarantees under certain sampling conditions.
These conditions are typically formulated in terms of local feature size which is
the distance of a surface point to its medial axis. The medial axis of a closed sur-
face again is defined as the set of centers of empty balls which touch the surface
at more than one point.

The first Delaunay-based method introduced to computer graphics is the crust
algorithm by Amenta, Bern and Kamvysselis [Amenta98b]. It was developed
from the crust algorithm for curve reconstruction by Amenta, Bern and Epp-
stein [Amenta98a]. The idea of the algorithm is to compute a Delaunay com-
plex of the input points and their Voronoi poles which are an approximation to
the medial axis of the sampled surface. From this complex all triangles crossing
the medial axis are removed. The resulting candidate triangles form in general
not the sampled surface but they contain a surface that is homeomorphic to it if
the sampling is dense enough. This property was shown by Amenta and Bern
using a result of Edelsbrunner and Shah [Edelsbrunner97]. Since the pole vector
which points from the center of the Voronoi cell to its farthest Voronoi vertex is
a good approximation for the surface normal, the algorithm is able to reconstruct
a surface from a given point cloud without associated normals which is another
important feature.

The cocone algorithm [Amenta02] was developed by Amenta, Choi, Dey and
Leekha. It has the advantage that it requires the computation of only one Delaunay
triangulation. Similar to the crust algorithm it provides the same mathematical
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guarantee that the set of candidate triangles contains the resulting surface as a
restricted Delaunay triangulation if the given sampling is dense enough.

Important extensions of both methods are algorithms that produce watertight sur-
faces. These techniques usually belong to the class of inside/outside labeling al-
gorithms. They first compute a Delaunay tetrahedralization of the scattered data.
Then the resulting tetrahedra are labeled inside or outside depending whether a
tetrahedron is inside the solid bounded by the scattered data or outside. Two
important methods generating watertight reconstructions are Power Crust devel-
oped by Amenta, Choi and Kolluri [Amenta01] and Tight Cocone by Dey and
Goswami [Dey03].

The sampling preconditions under which the Delaunay complex contains the sam-
pled surface are usually strict and do not often hold in practice. Therefore, com-
putational geometry methods face difficulties while dealing with noisy data and
undersampling. To alleviate these problems preparatory denoising is one option
as illustrated in Chapter 3.

Dey and Goswami [Dey04a] presented the Robust Cocone algorithm which ap-
plies Delaunay prefiltering. It uses the observation that polar balls approximate
the solid bounded by the input point set. A polar ball is defined as the maximal
empty ball around a pole of the Voronoi diagram of a point set. If balls of ad-
jacent tetrahedra intersect deeply both tetrahedra belong to the same component
being either inside or outside. On the other hand if polar balls intersect shallowly
their tetrahedra belong to different components. Dey and Goswami showed that
this might not be true for noisy regions. They also showed that those polar balls
have a small radius and can thus be detected. Robust Cocone only preserves the
samples on the outer polar balls and reconstructs a watertight surface based on the
Tight Cocone methodology.

Kolluri et al. [Kolluri04] introduced the Eigen Crust algorithm. The method com-
putes a watertight surface reconstruction from noisy scattered data with outliers
using spectral graph partitioning to label each tetrahedron of the Delaunay tetra-
hedralization. A pole graph is constructed whose edges are weighted according
to the likelihood that pairs of dual tetrahedra are on the same side of the surface.
This weighted graph is represented by a pole matrix whose smallest eigenvector is
used to partition the graph in two subgraphs containing inside and outside poles.
Tetrahedra which are not duals of poles are classified in order to produce a smooth
surface with low genus.

Alliez et al. [Alliez07] reconstructed a watertight surface from an unoriented point
set by using its Voronoi diagram to determine a tensor field whose principal axes
locally represent the most likely direction of the normal to the surface as well
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as a confidence for this estimation. Subsequently, an implicit function is com-
puted by solving a generalized eigenvalue problem such that its gradient is most
aligned with the principal axes of the tensor field. In particular, the implicit func-
tion optimization provides resilience to noise, adjustable fitting to the data, and
controllable smoothness of the reconstructed surface.

Samozino et al. [Samozino06] presented a hybrid approach which combined Vo-
ronoi diagrams and Radial Basis Functions (RBFs) which are reviewed in the next
section. The sampled shape is approximated as the zero-level set of a function.
This function is defined as a linear combination of compactly supported radial
basis functions. Different from previous work, centers of the basis functions are
located on an estimate of the medial axis, instead of the input data points. Those
centers are selected among the vertices of the Voronoi diagram of the given sam-
ples. Being a Voronoi vertex, each center is associated with a maximal empty ball.
The radius of this ball is used to adapt the support of each radial basis function.
The method can fit a user-defined amount of centers which are selected from the
Voronoi vertices using the lambda medial axis. The main advantage of the ap-
proach is that it can achieve the same reconstruction accuracy as previous RBF
techniques with a smaller amount of centers.

5.2.2 Radial Basis Functions (RBFs)

Opposed to Delaunay-based approaches which directly construct a triangulation
or tetrahedralization respectively, the main idea behind most implicit surface inter-
polation techniques consists of building a function f whose zero-level set Z ( f ) =
{x | f (x)= 0} approximates or interpolates a given input point set P={p1,. . . ,pN}.
Usually f is constructed as a composition (weighted sum) of simple primitives.

Radial Basis Function (RBF) techniques are now standard tools for geometric data
analysis [Franke80, Lodha99], in pattern recognition [Kirby01], statistical learn-
ing [Hastie01], and neural networks [Haykin99]. Properties of RBFs are widely
studied in mathematical literature [Duchon77, Buhman03, Iske04, Wendland04].

Given a scattered point dataset, it is interpolated or approximated by the zero-
level set of a composite function f : R3 → R defined as a linear combination of
relatively simple primitives

f (x) =
m

∑
i=1

αiΦ(x,ci) (5.1)

where Φ(·,ci) : R3 → R are functions centered at ci and αi are the unknown
weights [Girosi93].
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It is desirable to constrain the solution to be stable to translation and rotation of
the point set. The functions Φ are thus given by:

Φ(x,ci) = φ(‖x− ci‖), (5.2)

where ‖ · ‖ denotes the Euclidian distance and φ : R+ → R.

Relations between the RBF and variational approaches to scattered data interpo-
lation / approximation are analyzed in [Duchon77, Haykin99].

Reconstruction using Radial Basis Functions gives a smooth implicit interpolating
or approximating surface, since both the implicit solution and its zero-level set
have the same continuity properties as the ones of the basis functions Φ.

