
Shape Spaces from Morphing

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

von

Dipl.–Inform. Marc Alexa

aus Darmstadt

Referenten der Arbeit: Prof. Dr.–Ing. J. L. Encarnaç̃ao,
Prof. Dr. Markus Gross

Tag der Einreichung: 08. März 2002
Tag der m̈undlichen Pr̈ufung: 19. April 2002

D 17
Darmsẗadter Dissertation 2002

http://www.eg.org
http://diglib.eg.org

Zusammenfassung

In dieser Arbeit werden Methoden zur Repräsentation der Gestalt oder Form von
Objekten vorgestellt. Die Grundidee ist, die Form eines Objektes als Mischung
anderer vorgegebener Formen zu beschreiben. Dazu wird das mathematische Kon-
zept linearer R̈aume verwendet: Einige Objekte bilden die Basis eines Raumes,
und deren Kombination erzeugt die Elemente dieses Raumes.

Diese Art der Beschreibung hat zwei Vorteile gegenüber der weit verbreiteten
absoluten Repräsentation: Sie ist kompakt, wenn die Anzahl der Basen klein im
Vergleich zur geometrischen Komplexität der Objekte ist. Sie ist deskriptiv, wenn
die Basisformen eine Semantik haben, da dann die Anteile an diesen Basisformen
das Objekt beschreiben.

Zur Darstellung der Basisformen werden hier polygonale Netze verwendet. Die
Arbeit bescḧaftigt sich daher mit der Kombination gegebener Polygonnetze und
verschiedenen Anwendungen, die bei dieser Art der graphischen Modellbeschrei-
bung auf der Hand liegen.

Die Transformation eines gegebenen Objektes in ein anderes wird in der gra-
phischen DatenverarbeitungMorphinggenannt. Das Ergebnis dieser Transforma-
tion kann in der hier verwendeten Terminologie als ein ein-dimensionaler Raum
verstanden werden. Durch weitere Transformationen mit zusätzlichen Basisfor-
men ergeben sich höher-dimensionale R̈aume. Zum gegenẅartigen Zeitpunkt sind
Morphing-Verfahren f̈ur polygonale Netze wegen topologischen und geometrischen
Problemen noch verbesserungsbedürftig, weshalb sich der erste Teil dieser Arbeit
mit solchen Verfahren befasst.

Diese Morphing-Verfahren werden dann so erweitert, dass sie die Kombina-
tion von mehr als zwei Netzen erlauben. Die Nützlichkeit dieser Beschreibung
von Gestalt wird an Hand von zwei Szenarien demonstriert: Zur Visualisierung
von Multiparameter-Informationsdaten, wobei die Parameter auf Glyphen abgebil-
det werden und zur effizienten Speicherung undÜbermittelung von geometrischen
Animationen.

Übersicht

Der erste Teil dieser Arbeit widmet sich Morphing-Vefahren für polygonale Netze.
Hier beschr̈anken wir die Polygone auf Dreiecke. Ein DreiecksnetzM lässt sich

I

II

wie folgt durch ein Paar(K, V) beschreiben [Spanier 1966]: Ein (abstrakter) Sim-
plizialkomplexK beschreibt die Topologie des Netzes, undV = (v1, . . . ,vn) die
Geometrie der Knoten inRd mit typischerweised = 3.

Kanten und Facetten sind inK als Paare{i, j} und Tripel{i, j, k} dargestellt.
Die topologische Realisierung bildetK auf einen (geometrischen) Simplizialkom-
plex |K| in Rn ab: Die Knoten werden mit der kanonischen Basis desRn identifi-
ziert, so dass jedes Simplexs durch die konvexe Ḧulle der Punkte{ei} ∈ Rn, i ∈ s
beschrieben ist. Die geometrische RealisierungφV (|K|) ist eine lineare Abbildung
des Simplizialkomplexes|K| aufRd, die durch die Identifikation der Einheitsvek-
torenei ∈ Rn mit den Koordinatenvi ∈ V hergestellt wird. Die AbbildungφV

heisst Einbettung wenn sie bijektiv ist. Für jede Einbettung gilt, dass sich jeder
Punktp auf dem Netz durch eine baryzentrische Koordinateb mit höchstens drei
nicht verschwindenden Komponenten repräsentieren l̈asst.