Let FT = ( f1, . . . , fn) be a vector of values of a function f at some scattered dis-
tinct points X = {x1, . . . ,xn} ∈ R3. We want to find a function f : R3 → R such
that

f (x j) =
n

∑
i=1

αiφ(‖x j −xi‖) = f j (5.3)

The reconstruction problem thus boils down to determining the vector α T =
(α1, . . . ,αn) by solving a linear system of equations given by the constraints (5.3).
Since all constraints are located on the surface, all fis are valued zero. In order to
avoid the trivial solution α = 0, we add interior and exterior constraints where the
function is non-zero and assign them the values −d and d, respectively. In order
to compute the weights α , we denote [φ(‖xi −x j‖)] = AX ,Φ and have to solve the
following linear system:

AX ,Φ · α = F. (5.4)

Since this linear system is under-determined the orthogonality conditions

n

∑
i=1

αi p(xi) = 0 ∀p ∈ Pk (5.5)

where Pk is the set of polynomials of order up to k are imposed on the coefficients
α . Furthermore, a polynomial p ∈ Pk is added to (5.1) leading to the equation

f (x) = p(x)+
m

∑
i=1

αiΦ(x,ci). (5.6)

Some conventional radial basis functions are: φ : R+ → R

biharmonic RBF φ(r) = r with a linear polynomial

pseudo-cubic RBF φ(r) = r3 with a linear polynomial
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triharmonic RBF φ(r) = r3 with a quadratic polynomial

thin plate RBF φ(r) = r2 log(r) with a linear polynomial

All functions listed above have an unbounded support. The corresponding equa-
tions lead to a dense linear system. Therefore, recovering a solution is tractable
only for small data sets. To overcome this problem, Morse et al. [Morse01] used
Gaussians as Compactly Supported RBFs (CSRBFs) to obtain a sparse interpo-
lation matrix. Other CSRBFs are proposed in [Wendland95, Wu95]. The main
disadvantage of radial basis functions with compact support is that they are not
well-suited for reconstruction from incomplete data. In order to handle large
and incomplete datasets two strategies have been proposed. One approach uses
polyharmonic RBFs (non-compactly supported functions) [Carr97], reduces the
number of centers by a greedy selection procedure and performs fast evaluation
using the so-called Fast Multipole Method (FMM). Another approach consists of
using locally supported functions [Tobor04], where partition of unity is used for
blending. The function support is computed locally for all centers, as described
in [Ohtake04b]. A multiresolution version of this approach has been proposed
in [Ohtake03b].

We can notice that radially symmetric functions are not suited for piecewise smooth
surface reconstruction. Dinh et al. [Dinh01] have presented a method using aniso-
tropic basis functions to overcome this issue.

5.2.3 Partition of Unity (PU)

Divide and conquer is the main idea behind the partition of unity approach. The
main idea consists of breaking the domain into smaller subdomains where the
problem can be solved locally. The data is first approximated on each subdomain
separately, and the local solutions are blent together using a weighted sum of local
subdomain approximations. The weights are smooth functions and sum up to one
everywhere on the domain.

Tobor et al. [Tobor04] combined the partition of unity method and radial basis
functions. Ohtake et al. [Ohtake03a] used weighted sums of different kinds of
piecewise quadratic functions in order to capture the local shape of the surface.
This way implicit surfaces from very large scattered point sets can be recon-
structed.

Consider a global bounded domain Ω in an Euclidian space. Divide Ω into M
overlapping subdomains {Ωi}i=1,...,M with Ω⊆∪iΩi. Together with this covering,
we construct a partition of unity, i.e. a family of non-negative continuous com-
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pactly supported functions {wi}i=1,...,M such that Supp(wi) ⊆ Ωi and ∑M
i=1 wi = 1

everywhere. Let P = {p1, . . . ,pN} ∈ R3 be a set of N points on the surface. For
each domain Ωi, a set Pi = {p ∈ P|p ∈ Ωi} is built, and the surface is approxi-
mated on each subdomain by a local approximant fi. The global function is then
defined as a combination of the local functions as:

f (x) =
N

∑
i=1

wi(x) fi(x). (5.7)

The condition ∑M
i=1 wi = 1 can be obtained from any other set of smooth functions

Wi by a normalization process:

wi(x) =
Wi(x)

∑N
j=1W j(x)

. (5.8)

The weighting function Wi determines the continuity of the global reconstruction
function f . We can generate these functions using local geometry of the corre-
sponding cell as for instance the distance function or the center and radius of the
cell.

For domain decomposition usually space subdivision trees are used. The cells
can have different shapes such as as axis-aligned bounding boxes, balls or axis-
aligned ellipsoids. The degree of subdivision can be adapted to both local sam-
pling density, desired smoothness and precision. The choice of the local fitting
method is another degree of freedom. Radial basis functions are used in [Tobor04,
Wendland02], while quadrics are used in [Ohtake03a]. Furthermore, one can
adapt the fitting strategy for each cell according to the number of points and distri-
bution of associated normals. Reconstructing sharp features is this way possible
as described in [Ohtake03a].

An interesting combination of RBF and PU was proposed in [Ohtake04b] where
a partition of unity is used to obtain an initial rough approximation of given scat-
tered data and then RBFs are used to refine the PU approximation.

5.2.4 Fourier-based Surface Reconstruction

As we combine the FFT-based method introduced in [Kazhdan05] with partition
of unity composition, we present an overview of the technique in this section.

The goal of the approach is to compute for an oriented point set (pi,ni),1 ≤ i ≤ N
which bounds a solid V its characteristic function

χV (x,y,z) =

{

1 (x,y,z) ∈V
0 otherwise

(5.9)
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which has the value one inside the solid and is zero otherwise. Instead of deter-
mining the characteristic function directly, the approach aims to find its Fourier
coefficients which are defined as

χ̂V (l,m,n) =
∫

R3
χV (x,y,z)e−i(lx+my+nz) dxdydz (5.10)

=
∫

V
e−i(lx+my+nz) dxdydz (5.11)

In order to transfer this volume integral into a surface integral Stoke’s theorem is
used. The divergence theorem states that the volume integral over the divergence
of a function F on its domain is equal to the surface integral of < F(p),n(p) >
over the boundary of the domain of the function F . More specifically the theorem
can be written as

∫

V
(∇ ·F)(p) dp =

∫

∂V
< F(p),n(p) > dp. (5.12)

Assuming Flmn(x,y,z) is a function whose divergence is equal to the (l,m,n) com-
plex exponential

(∇ ·Flmn)(x,y,z) = e−i(lx+my+nz) (5.13)

equation (5.11) can be rewritten as

χ̂V (l,m,n) =
∫

V
(∇ ·Flmn)(x,y,z) dxdydz (5.14)

=
∫

∂V
< F(x,y,z),n(x,y,z) > dxdydz. (5.15)

As the given oriented point set is a Monte Carlo sampling of the boundary of the
solid V , the last equation can be approximated by

χ̂(l,m,n) ≈
N

∑
i=1

< Flmn(pi),ni > . (5.16)

There are different choices for the function F . The one that is used in the paper
has the advantage that it does not depend on the alignment of the coordinate axes.

Flmn(x,y,z) =
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l2+m2+n2 e−i(lx+my+nz)

im
l2+m2+n2 e−i(lx+my+nz)

in
l2+m2+n2 e−i(lx+my+nz)






(5.17)

The method reconstructs the characteristic function from the coefficients χ̂(l,m,n)
by using the inverse FFT on a regular grid. Subsequently, the surface is obtained
by using a standard iso-surface extraction technique.
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In a later work, Kazhdan et al. [Kazhdan06] reformulated the reconstruction prob-
lem into a Poisson problem. The goal of the approach is to find a characteristic
function χ whose gradient approximates the vector field W given by the oriented
point set as good as possible, i.e. minχ‖∇χ −W‖. Applying the divergence oper-
ator, the optimization problem is transfered into a Poisson problem

∆χ = ∇ ·∇χ = ∇ ·W. (5.18)

The resulting linear system is sparse and solved using an adaptive Poisson solver.
In contrast to the FFT-based approach the memory footprint is not cubic but pro-
portional to the size of the reconstructed surface which allows the approach to
achieve higher reconstruction resolutions. Bolitho et al. [Bolitho07] extended this
method for out-of-core processing of very large meshes in a streaming frame-
work. Manson et al. [Manson08] used wavelets for surface reconstruction since
they provide a localized, multiresolution representation of functions suitable for
stream processing.

5.2.5 Other Reconstruction Techniques

Another interesting approach not related to the presented categories of reconstruc-
tion techniques was presented by Sharf et al. [Sharf06] who determined a surface
from a point cloud using an explicit mesh representation with multiple competing
evolving fronts. These fronts adapt to the input data in a coarse-to-fine man-
ner. Their use of an explicit surface representation guarantees watertightness.
Furthermore, the approach allows for adaptive handling of regions with a non-
homogeneous sampling density and reconstructs missing data in defected areas.

A more recent topology-aware approach of Sharf et al. [Sharf07] takes user input
to correct reconstruction decisions at regions where the topology of the model
cannot be automatically induced with a reasonable degree of confidence. First a
continuous function over a three-dimensional domain is constructed. The zero-
level set of this function is a first approximation of the reconstructed surface.
At complex undersampled regions they analyze the local topological stability of
the zero-level set which are, if necessary, suggested to the user who removes the
ambiguities by adding local inside/outside constraints.

Gal et al. [Gal07] introduced an example-based surface reconstruction method.
The approach uses a database of local shape priors built from a set of given con-
text models that are chosen specifically to match a specific scan. Local neigh-
borhoods of the input scan are matched with enriched patches of these models
at multiple scales. Using the additional information given for the prior models,
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the reconstruction can be enriched by normal data or with a feature classification.
Depending on the quality of the prior models, noisy and under-sampled data can
be reconstructed and sharp features can be recovered.

The interesting problem of building surfaces from non-parallel cross-section curves
lying on planes with arbitrary orientations which has applications in bio-medical
modeling was considered by Liu et al. [Liu08]. The desired output is a surface
network that models both the exterior surface and the internal partitioning of the
object. The method is guaranteed to produce a closed surface mesh that interpo-
lates the curve network on each cross-section.

Hornung et al. [Hornung06] reconstructed a watertight triangle mesh from an un-
oriented point cloud using an unsigned distance function. Therefore, no informa-
tion about the local surface orientation is required. The approach estimates local
surface confidence values within a region around the input samples. The surface
which maximizes the global confidence is then extracted by computing the min-
imum cut of a weighted spatial graph structure in which edges with low weights
pass regions with high confidence values.

5.3 Adaptive FFT-based Surface
Reconstruction

In this section, we present our adaptive FFT-based surface reconstruction tech-
nique (in the following denoted as AdFFT) in detail. We first describe the error-
controlled subdivision of the adaptive octree structure and the computation of
overlapping local surface approximations for the input points associated with the
octree leaves. We then integrate the local approximations using partition of unity
composition to reconstruct the final model.

5.3.1 Adaptive Octree Subdivision

The general idea of the partition of unity approach is to divide the data domain
into several pieces and to approximate the data in these domains separately. The
resulting local approximations are then blended together using smooth and local
weighting functions which sum up to one over the whole domain.

In order to find local characteristic functions of the domain bounding the input
point cloud, we first compute the axis-aligned bounding box of the input data. We
then apply an adaptive octree subdivision of this bounding box. In order to decide
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Figure 5.1: Left: Local curve approximation for points inside and in the
vicinity of a leaf cell (inner rectangle). The dashed line indicates the irrele-
vant region of the reconstructed solid. Right: Real 3D example of the sketch
in the left image after pruning meaningless regions of the solid.

whether a cell needs to be subdivided, we compute the characteristic function
of this cell and its vicinity with a fixed accuracy. If the surface extracted from
this characteristic function approximates the points in the cell sufficiently close
according to a user-defined accuracy, the cell has not to be subdivided further.

How to compute the characteristic function for a cell of the octree is not obvious,
as a straightforward application of the global FFT-based method always deter-
mines a characteristic function representing a solid, whereas the points in a cell
form in general non-closed surface patches. To avoid that irrelevant surface parts
occur in the local characteristic function, we use the construction shown in Fig-
ure (5.1). We embed the octree cell including its oriented input samples at the
center of a larger cell with doubled edge lengths. In order to allow a smooth tran-
sition between adjacent local characteristic functions later in the integration step,
we add points in the vicinity of the original octree cell to the construction. In our
implementation, we choose all points in the octree leaf cell scaled by a constant
factor c around its center for the computation of the local approximation. If the
parameter c is small, few samples in the neighborhood of the octree cell are con-
sidered to compute the local approximation. This might cause that reconstructions
of adjacent octree cells have no smooth transition across their common boundary.
Therefore, it is important that the parameter c is sufficiently large so that enough
neighboring samples are considered. According to our experiments a constant
factor of c = 1.8 works well for all performed tests.

By using the global FFT-based method with a fixed resolution (25 in our imple-
mentation) on the larger volume, we then compute its characteristic function at
regular grid positions. As the shape of the octree cells is usually not cubical, we
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Figure 5.2: Left: All local characteristic functions of octree cells containing
the final iso-surface have a common resolution. This allows an easy inter-
polation between adjacent cells. Right: Example octree configuration for
partition of unity blending. A corner point p of a Marching Cubes cell and
radial kernels of octree cells with centers ci and c j are shown.

transform all candidate data points and normals to fit into a cube to enable the use
of the FFT. Figure (5.1) sketches the idea behind this construction. The surface
patch inside and in the vicinity of the octree cell is correctly reconstructed and
the irrelevant surface part of the solid is outside of the inner cell. This works in
the majority of the cases as the irrelevant surface part has a curved shape (see
Figure 5.1). Additionally, adding sufficient samples in the vicinity of the octree
cell increases the diameter of the shape that the unwanted part does not cross the
smaller cell. In rare cases, the crossing cannot be avoided due to very different
alignment of octree cell and local surface approximation. But since the resulting
unwanted surface parts are small and distant to the real surface they can be pruned
easily during the polygonization. The right image of Figure (5.1) shows a real
example of a local surface approximation for an octree cell and its vicinity.

To measure the accuracy of the resulting local approximation, we construct a
mesh from the computed characteristic function using the Marching Cubes al-
gorithm [Lorensen87] and compute the Hausdorff distance of selected samples
inside the cell to the mesh. If the average computed Hausdorff distance is above
the user-defined error, the cell needs to be subdivided further. If a cell is empty,
no approximation needs to be computed and we leave it untreated. In order to
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guarantee an efficient computation of the Hausdorff error, we use only a subset
of points inside the octree cell. In our implementation we select 10% of the cell
points to obtain a stable estimation.

In the presence of noise it might happen that the error criterion cannot be reached
everywhere on the dataset. This leads to an oversubdivision of octree cells in
very noisy regions until subcells contain not enough samples to allow a robust
local reconstruction. To avoid this, we introduce a stopping criterion to ensure a
minimum number of samples in non-empty cells. We fix this lower bound to be
0.5% of the number of input points.