Typische Morphingverfahren für polygonale Netze beginnen mit zwei Netzen
M0 = (K0, V0) undM1 = (K1, V1). Das Ziel des Verfahrens ist die Erzeugung
einer FamilieM(t) = (K, V (t)), t ∈ [0, 1] so dass die FormenV (0) und V (1)
geometrisch mit Ausgangsformen identisch sind oder sie zu einem vorgegebenen
Grad approximieren, alsoφV (0)(|K|) ≈ φV0(|K0|) undφV (1)(|K|) ≈ φV1(|K1|)
Die Erzeugung dieser Familie lässt sich in drei Schritten durchführen:

1. Zwischen den Netzen muss eine Korrespondenz hergestellt werden. Das Er-
gebnis sind KoordinatenvektorenW0,W1, die die Positionen der Knoten auf
dem anderen Netz angeben:W0 ∈ φV1(|K1|). Jeder dieser Knoten kann
dann auch mit einer baryzentrischen Koordinate in Bezug auf das andere
Netz definiert werden.

2. Auf Basis der korrespondierenden Netze wird ein gemeinsames NetzK er-
zeugt, das beide geometrischen Instanzenüber entsprechende Koordinaten-
vektorenV (0), V (1) darstellen kann. Dies geschieht entweder durchÜber-
lagerung der Graphen oder durch die Erzeugung eines neuen semi-regulären
Netzes.

3. Für das gemeinsame Netz müssen KnotenpfadeV (t), t ∈]0, 1[bestimmt
werden, die alle Knoten vom Ursprungszustand in die gewünschte Endpo-
sition überf̈uhren.

Jedem dieser drei Schritte ist in der Arbeit ein Kapitel gewidmet, in dem bestehen-
de Verfahren kategorisiert und eigene Beiträge vorgestellt werden.

Im darauffolgenden Kapitel wird die Erweiterung auf mehr als zwei Basis-
formen er̈ortert. Dies geschieht zunächst in abstrakter Weise und dann für den
konkreten Fall von polygonalen Netzen und den existierenden Verfahren. Die ab-
schliessenden zwei Kapitel zeigen Anwendungsmöglichkeiten in den Bereichen
Informations-Visualisierung und geometrische Animation.

III

Korrespondenzabbildungen f̈ur polygonale Netze

Für zwei gegebene NetzeM0 undM1 sollen baryzentrische KoordinatenB0 be-
stimmt werden, so dass die assozierte geometrische FormW0 = φV1(B0) der Ko-
ordinaten auf dem NetzM1 eine EinbettungφW0 vonM0 aufM1 ist. Dabei wird
angenommen, dass die Abbildung der Knoten des Netzes den wesentlichen Teil
der Bijektion zwischen den Oberflächen ausmacht, was voraussetzt, dass die Netze
gen̈ugend fein tesseliert sind.

Dieser Schritt wird zumeist durch die Abbildung der Fläche auf einen geeig-
neten gemeinsamen ParameterraumD umgesetzt. Typische Parameterräume sind
die KugelS2 (für den Fall, dass die Netze homöomorph zu Kugeln sind) sowie
ein Atlas bestehend aus disjunkten topologischen Kreisscheiben. Eine wesentliche
Nebenbedingung im Morphing ist die Berücksichtigung von vorgegebenen Punkt-
zu-Punkt Korrespondenzen, die in einem Präprozess automatisch oder durch den
Benutzer festgelegt werden.

Im Falle der Abbildung̈uber die Kugel wird zun̈achst eine EinbettungΦS mit
S = {s0, s1, . . .}, si ∈ R3, |si| = 1 bestimmt, die dann durch eine bijektive Abbil-
dungf an die Korrespondenzbedingungen angepasst wird.

{i} ∈ K0
W0−−−−→ φV1(B0)

φS0

y xφ−1
S1

S2 −−−−→
f

S2

Bei diesem Ansatz gilt es im wesentlichen, Verfahren zur Einbettung auf der Kugel
und geeignete Abbildungsfunktionenf zu bestimmen.