5.3.2 Integration

After the subdivision step, we obtain an octree with leaves on different depths
which are either empty or contain a sampling of a local characteristic function
which has the same resolution for all leaf cells. In order to obtain a common
global resolution for all local characteristic functions, we reconstruct leaves with
lower tree depths, which are larger octree cells, using a higher resolution inside
each cell (see left illustration of Figure 5.2). This allows us to blend and to inter-
polate between adjacent cells and to apply the Marching Cubes algorithm on the
resulting grid. To obtain the final reconstruction, we interleave the extraction of
the iso-surface and the combination of the local characteristic functions. In order
to be able to extract an iso-surface of a characteristic function which has a value
of one inside the surface and zero outside of the surface, we need to choose an
appropriate iso-value. We follow the global approach and choose it as the average
value of the characteristic function values obtained at the input samples.

Our Marching Cubes implementation processes all octree cells for which local
characteristic functions have been computed. As the local characteristic functions
overlap each other, cubes close to the boundary of octree cells have more than
one characteristic function value associated with its corners. To merge them into
one value, we use partition of unity blending. More precisely, if we denote the
corner position p and use our octree data structure to find all local function values
{ f0, . . . , fN} at this position which are associated with the cells {c0, . . . ,cN}, we
determine the global characteristic function value as

fg =
∑N

i=0 wi fi

∑N
i=0 wi

(5.19)

where
wi = Gi (||ci −p||2) , (5.20)
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FFT [Kazhdan05], reconstruction time: 1m15s, peak memory: 1.4 GB

Poisson [Kazhdan06], reconstruction time: 65m15s, peak memory: 2.1 GB

our approach (AdFFT), reconstruction time: 21m10s, peak memory: 1.6 GB

Figure 5.3: The XYZ RGB Dragon model is reconstructed using the FFT-
based, the Poisson-based approach and our technique. The meshes are com-
puted using the maximal feasible resolution for all methods. The zooms show
that the FFT approach is limited in its reconstruction accuracy due to its
high memory consumption while the Poisson-based method and our tech-
nique achieve an almost identical high reconstruction accuracy. Note that
our method needs less memory and reconstruction time to obtain these re-
sults.
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and ci is the center of the cell ci. The center of the radial Gaussian weighting
function Gi(·) is fixed at ci. The bandwidth is chosen such that grid positions,
which are farther from ci than the radius including the overlap of the cell ci, have
weights close to zero. For illustration see the right image of Figure (5.2).

After determining the global characteristic function values for the corners of the
cubes, we can interpolate them across the cube edges to compute the position
of the chosen iso-value. Our Marching Cubes implementation interpolates the
resulting global function quadratically.

5.4 Results

In this section, we present results of our reconstruction algorithm. We compare
our method with several state-of-the-art reconstruction techniques. Furthermore,
we apply our method to real-world laser scanner data as well as large and complex
point cloud data and discuss computation times and memory consumption.

Results of our reconstruction algorithm are shown in Figures (5.3) - (5.6). The
reconstructions in Figures (5.5) and (5.6) are shown in flat shading to illustrate
faceting. The meshes in Figures (5.4) and (5.3) are rendered in Phong shading
to bring out small details on the surface as single triangles are not visible. Ta-
bles (5.1) and (5.2) in the end of this chapter summarize details for the presented
reconstructions.

In Figure (5.3) we compare our technique with the global FFT-based and the
Poisson-based approach [Kazhdan06]. The latter method reformulates the surface
reconstruction problem into a sparse Poisson problem to overcome the limited
reconstruction accuracy of the FFT-based technique. To compare the three algo-
rithms, we reconstructed the XYZ RGB Dragon model as detailed as possible us-
ing the maximal feasible resolution for all approaches. Due to the lower memory
consumption of the Poisson-based approach and our method (see Table 5.1), both
techniques are able to reach higher reconstruction resolutions than the FFT-based
method. This allows them to faithfully capture fine details for instance on the
scales of the model. While both algorithms produce almost identical reconstruc-
tion results, our approach has a significantly better time and peak memory perfor-
mance than the Poisson-based technique. Figure (5.4) shows another comparison
with reconstructions of the Thai Statuette which are not created using the maximal
but, if feasible, the same grid resolution. The result obtained using our algorithm
shown in Figure (5.4 c) is more detailed than the Poisson-based in Figure (5.4 b).
This is visible for instance on the trunk of the elephant and the necklace of the
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(a) FFT [Kazhdan05] 5123 (b) Poisson [Kazhdan06] 10243 (c) AdFFT 10243

Figure 5.4: Reconstructions of the Thai Statuette created using the global
FFT-based approach (a), the Poisson-based approach (b) and our tech-
nique (c). Although the reconstructions (b) and (c) were created using the
same grid resolution, our approach (c) preserves fine details more accurately.
This can be observed for instance on the woman’s necklace or the elephant’s
trunk.
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(a) SVM [Steinke05] (b) MPU [Ohtake03] (c) RBF+PU [Ohtake4b]

(d) FFT [Kazhdan05] (e) Poisson [Kazhdan06] (f) our approach (AdFFT)

Figure 5.5: Comparison of our reconstruction approach (f) with other state-
of-the-art techniques. We illustrate results on the unprocessed Dragon
head composed of registered range scans which was already used in Chap-
ter 3.9. Notice that our technique is more robust on noisy data than previ-
ous approaches (a)-(c) and generates a more faithful reconstruction in highly
bended regions than the global FFT-based method (d). Its robustness is com-
parable to the recently introduced Poisson-based technique (e). Correspond-
ing timings are reported in Table (5.1).

woman model. On the other hand, a close observation of our results on the belly
of the woman statuette shows that our approach might reconstruct small bumps
on the surface. These pose no problem as they can be removed, for instance, by
smoothing the surface slightly subsequently to reconstruction. Note that although
the Thai Statuette and the XYZ RGB Dragon model were decomposed into thou-
sands of patches (see Table 5.2), our reconstructions show no blending artifacts.
For all models in this chapter, we choose an overlap of 5 cells to smoothly blend
adjacent reconstructions.

Figure (5.5) shows a comparison of recent state-of-the-art surface reconstruction
techniques with our approach. As input data we choose the head of the origi-
nal Dragon range scans from the Stanford 3D Scanning Repository. We com-
pare our approach with the learning-based reconstruction technique using Support
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(a) input data (b) approx. patches (c) AdFFT (d) mean curvature

Figure 5.6: The original Armadillo dataset composed of 114 registered range
scans from the Stanford Scanning Repository (a) and a reconstruction from
the noisy data using our method (c). Image (b) illustrates the patches without
overlap used to reconstruct the Armadillo model. Figure (d) shows the mean
curvature of our reconstruction (red represents negative and blue positive
mean curvature values). Although the final reconstruction is composed of
many patches, the mean curvature plot does not show blending artifacts.

Vector Machines (SVMs) [Steinke05], MPU [Ohtake03a], RBF+PU [Ohtake04b],
the global FFT-based method [Kazhdan05] and the Poisson-based reconstruction
technique [Kazhdan06]. The figure shows that SVM, MPU and RBF+PU create
noisy reconstructions of the Dragon head scans and produce additional zero-level
sets around the surface. Due to the global nature of the FFT approach, it robustly
reconstructs noisy real-world data but has problems capturing regions where the
surface folds back to itself. By localizing the global approach using adaptive de-
composition and partition of unity blending, our algorithm accurately reconstructs
those regions while retaining the robustness of the global approach. Results of the
Poisson-based approach show that its robustness is comparable to our technique.
Note that some methods, as for instance MPU and RBF+PU, obtain a better per-
formance on real-world data by utilizing scanning confidence values, while our
approach is robust on noisy data without using additional scanning information.
Similar to computational geometry approaches, SVM is mainly suited to recon-
struct clean data. Its performance in the presence of noise can be improved, for
instance, by preprocessing the point cloud [Schall05a] before reconstructing a
surface.

Figure (5.6) analyzes the effect of blending on the results of our surface recon-
struction algorithm in more detail. For this, we computed a reconstruction of the
original Armadillo range scans using our method. Figure (5.6 b) illustrates the
patches without overlap used to create the integrated reconstruction shown in (c).
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Figure (5.6 d) shows a mean curvature plot of (c). The results indicate that no vis-
ible blending artifacts close to the cell boundaries are introduced by our approach.

5.5 Conclusion

In this chapter, we have suggested to localize a global FFT-based reconstruc-
tion approach [Kazhdan05] by using adaptive subdivision and partition of unity
blending. We have shown that our method preserves the resilience of the global
approach and is more robust against noise than previous state-of-the-art surface
reconstruction techniques. Furthermore, our reconstruction process is error-con-
trolled, is capable of delivering a reliable surface reconstruction from noisy real-
world data, and allows an accurate restoration of highly bended regions. The lower
memory consumption of the method allows us to achieve a higher reconstruction
accuracy and enables to capture fine and small details in large and complex point
clouds. Another attractive feature of our method consists of its readiness for an
out-of-core implementation.

The following chapter of this thesis describes the next step in the geometry pro-
cessing pipeline which is surface remeshing. Often surface reconstruction algo-
rithms do not produce meshes with geometry and connectivity suitable for ef-
ficient and stable further processing, i.e. curvature estimation. Therefore, the
transition into a well-behaved mesh representation is essential. The next chap-
ter introduces a technique which transforms irregular triangle meshes into regular
quadrangular meshes while allowing for guidance of the remeshing process with
design constraints.
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method reconstruction polygonization memory user-defined error (global resolution)

SVM [Steinke05] 42s 5m15s 304MB 1 ·10−4

MPU [Ohtake03a] 1m40s 164MB 7 ·10−3

RBF+PU [Ohtake04b] 2m33s 34s 98MB 1 ·10−5

FFT [Kazhdan05] 8.9s 1.4s 179MB (2563)
FFT [Kazhdan05] 1m42s 9.2s 1.1GB (5123)

Poisson [Kazhdan06] 1m56s 68MB (2563)
Poisson [Kazhdan06] 7m02s 247MB (5123)

AdFFT 42s 1m03s 119MB 1.7 ·10−3 (2563)
AdFFT 3m08s 4m58s 462MB 1.2 ·10−3 (5123)

Table 5.1: Timings and memory consumption for the reconstructions shown in Figure (5.5). All results were com-
puted on a 2.66 GHz Pentium 4 with 1.5 GB of RAM.
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model N reconstruction polygonization memory error global resolution M

Thai Statuette 5M 6m46s 11m15s 2.2GB 2.4 ·10−4 10243 2260
XYZ RGB Dragon 3.6M 11m15s 9m54s 1.6GB 1.9 ·10−4 10243 2614
Dragon head scans 485K 3m08s 4m58s 462MB 1.2 ·10−3 5123 874
Dragon head scans 485K 42s 1m03s 119MB 1.7 ·10−3 2563 626

Armadillo scans 2.4M 1m22s 55s 273MB 1.1 ·10−3 2563 565

Table 5.2: Reconstruction information for the results presented in this chapter and computed using our method. The
character N denotes the number of input samples and M the number of used patches. The results were computed
on a 2.66 GHz Pentium 4 with 1.5 GB of RAM (only the Statuette and the XYZ RGB Dragon were computed on a
2.4 GHz AMD Opteron with 3 GB of RAM).



Chapter 6

Controlled Field Generation for
Quad Remeshing

Quadrangular remeshing of triangulated surfaces has received an
increasing attention in recent years. A particularly elegant approach
is the extraction of quads from the streamlines of a harmonic field.
While the construction of such fields is by now a standard technique
in geometry processing, enforcing design constraints is still not fully
investigated. This work presents a technique for handling directional
constraints by directly controlling the gradient of the field. In this
way, line constraints sketched by the user or automatically obtained
as feature lines can be fulfilled efficiently. Furthermore, we show the
potential of quasi-harmonic fields as a flexible tool for controlling the
behavior of the field over the surface. Treating the surface as an inho-
mogeneous domain we can endow specific surface regions with field
attraction/repulsion properties.

6.1 Introduction

Surface meshes delivered by laser scanning technology or iso-surface extraction
as illustrated in the last chapter are in general irregularly sampled which reduces
the efficiency of subsequent mesh processing applications. Therefore, conver-
sion into regular triangular or quadrilateral meshes is a common requirement.
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While triangular meshes are a widespread surface representation, quadrangular
meshes are preferable for a considerable number of applications. Their tensor-
product nature makes them particularly suited for serving as the parameter do-
main for spline representations [Li06]. Besides computer graphics, other in-
dispensable applications comprise simulations using finite elements or architec-
tural design [Liu06, Pottmann07]. This stimulated lively research and continuous
progress in the areas of quad generation and remeshing.

In this chapter, we focus on the design aspects of quad remeshing using vector
fields defined over triangular meshes. While the construction of such fields is by
now a standard technique in geometry processing, enforcing design constraints is
still not fully investigated. This work features the following contributions. First,
we present a technique which allows control over the gradient of a harmonic field
by aligning it to a set of line constraints. The constraints can be sketched by the
user or automatically obtained using a feature line detection algorithm. Further-
more, inspired by the problem of modeling heat flow on inhomogeneous surfaces,
we investigate the potential of quasi-harmonic fields as a tool for controlling the
behavior of the field over the surface. We demonstrate that it can be used for al-
lowing certain regions on the surface to attract or repulse field contour lines. Both
techniques can be used separately or together without affecting the computational
cost since the Laplacian is a special case of the quasi-harmonic operator. In all
cases the runtime is dominated by solving a single linear system. Additionally,
we address issues related to quad construction from the resulting vector fields.

Our approach offers the advantage that no post-processing is needed for resolv-
ing clipped primitives as proper alignment is addressed during the field construc-
tion stage. Additionally, the tools presented can be seamlessly used in combina-
tion with many of the existing quad remeshing techniques [Kälberer07, Ray06,
Tong06].

The rest of this chapter is organized as follows. An overview of related literature
is given in Section (6.2). Section (6.3) addresses the construction of gradient con-
strained harmonic fields and illustrates how quasi-harmonic fields can be used as a
tool for field design. The construction of quad meshes is covered in Section (6.4).
Section (6.5) presents and discusses the results of this work.