Die Zerlegung in Kacheln ist für eine gr̈ossere Klasse von Modellen verwend-
bar, aber auch komplizierter. Zusätzlich zur Einbettung der Teilnetze auf den Kreis-
scheiben m̈ussen die Ausgangsnetze in isomorphe Atlanten zerlegt werden. Dazu
verwendet man einen SimplizialkomplexL, der aus einer Teilmenge der Knoten
vonK0,K1 besteht:

φV0(|L|) ≈ φV0(|K0|), φV1(|L|) ≈ φV1(|K1|)

L ist (topologischer) Minor von sowohlK0 als auchK1. Jeder Knoten inK0,K1

wird mit einer Facette inL identifiziert. Der gemeinsame Parameterraum ist dann
die geomtrische Realisierung|L|, wo jeder Knoten vonK0,K1 als baryzentrische
Koordinate repr̈asentiert ist.

{i} ∈ K0
W0−−−−→ φV1(B0)

φL0

y xφ−1
L1

|L| −−−−→
f

|L|

IV

Um diese Verfahren umzusetzen, sind mithin Methoden notwendig, die Teil-
netze in der Ebene parametrisieren, geeignete geschlossene Netze auf der Kugel
parametrisieren und aus zwei gegeben Netzen eine gemeinsame Zerlegung in Ka-
cheln erzeugen.

Zur Beachtung von vom Anwender spezifizierter Korrespondenzen muss man
das Netz im Parameterraum mit einer geeigneten Funktionf auf sich selbst ab-
bilden, so dass die Abstände der korrespondierenden Knoten minimiert wird. Dies
kann nicht mit einer kontinuierlichen Abbildungsfunktion geschehen, weil diese
u.U. die Einbettungseigenschaft der Abbildung zunichte machen würde. Man soll-
te daher iterativ vorgehen.

Abbildung von Teilnetzen in die Ebene

Bei der Parametrisierung von Netzen in der Ebene haben sich eine Reihe von Ver-
fahren durchgesetzt. Die meisten dieser Verfahren beginnen damit, den Rand des
Teilnetzes auf einem Kreis anzuordnen [Tutte 1963; Floater 1997; Floater 2002;
Floater 2001; Pinkall & Polthier 1993; Polthier 2000; Eck et al. 1995; Gregory
et al. 1998; Gregory et al. 1999]. Es gibt weitere Verfahren ([Hormann & Greiner
2000; Ĺevy & Mallet 1998; Ĺevy 2001; Zigelmann et al. 2002]), die eine solche
Anordnung nicht erfordern, diese sind aber für Korrespondenzabbildung nicht bes-
ser geeignet, da ja auch eine Bijektion auf dem Rand gefordert ist.

Bei fixiertem Rand werden die Positionen der freien Knoten als Linearkombi-
nation der Nachbarn beschrieben. Die einfachste Wahl ist, jeden Knoten im Schwer-
punkt seiner Nachbarn anzuordnen. Man kann den Knoten auch als gewichtete
Summe der Nachbarn darstellen, wobei sich die Gewichte aus der 3D-Geometrie
ergeben. Die Knotenpositionen ergeben sich letztlich durch die Lösung des ent-
sprechenden linearen Gleichungssystems.

Abbildung von geschlossenen, einfachen Netzen auf die Kugel

Zur Einbettung von polygonalen Netzen mit Geschlecht 0 auf der Kugel bieten sich
verschiedene Verfahren an. Ist die Geometrie sternförmig, so gibt es mindestens
einen Punkt im Inneren, so dass die Abbildung der Knoten von diesem Punkt auf
die Oberfl̈ache einer Kugel um diesen Punkt bijektiv ist [Kent et al. 1991; Kent
et al. 1992]. Das Problem ist damit gelöst.

Allerdings sind die meisten Formen nicht sternförmig. Dann bieten sich Re-
laxationsverfahren an, die an die Methoden im ebenen Fall angelehnt sind: Jeder
Knoten wird im Zentrum seiner Nachbarn angeordnet, wobei allerdings die Kno-
tenposition durch die Kugeloberfläche beschränkt sind. Diese quadratische Neben-
bedingung kann man gut mit Hilfe von iterativen Verfahren erfüllen [Alexa 1999;
Alexa 2000].