6.2 Related Work

In order to fulfill the ever increasing need of quad representations in a wide range
of disciplines, research has a productive tradition in the closely related fields of
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quad remeshing, parameterization, and vector field design bringing forth a large
variety of approaches.

The work of Alliez et al. [Alliez03] on quadrangulation of triangle meshes uses
principle curvature directions to guide the remeshing process. This approach was
later extended by [Marinov04] to arbitrary meshes by applying curvature line in-
tegration on the underlying surface. Dong et al. [Dong05] compute a harmonic
scalar field on the surface and determine the quadrangular facets by tracing inte-
gral lines of its gradient and orthogonal co-gradient vector field.

Boier-Martin et al. [Boier-Martin04] employ spatial- and normal-based clustering
in order to segment the given triangular mesh into patches from which polygons
are computed. Those are subsequently quadrangulated and subdivided resulting
in the final quad-mesh. Kharevych et al. [Kharevych06] generate a patch layout
using circle patterns while [Dong06] obtain a segmentation from the Morse-Smale
complex of the eigenfunctions of the Laplacian. Marinov and Kobbelt [Marinov06]
propose a two-step approach which first segments the mesh using a variant of
variational shape approximation [Cohen-Steiner04] and then quadrangulates each
patch independently using curves with minimum bending energy.

Tong et al. [Tong06] design quadrangulations by specifying a singularity graph
on the triangular mesh. It allows for the representation of line singularities as
well as singularities with fractional indices. Based on a modified discrete Lapla-
cian operator, two scalar fields whose iso-contours form the quadrangular mesh
are computed. Ray et al. [Ray06] determine a parameterization of a surface with
arbitrary topology by defining two piecewise linear periodic functions which are
aligned with two orthogonal vector fields defined on the surface. The quadri-
laterals are subsequently extracted from the bivariate parameterization function.
Inspired by this approach, [Kälberer07] propose frame fields based on branched
covering spaces on a surface. In their context branch points are conceptually sim-
ilar to singular points with fractional indices. They consider locally integrable
fields which are not divergence free to improve the alignment of parameter lines
with the given vector field.

Closely related to our approach, Fisher et al. [Fisher07] introduce a technique
for the design of tangent vector fields based on discrete exterior calculus which
is targeted at designing textures on surfaces. They constrain line integrals of a
given vector field over the mesh edges according to a sparse set of user-provided
constraints. Unlike their approach which operates on line integrals, we enforce
vector constraints directly on the gradient of the field.
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Figure 6.1: Heat distribution on a homogeneous (left) and inhomogeneous
(right) plate, modeled using the Laplacian operator and the quasi-harmonic
operator respectively.

6.3 Constrained Fields on Surface Meshes

In this section, we describe the techniques for controlling the construction of con-
strained scalar fields on triangular surface meshes. We start from the simple ob-
servation that the contours (co-gradient streamlines) of a scalar field are generally
easier to construct. Therefore, it seems natural to apply the constraints directly to
the contours. Thus the aim is to build harmonic fields whose contours satisfy the
design constraints. In order to get a well behaved field on the surface mesh, we
require the field to be harmonic. In the present discrete setup this translates to the
construction of a piecewise linear function f within each triangle. The construc-
tion of such a function amounts to determining its values at the mesh vertices.

In order to control the behavior of the contours, we present two scenarios. The first
imposes constraints on the gradient of the harmonic field while the second relies
on quasi-harmonic fields which allow for more flexibility in vector field design in
comparison to harmonic fields. In both scenarios, the field computation reduces
to the solution of a linear system, a task that can be performed efficiently using
standard direct or iterative solvers [Davis04, Chen06].

6.3.1 Gradient Constraints

On a triangular surface mesh, the gradient of a piecewise linear scalar field f is a
piecewise constant vector field which exhibits discontinuity on the triangle sides.
Analytically, on a triangle T described by its vertices {v1, v2, v3} and of area A
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and normal n the gradient can be derived as

∇ f = f1
n× (v3 − v2)

2A
+ f2

n× (v1 − v3)

2A
+ f3

n× (v2 − v1)

2A
. (6.1)

With this definition in mind, the alignment of contours to line constraints de-
scribed by the triangle edges they traverse {ei, i = 1..n} amounts to imposing the
following set of equations on the scalar field f

∇2 f = 0 (6.2)

< ∇ f , ei > = 0 , i = 1..n, (6.3)

where < ·, · > stands for the dot product. In matrix form, this leads to an aug-
mented matrix consisting of the Laplacian matrix and additional rows represent-
ing the gradient constraints. For this linear system to have a unique solution the
value of the scalar field needs to be prescribed for at least one vertex.

We note that this approach is independent of the way the line constraints are deter-
mined. They can be obtained as feature lines automatically detected using meth-
ods such as [Ohtake04a, Yoshizawa05], or defined by the user using a sketching
interface. In a preprocessing step, an intermediate mesh which contains new tri-
angles along the feature lines is constructed and all the calculations are performed
on it. As the re-triangulation is adaptive w.r.t. the feature lines, the mesh size
does not increase significantly. This way our approach is more cost effective in
comparison to the construction of higher order fields on the whole surface since
elaborate interpolation schemes within the triangulation are avoided.

6.3.2 Quasi-harmonic Fields

While gradient constraints allow to directly enforce field directions by adding ad-
ditional constraints to the harmonic equation, the approach described in this sec-
tion allows certain regions to attract or repulse contour lines without introducing
additional constraints. For this purpose, we rely on the notion of quasi-harmonic
maps [Zayer05] to control the behavior of the field contours. The inspiring idea
behind the approach stems from simple physical considerations. Let us consider
the steady state heat equation on a quadrangular plate. In a first stage, we treat the
surface as a homogeneous domain in the sense that the heat conductance is con-
stant over the whole surface. The heat distribution can be obtained by solving a
Laplace equation with prescribed conditions. In this example, we apply Dirichlet
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Figure 6.2: Contours of quasi-harmonic fields on a rectangular plate. The ra-
tio of conductivity (inversely related to diffusion) between the large and small
rectangle was set to 1, 0, 1e-3, 1e3 from left to right respectively. Dirichlet
boundary conditions were applied to the top and bottom sides and Neumann
boundary conditions to the right and left sides of the plate.

conditions to the top and bottom sides and Neumann boundary conditions to the
right and left sides as illustrated in Figure (6.1-left).

On the other hand, if we impose specific conductance values for the circular and
rectangular sub-domains inside the plate, the standard Laplace equation is not
suitable anymore for modeling the heat distribution and we have to rely on the so
called quasi-harmonic equation which incorporates the conductance terms, and is
therefore sensitive to the inhomogeneous nature of the plate. The heat distribution
in this setup is depicted in Figure (6.1-right).

This example illustrates how simple scalar conductance values can alter the heat
distribution on a simple domain. We capitalize on this observation for controlling
the behavior of the contour lines.

Our approach proceeds by altering the scalar conductance values C (which are in-
versely related to diffusion) at the regions of interest and minimizes the following
energy functional over the whole surface domain Ω

∫

Ω
(C∇ f ) · (∇ f ) , (6.4)

with prescribed Dirichlet or Neumann boundary conditions. Figures (6.2) and (6.3)
illustrate the effect of conductance values on the field contour lines. When the con-
ductance is set to 0 on a certain region the field behaves as if Neumann boundary
condition were applied at the region boundary. Higher diffusion values make the
region repulse the contour lines while lower values make the region attract them.
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Figure 6.3: Contours of a quasi-harmonic field on a rectangular plate. The
conductance inside the circular and rectangular regions (red) is several or-
ders of magnitude higher than the plate conductance.