V

Zerlegungder Netze in einen gemeinsamen Teilgraphen

Zur Zerlegung von zwei polygonalen Netzen in einen gemeinsamen Untergaph|L|
geht man typischerweise davon aus, die TopologieL dieser Strukur sei gegeben
oder wird vom Benutzer interaktiv spezifiziert. In jedem Fall muss der Benutzer die
Positionen der Knoten inL auf den geometrischen InstanzenV0, V1 festlegen. Das
Problem besteht darin, die Oberflächen vonM0,M1 in Gebiete zu zerlegen, die
mit den Facetten inL korrespondieren. Anders gesagt gilt es, die Kanten inL auf
M0 bzw.M1 zu definieren, so dass die Topologie vonL erhalten bleibt. Ein erster
Ansatz ist die Verwendung von kürzesten Pfaden in den GraphenK0 bzw.K1 [Gre-
gory et al. 1998; Bao & Peng 1998; Zöckler et al. 2000; Kanai et al. 2000]. Dies
kann jedoch zu Problemen führen, weil die k̈urzesten Pfade im Graphen nicht not-
wendigerweise disjunkt sind. Vielmehr muss man bei der Bestimmung von Kanten
Nebenbedingen beachten, so dass eine topologisch korrekte Zerlegung sicher ge-
stellt ist [Praun et al. 2001].

Konstruktion eines Repräsentations-Netzes

Seien die EinbettungenW0,W1 der Netze(V0,K0), (V1,K1) auf einem gemein-
samen ParameterraumD gegeben. Zu bestimmen ist eine TopologieK mit zwei
GeometrienV (0), V (1), so dass die ursprünglichen Formen (m̈oglichst) exakt re-
produziert werden:

φV (0)(|K|) ≈ φV0(|K0|), φV (1)(|K|) ≈ φV1(|K1|).

Das Problem ist dabei nicht die Bestimmung der KoordinatenV (0), V (1), da sich
diese aus den baryzentrischen Koordinaten direkt ergeben. Eventuell ist es sinnvoll,
dabei nicht die Fl̈ache des Netzes sondern eine glatte Approximation dieser Fläche
zu verwenden. Die wesentliche Schwierigkeit ist die Bestimmung einer geeigneten
TopologieK.

Es gibt zwei grunds̈atzlich verschiedene Wege zur Bestimmung vonK: Ent-
wederK entḧalt K0 undK1 und ergibt sich durcḧUberlagerung der Einbettungen
(dem sogenannten Verschneiden) oder es wird ausgehend von der gemeinsamen
ApproximationL durch rekursive Verfeinerung ein genügend feines Netz konstru-
iert. Bei derÜberlagerung von Netzen muss man ferner die Fälle von ebenen Teil-
netzen und geschlossenen mannigfaltigen Netzen unterscheiden.

Verschneiden von polygonalen Netzen

Beim Verschneiden der Netze entstehen in jedem Schnittpunkt von zwei Kanten
aus den beiden Netzen neue Knoten. Auf diese Weise entsteht das gesuchte ge-
meinsame NetzK.

Zum Verschneiden von planaren Graphen gibt es eine Reihe von Arbeiten
[de Berg et al. 1997; Finke & Hinrichs 1995], die auch die asymptotische Schranke

VI

für den besonderen Fall zweier geschlossener polygonaler Netze vonO(n + k) er-
reichen. Diese Techniken lassen sich allerdings nur schlecht auf unberandete Man-
nigfaltigkeiten anwenden.

Die grunds̈atzliche Idee zum Verschneiden der Netze besteht darin, beide Gra-
phen zu traversieren und dabei die traversierten Kanten auf Schnitt mit den Facetten
des anderen Netzes zu testen. Bei der Traversierung kann man dann die Kohärenz
zwischen den Flächen ausnutzen [Alexa 2000].