6.4 Quad Construction

Once the constrained harmonic field has been computed, we use its contours to
determine the orientation of the quads. The bottom row of Figure (6.4) illustrates
the work-flow of our quadrangulation algorithm consisting out of two main steps.
Firstly, we trace streamlines along and orthogonal to the contours of the harmonic
field. In a second step, we use the set of connected streamlines to obtain the final
quadrangular mesh.

More precisely, we compute given an harmonic scalar value at every vertex of the
triangular mesh, the piecewise constant gradient on each triangle using the gra-
dient discretization provided in equation (6.1). As it is usually desirable to have
quads as rectangular as possible, we also determine the vector field orthogonal
to the gradient vectors on each triangle which will be denoted in the following
as co-gradient field. The co-gradient field is computed as the vector product of
the gradient vector and the triangle normal on each face of the mesh. In specific
situations the placement of line constraints may lead to a configuration where two
edges of a triangle are constrained. A special treatment consisting of targeted
subdivisions of the affected faces yields a correct behavior as illustrated in Fig-
ure (6.5).
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(a)

(b)

Figure 6.4: Comparison between the approach introduced by Dong et
al. [Dong05] (a) and our technique (b). The textured models (left column)
illustrate the behavior of the contours of the harmonic fields for both tech-
niques. For our approach the gradient is constrained orthogonal to the as-
cending edges and tangential to the base edges of the tetrahedron. This way,
we avoid clipped primitives and obtain a proper alignment of the quads (right
column) to the features of the surface.



6.4 Quad Construction 73

Figure 6.5: In the special case where a line constraint (bold blue lines) covers
two edges of one triangle, the gradient vector on the triangle (green) cannot
be aligned to both vector constraint (orange) simultaneously. This is reme-
died by half-splitting the triangle as shown in the image to the right.

We regard a streamline as a piecewise linear curve on the surface which integrates
one of the tangential vector fields and whose vertices are located on the edges of
the triangular mesh. Starting from a given seed point, the streamline is integrated
in the positive and negative field direction until it either creates a loop, approaches
another streamline too closely or meets a singularity.

The singularities in the gradient vector field are detected based on the definition
of the index of a critical point. Consider a continuous vector field V and a closed
curve γ . Suppose that there are no critical points of V on γ . Let us move a point
P along the curve in the counterclockwise direction. The vector V (P) will rotate
during the motion. When P returns to its starting place after one revolution along
the curve, V (P) also returns to its original position. During the journey V (P) will
make some whole number of revolutions. Counting these revolutions positively
if they are counterclockwise, negatively if they are clockwise, the resulting alge-
braic sum of the number of revolutions is called the winding number of V on γ .
The index of a point in the vector field V is then defined as the winding number
of a small counterclockwise oriented circle centered at that point. A discretiza-
tion of this definition for piecewise linear vector fields on surfaces is introduced
in [Ray07]. We use a simplified version of their formulations which allows us to
compute the index at a vertex v of our gradient vector field as

I(v) =
1

2π ∑
e∈N (v)

Θ(e)+Ad(v) (6.5)
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where Ad(v) is the angle deficit at v and Θ(e) is the angle between the gradient
vectors~g(t0) and~g(t1) after flattening the pair of triangles t0 and t1 adjacent to the
edge e. We thus determine the extremal vertices as well as the saddle points as the
points with the index 1 and −1, respectively.

In order to trace streamlines on the surface, we sample the line constraints regu-
larly and choose the selected points as seeds for the gradient streamlines. To cover
the whole mesh we also place seed points on both sides of the streamline while
it is traced according to a user-defined distance measure which controls the quad
size. The co-gradient streamlines are traced accordingly by propagating them over
the surface starting from the line constraints.

In the second step, we reconstruct quads from the set of streamlines. For this, we
first determine the intersection points of gradient and co-gradient streamlines. In
order to perform this efficiently, we associate the line segments of all streamlines
with the triangles they are integrated on and compute the intersections on all tri-
angles. This way, we obtain a graph of streamlines which are interconnected at
their intersection points. Starting at these intersections we traverse the graph to
create the quadrangular faces.

6.5 Results and Discussion

We tested our approach on a benchmark of triangular meshes covering synthetic
and reconstructed laser-scanned data. Typical results are featured in Figure (6.4)
and Figures (6.6) - (6.9).

A comparison to the clipping approach used in [Dong05], on a tetrahedron model
reveals that our approach handles sharp features in an accurate manner as the
alignment to line constraints is performed during the field computation (see Fig-
ure 6.4).

Figures (6.6) + (6.7) illustrate remeshing results of our approach on irregularly
sampled data reconstructed from laser scans. While line constraints are useful to
align quads to important features of the surface as illustrated on the Turbine Blade
model, they can be further used to guide streamlines along user-specified con-
straints. The resulting remesh of the hand model reflects that the quads intuitively
align to the shape of the surface.

Figure (6.8) shows the robustness of our technique on datasets with very irregular
connectivity. While small triangles and faces with acute angles are usually chal-
lenging, the computation of the constrained harmonic field as well as the quad
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(a) (b) (c)

Figure 6.6: Remeshing of a reconstructed laser-scanned Turbine Blade model
with irregular triangulation. The remeshing process is guided by gradient
constraints indicated by the blue lines (b). The remeshed result (c) as well
as the zooms (a) show that the quads are properly aligned along the blade as
well as the selected prominent features.

extraction step of our method remain numerically stable on these problematic
datasets.

In Figure (6.9) we apply quasi-harmonic fields for driving the remeshing process.
Using higher conductivity, contours around the eye region are repelled which al-
lows the generated quads to follow the natural shape of the eyes.

Our approach is fast as the runtime is dominated by the solution of a linear system
which can be solved efficiently using direct or iterative solvers. Even for large
meshes such as the hand model consisting out of nearly 400K triangles runtimes
are in the order of seconds. The subsequent streamline tracing as well as the quad
generation is performed in only a few seconds.



76 Chapter 6: Controlled Field Generation for Quad Remeshing

(a)

(b)

(c)

(d)

Figure 6.7: The laser-scanned hand model is remeshed guided by gradient
constraints (a) which permits the resulting quads to follow the shape of the
hand in an intuitive manner (c)+(d). Furthermore, our approach automat-
ically places the singularities at the fingertips properly although the con-
straints are chosen very distant to them (b).
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(a)

(b)

(c)

Figure 6.8: The fertility model is a reconstruction with extremely irregular
connectivity containing tiny triangles and faces with very acute angles (a).
Our method is robust on this type of datasets and creates a proper remeshing
with alignment of the quads to the bottom of the pedestal of the figure (c).
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(a) (b)

(c) (d)

Figure 6.9: Remeshing of the mannequin model using areas with modified
conductivity (red regions) and gradient constraints (blue lines). The varia-
tion in the conductivity creates a repulsive effect such that the contour lines
of the harmonic field (b) and thus the streamlines (c) bend around the eye
region resulting in a special consideration of this surface part in the final
quadrangular remeshing (d). Note that the gradient constraints specified at
the lips as well as the neck ensure a proper quad alignment.
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As our approach enforces directional constraints it may introduce additional sin-
gularities especially when certain line constraints form a closed curve. Those can
be found efficiently during streamline tracing using the singularity detection tech-
nique described earlier. We do not see this as a limitation of our approach as it can
be used to place new singularities at desired locations for design purposes such as
the fingertips of the hand model illustrated in Figure (6.7).