Rekursive Verfeinerung

Die Strategie der rekursiven Verfeinerung startet mit dem gemeinsamen Teilgraph
L. Dieser wird durch Einf̈ugen von Knoten auf den Kanten und/oder Facetten nach
bestimmten Regeln verfeinert. In der Ebene können die Einf̈ugepositionen mittels
baryzentrischer Koordinaten angegeben werden. Diese Koordinate erlaubt es, den
Knoten mittels der bekannten AbbildungφV für beide Netze eine Position inR3

zuzuordnen [Lee et al. 1998].
Damit ensteht eine Kaskade von NetztopologienL = L0, L1, L2, . . . wobei

jedem Knoten die Position den Ursprungsgeometrien zugeordnet sind. Wegen des
Erzeugungsprozesses entsteht zwangsläufig eine gemeinsame Netztopologie, die
zudem nicht einmal gespeichert werden muss, da sie durch den Erzeugungsprozess
bereits definiert wird. Da die Verfeinerung allerdings unabhängig von der ursprüng-
lichen Gestalt ist, k̈onnen scharfe Kanten unter Umständen nur unzureichend ap-
proximiert werden.

Bestimmung von Knoten-Pfaden

Ausgehend von der gemeinsamen TopologieK und den geometrischen Instanzen
V (0), V (1) gilt es, f̈ur jedest ∈]0, 1[ein V (t) zu finden, so dass die Knoten
möglichst “scḧon” von V (0) nachV (1) interpoliert werden. Intuitiv wird man
zumindest fordern, dass die Knotenpfade im ParameterT stetig sind und zwar
auch in den Stellen 0 und 1 oder besser die Ableitung existiert und endlich ist:
dV
dt < ∞, t ∈ [0, 1].

Der einfachste Ansatz ist lineare Interpolation der Knotenposition

V (t) = (1− t)V (0) + tV (1).

Falls sich die Ausgangsformenähnlich sind, f̈uhrt dies ḧaufig zu befriedigen Ergeb-
nissen. Ist aber die Orientierung der Objekte unterschiedlich, so sollte diese mitt
angepasst werden [Cohen-Or & Carmel 1998; Cohen-Or et al. 1998; Alexa 2000].
Dazu kann man dem̈Ubergang vonV (0) zuV (1) eine affine Abbildung zuordnen,
bspw. indem man unter allen Abbildungen diejenige AbbildungA sucht, die das
Fehlerquadrat vonAV (0)− V (1) minimiert. Um nunA(t) zu bestimmen, wird A
mittels der Polarzerlegung in eine speziell orthogonale und eine symmetrische Ma-
trix faktorisiert. Die Rotation wird dann̈uber den Rotationswinkel interpoliert und

VII

die symmetrische Matrix mit der Einheitsmatrix konvex kombiniert [Shoemake &
Duff 1992; Alexa et al. 2000].

Meistens ist die Geometrieveränderung allerdings nicht ausreichend durch ei-
ne Transformation beschrieben. Dann kommt es zu Verformungen der Objektgeo-
metrie ẅahrend des̈Ubergangs. Um solche Verformungen zu vermeiden, gibt es
verschiedene Ansätze. Polygone kann man bspw. durch die Kantenlängen und In-
nenwinkel darstellen und diese Parameter interpolieren [Sederberg et al. 1993].
Allerdings ist dieser Ansatz schlecht auf polygonale Netze zu erweitern.

Ein besserer Ansatz ist, den durch die Oberflächenbeschreibung eingeschlos-
senen Raum in Simplizes zu zerlegen [Floater & Gotsman 1999; Alexa et al. 2000;
Gotsman & Surazhsky 2001]. Da die Formen die gleiche TopologieK auf der
Berandung haben, ist es möglich, auch das Innere so zu zerlegen, dass eine Iso-
morphie zwischen den Zerlegungen besteht. Mithin korrespondieren je zwei Sim-
plizes in den Zerlegungen. Für jedes Paar kann man nun die ideale Transformation
wie oben beschrieben bestimmen. Durch die gemeinsamen Knoten der Simplizes
sind die idealen Pfade jedoch widersprüchlich. Die Knotenpfade entstehen daher
durch Minimierung. Dabei wird die Abweichung der idealen affinen Transforma-
tionen der Simplizes von der des möglichen Pfades minimiert [Alexa et al. 2000].
Dieses Problem führt auf die einmalige L̈osung eines schwach besetzten linearen
Gleichungsystems sowie einer Matrix-Vektor Multiplikation für jeden Zeitschritt.