6.6 Conclusion

In this chapter, we presented a set of flexible and versatile tools for designing
scalar fields on surfaces. Two scenarios for controlling the field behavior on the
surface were demonstrated. By operating directly on the gradient of the scalar
field our technique can enforce directional constraints which makes it suitable for
avoiding tedious post-processing, generally needed for aligning quads to impor-
tant features. Regarding a surface as an inhomogeneous domain, we introduced
quasi-harmonic fields as a design tool which endows surface regions with attrac-
tion/repulsion properties. This makes it a more general and flexible design tool
in comparison to standard harmonic fields. These techniques can be used inde-
pendently or on top of existing field-based quad remeshing methods. The sub-
stantiated results demonstrate the quality and robustness of our quad remeshing
approach and confirm the flexibility of our field construction techniques.

In the next chapter, the presented topics are summarized and discussed which
concludes this thesis.
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Chapter 7

Discussion and Conclusion

This thesis presents new approaches towards a robust and efficient processing of
data along the geometry processing pipeline. The focus areas in which new contri-
butions are introduced comprise the denoising of static point clouds and dynamic
range data, FFT-based surface reconstruction with partition of unity decomposi-
tion and guided quadrangular remeshing using gradient and area constraints.

7.1 Summary

In the following, we briefly summarize and discuss our techniques and show their
advantages over existing approaches.

7.1.1 Statistical Denoising

In Chapter 3, a kernel based clustering approach for the robust filtering of point
cloud surface data has been introduced. For a given point cloud the method deter-
mines a smooth global likelihood function which is used to guide the noisy input
points onto a smooth surface at positions of maximum probability. It adapts to
the density and distribution of the given input points which allows the technique
to remove noise of different amplitudes accurately. Due to its inherent clustering
property the approach permits an easy detection of outliers. It was demonstrated
that the algorithm is able to handle even a large amount of “salt and pepper” out-
liers. The effectiveness of the approach was shown on real-world datasets acquired
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using structured light and laser scanners. In addition, the method can be used in
combination with surface reconstruction algorithms which significantly improves
their results on noisy data.

7.1.2 Non-local Temporal Denoising

In Chapter 4, we presented a new similarity-based neighborhood filtering tech-
nique for static and dynamic range data which is the standard output of scanning
devices and, in particular, of recently developed 3D video cameras. We intro-
duced a new non-local similarity measure which determines the resemblance of
two points on the surface not only by utilizing their local properties like position or
normal but by also comparing the region of the surface surrounding the vertices in-
stead. We demonstrated on several different types of scanned data that the idea of
adding context information to the similarity definition allows our method to pro-
duce a more accurate denoising result than previous state-of-the-art approaches
while having a better feature preservation. Additionally, we showed that the us-
age of adaptive neighborhoods improves the denoising result in the vicinity of
boundaries of the given input. Furthermore, our method is easy to implement and
flexibly adaptable to scans with different noise properties. It thus delivers a prac-
tical, versatile and powerful tool for filtering range data. In this way, our approach
naturally fits into the scanning pipeline by denoising range scans before they are
combined for further processing, which is more efficient since the given structure
of the data can be utilized. Furthermore, we showed an interesting extension of
our approach for filtering time-varying geometric data which is important since
we expect a wider use of 3D video cameras in the future. It exploits the tempo-
ral coherence of the sequence in order to guarantee smoothness along the time
domain.

7.1.3 Surface Reconstruction

We have suggested to localize a global FFT-based reconstruction approach by us-
ing adaptive subdivision and partition of unity composition. In Chapter 5, we
have shown that our method preserves the resilience of the global approach and
is more robust against noise than previous state-of-the-art surface reconstruction
techniques. Furthermore, our reconstruction process is error-controlled, is capa-
ble of delivering a reliable surface reconstruction from noisy real-world data, and
allows an accurate restoration of highly bended regions. The lower memory con-
sumption of the method allows us to achieve a higher reconstruction accuracy and
enables to capture fine and small details in large and complex point clouds.
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7.1.4 Controlled Quad Remeshing

We presented a set of flexible and versatile tools for designing scalar fields on
surfaces. In Chapter 6 two scenarios for controlling the field behavior on the
surface were demonstrated. By operating directly on the gradient of the scalar
field our technique can enforce directional constraints which makes it suitable for
avoiding tedious post-processing, generally needed for aligning quads to impor-
tant features. Regarding a surface as an inhomogeneous domain, we introduced
quasi-harmonic fields as a design tool which endows surface regions with attrac-
tion/repulsion properties. This makes it a more general and flexible design tool
for quadrangular remeshing in comparison to standard harmonic fields.

7.2 Future Work

While the presented techniques introduce novel solutions, their investigation re-
veals new interesting problems and extensions.

In Chapter 4, we presented that using context information in contrast to a point-
wise defined similarity comparison, significantly improves the denoising perfor-
mance. While we defined similarity in a spatio-temporal manner, it is interesting
to explore the augmentation of the measure by additional attributes such as color
which are usually acquired simultaneously with the geometric data. This could,
for instance, support the detection of discontinuities to further improve the perfor-
mance of neighborhood filtering schemes. The statistical point cloud denoising
approach presented in Chapter 3 is realized as a research prototype and can be
improved in terms of runtimes. As every input point converges independently to
a maximum of the likelihood function, a massive parallelization of the presented
approach is imaginable for a commercial implementation. Furthermore, it is in-
teresting to explore how the idea of non-local neighborhoods can be transfered to
our proposed statistical denoising approach. In the case of the mean-shift based
denoiser each point in space is attracted by the other samples only depending on
their local neighborhood and with an intensity diminishing with distance. Sim-
ilar to the approach of non-local denoising, it is sensible to grant samples with
a neighborhood similar to the vicinity of the current position in space a higher
impact on the weighted mean which determines the next update step. Thus the
problem amounts to determining the similarity of point configurations in three
dimensional space.

In Chapter 5, we presented an approach which unifies partition of unity decompo-
sition and surface reconstruction based on the Fast Fourier Transform. An attrac-
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tive feature of our method consists of its readiness for an out-of-core implementa-
tion which is desirable for processing very large datasets especially in commercial
applications. Furthermore, it is worth investigating how to incorporate confidence
values, which can be determined for digitized point samples, into the reconstruc-
tion approach. While the technique is currently very robust, we are confident that
this would enhance the performance of our approach.

The method introduced in Chapter 6 allows for a guided remeshing of triangular
into quadrangular meshes using gradient as well as area constraints. An interesting
future research direction is to investigate the automatic placement of constraints
for design purposes or a perceptual appealing remeshing. Furthermore, the devel-
opment of a unifying approach which combines all the individual advantages of
different methods such as a well-behaved remeshing, accuracy, guidance, planar
primitives and no T-junctions remains challenging.
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