Bisher wurde nur die Interpolation aller Knoten in gleicher Weise von Ursprungs-
zu Zielposition diskutiert. In vielen F̈allen ist es aber auch interessant, Bereiche der
Formen verschiedene Parameterwerte zwischen 0 und 1 zuzuordnen. Dies kann
bei Interpolationsverfahren in absoluten Koordinaten zu Problemen mit der Stetig-
keit führen. Daher ist es ratsam, solche zeitlich undörtlich variablen Interpolation
in differentiellen Koordinaten zu beschreiben. Eine einfache Form differentieller
Koordinaten f̈ur polyonale Netze sind Laplace-Koordinaten [Alexa 2001a]. Dabei
wird jede Knotenposition relativ zu dem Schwerpunkt der unmittelbaren Nachbarn
im Graph beschrieben. Die Rückwärtsabbildung von Laplace-Koordianten zu ab-
soluten (euklidischen) Koordinaten führt auf ein lineares Gleichungssystem in den
Knotenpositionen.

Räume aus Morphing-Verfahren

Zunächst wird der klassische Begriff Morphing abstrakt definiert und darauf auf-
bauend eine Definition für den Raum angegeben, der sich durch wiederholte An-
wendung von Morphing-Verfahren auf eine Menge von Basisgeometrien ergibt. Es
kann gezeigt werden, dass der Morphing-Raum mathematisch gesehen ein Vek-
torraum ist, wenn das verwendete Morphing-Verfahren gewisse Voraussetzungen
erfüllt. Mit Hilfe dieser Kenntnis k̈onnen Algorithmen zur Synthese und Analy-
se von Objekten gefunden werden, die nachweisbar asymptotisch ideal sind. Aber
auch wenn der Morphing-Raum kein Vektorraum ist, können Elemente syntheti-
siert und analysiert werden. Die Algorithmen sind dabei unabhängig von den ver-

VIII

wendetenObjekten.
Für den Fall von polygonalen Netzen ist insbesondere die Erzeugung einer

einheitlichen TopologieK aller Basen entscheidend. Dazu eignen sich nicht alle
oben diskutierten Verfahren. Besonders gut geeignet ist die Erzeugung eines Net-
zes durch rekursive Verfeinerung, weil hier die Komplexität des Netzes nicht von
der Anzahl der Basen sondern von der Komplexität der Formen abḧangt. Das Er-
gebnis dieses Schrittes ist die gemeinsame NetztopologieK sowie eine Reihe von
BasisgeometrienVi.

Zur Knoteninterpolation eignet sich inbesondere lineare Interpolation der ab-
soluten Koordinaten, weil damit die Vektorraumeigenschaften des Raums trivial
gegeben sind. Ein Element des Raumes kann dann einfach durch einen Vektor von
Gewichtenwi identifiziert werden:V (w) =

∑
wiVi. Die Erweiterung des An-

satzes auf nicht-lineare Interpolationsverfahren führt zwangsl̈aufig auf einen nicht-
linearen Raum.

Anwendungen in der Informationsvisualisierung

Die Visualisierung von abstrakten Daten geschieht meist durch die Abbildung der
Datenattribute auf visuelle Skalen. Typische Besipiele für solche Skalen sind Ort,
Farbe, Gr̈oße und Form [Chernoff 1973; Pickett & Grinstein 1988]. Zur Darstel-
lung von Multiparameterdaten werden gerne Glyphen verwendet, die eine Kombi-
nation solcher Skalen darstellen.

Die Idee, R̈aume von Formen zur Generierung von Glyphen zu verwenden,
liegt daher auf der Hand. Jede Basisform kann so ausgewählt werden, dass sie
einen bestimmten Datenfall gut repräsentiert. Die Kombination der Formen ergibt
dann die Glyphen f̈ur jedes Datum [Alexa & M̈uller 1998b; M̈uller & Alexa 1998].

Diese einfache Abbildung von Daten auf visuelle Repräsentationen erlaubt
auch ein einfaches aber effektives Verfahren der Benutzer-Interaktion: Der Anwen-
der kann bestimmten, bekannten Datenwerten eine bestimmte visuelle Repräsen-
tation zuordnen. Auf der Basis von wenigen solchen direkten Zuordnungen wird
eine Abbildungen vom Datenraum in den Raum der visuellen Repräsentation de-
finiert [Alexa & Müller 1999b]. Diese kann entweder möglichst starr sein und die
definierten Relationen nur approximieren oder z.B. mit den in der Approximation
gerne verwendeten radialen Basisfunktionen die Relationen exakt erfüllen.

Der Prozess der Zurodnung geschieht dabei interaktiv, d.h. nach jedem Schritt
kann eine neue Visualisierung generiert werden und auf dieser Basis neue – die
Abbildung feiner spezifizierende – Relationen definiert werden.

Verwendung für geometrische Animationen

Wie zuvor gehen wir davon aus, eine NetztopologieK und mehrere Koordinaten-
vektorenVi seien vorgegeben. Eine Kurvew(t) durch den Raum kann dann als

IX

AnimationssequenzV (t) = V (w(t)) verstanden werden. Eine solche Darstellung
einer Animation hat zwei wesentlich Vorteile:

1. Die Darstellung ist kompakt, vorausgesetzt die Anzahl der Basisvektoren ist
kleiner als die Anzahl der Elemente der Animation.

2. Die Darstellung hat Semantik, da einzelne Elemente aus den Basisformen
zusammengesetzt werden. Das erlaubt die Interpretation der Animationsteile
sowie einen Austausch von charakteristischen Merkmalen.

Um eine solche Darstellung zu erzeugen, sind zwei Wege denkbar: Entweder ist der
Raum vorgegeben und die Animation wird innerhalb des Raumes modelliert [Parke
1979; Müller et al. 2000; Alexa et al. 2001], oder die Animation ist vorgegeben
und es gilt einen geeigneten Raum, sprich die Basisvektoren zu finden [Alexa &
Müller 2000]. Der erste Weg kann z.B. eingesetzt werden, um animierte Avatare
zu generiereren. Mit der folgenden Methode kann die Generierung von Basen aus
Keyframe Animationen erreicht werden.

Die grunds̈atzliche Idee besteht darin, die Keyframes einer Animation als Ba-
sis eines linearen Raumes zu verstehen. Durch eine Basistransformation soll eine
Basis gefunden werden, in der die Basen nach ihrer Wichtigkeit sortiert sind, so
dass die Anzahl der Basen mit der Qualität der Animationsrepräsentation skaliert
werden kann. Als erster Schritt wird die Animation auf affine Transformationen
untersucht. Dabei wird jedem Keyframe eine affine Transformation zugeordnet,
die die Hauptachsen der Kovarianzen mit dem kanonischen Koordinatensystem in
Übereinstimmung bringt.

Die eigentliche Transformation basiert auf folgender Idee: Die wichtigste Geo-
metrie ist der Durchschnitt aller Keyframe Geometrien. Alle Keyframes werden
dann als Differenz zu dieser Durchschnittsgeometrie dargestellt. Die Durchschnitts-
geometrie ist der erste Basisvektor des neuen Darstellungsraumes. Die Differenzen
zur Durchschnittsgeometrie werden wiederum gemittelt, das Ergebnis ist die zwei-
te Basis, usw.

Diese Transformation lässt sich mathematisch noch etwas wirkungsvoller be-
schreiben und heisst Hauptkomponentenanalyse. Da die Koordinaten der Keyfra-
mes als Vektoren beschrieben sind, kann man die Hauptkomponentenanalyse durch
die Singul̈arwertzerlegung berechnen.

Die Singul̈arwertzerlegung liefert eine alternative Basis zur Darstellung der
Animation. Meist sind nur wenige Basen notwendig um eine befriedigende Wie-
dergabe einer gegebenen Animation zu ermöglichen. Dies erlaubt eine effektive
progressive Kompression von Animation.

X

Rückblick und Ausblick

In der Arbeit werden Verfahren zur Erzeugung von Räumen geometrischer For-
men vorgestellt. Dabei wurden zum Stand der Forschung die folgenden Beiträge
geleistet:

Morphing-Verfahren f ür polygonale Netze

Korrespondenzabbildung Ein Verfahren zur Korrespondenzabbildung to-
pologischer Kugeln unter besonderer Beachtung von benutzerspezifi-
zierten Knotenkorrespondenzen wurde vorgestellt [Alexa 1999; Alexa
2000].

Schneiden polygonaler NetzeEin neuer Algorithmus zum Schneiden po-
lygonaler Netze wurde beschrieben, der vorherige Resultate verallge-
meinert und asymptotische optimale Laufzeit hat [Alexa 2002b].

Orts-Zeit Spezifikation Im Bild-Morphing sind schon lange Verfahren be-
kannt, die es erlauben, Teile der Bilderörtlich und zeitlich unabḧangig
zu überblenden. Hier werden entsprechende Verfahren für Mannigfal-
tigkeiten pr̈asentiert. [Alexa 2001a; Alexa 2002a].

Knotenpfade Eine Methode zur Bestimmung von Knotenpfaden wurde
vorgestellt, die zu einer minimalen Verformung der lokalen Objektgeo-
metrie f̈uhrt [Alexa et al. 2000].

Visualisierung von Multiparameterdaten Lineare R̈aume von Formen haben
sich als geeigente Repräsentation von Glyphen zur Informationsvisualisie-
rung erwiesen. Zus̈atzlich wurde neue Formen der Interaktion zur Spezifika-
tion der Abbildungsvorschrift vorgestellt [Alexa & M̈uller 1998b; Alexa &
Müller 1999b].

Animation Lineare R̈aume von polygonalen Netzen sind eine geeignete Basis zur
Spezifikation, Darstellung, Modifikation und progressiver Kommunikation
sowie Speicherung von Animationen [Alexa et al. 2000; Alexa & Müller
2000].

Offene Fragestellungen, die sich aus dieser Arbeit ergeben, sind insbesonde-
re topologische Probleme: Eine gegebene Netztopologie schränkt die Klasse der
möglichen Transformationen und damit die Reichhaltigkeit der Formen in einem
Raum stark ein. Dieses Problem könnte durch andere Repräsentation der geome-
trischen Form oder eine flexible Netztopologie gelöst werden. Dar̈uber hinaus l̈asst
die Robustheit der geometrischen Algorithmen z.T. noch stark zu wünschen̈ubrig.

Acknowledgments

Many people have helped in one one way or another to make this dissertation hap-
pen. I would like to thank everybody who supported me.

My special thanks go to my advisor José L. Encarnaç̃ao, for giving me the
freedom to explore this interesting subject while helping me to stay on the right
track. I thank Markus Gross for accepting to be on my thesis committee. I also
owe a lot to Daniel Cohen-Or. His idea to invite me to Israel has initiated a series
of visits, each of which has been a remarkable experience.

Many of the people I have been working with have helped me. In particular,
my project leader Wolfgang M̈uller has been a source for countless valuable discus-
sions. I am also grateful for his way of leadership, which has become an exemplar
for me. I would also like to thank my current and former colleagues Johannes
Behr, Uwe Berner, Erik Blechschmidt, Norbert Braun, Carola Eichel, Peter Frisch,
Manfred Gaida, Paul Grimm, Ido Iurgel, Kai Kreuzer, Detlef Krömker, Thomas
Rieger, Silke Romero, Michael Schneider, Ulrike Spierling, Francesca Taponecco,
and Marc Weber.

I have had contact to several experts in the field of morphing who have inspired
me and gave useful advice. This work might not exist without Herbert Edelsbrun-
ner who introduced me to the idea of a shape space. I thank Craig Gotsman, Rein-
hard Klein, David Levin, and Michela Spagnuolo for many fruitful discussions.
Jed Lengyel has given me access to some of the animated sequences used in this
work (The chicken character was created by Andrew Glassner, Tom McClure, Scott
Benza, and Mark Van Langeveld. This short sequence of connectivity and vertex
position data is distributed solely for the purpose of comparison of geometry com-
pression techniques). I have reused material from other excellent work in mesh
morphing and I thank Takashi Kanai, Ming Lin, and Peter Schröder for allowing
me to do so.

Part of this work was done when I was visiting Tel-Aviv University supported
by the Hermann Minkowski - Minerva Center for Geometry. Thanks to David
Levin and Daniel Cohen-Or for hosting me and making my stay so enjoyable.

I am deeply indebted to my parents. Where I am today is no small part due to
their encouragement and support. I would like thank my friends for their under-
standing that this work took much of my time. And I am grateful for the time I
shared with Regina.

XI

Contents

1 Introduction 1
1.1 Technical motivation . 2
1.2 Overview & Framework . 3
1.3 Context of prior work . 6
1.4 Contributions . 7

2 Correspondence of shapes 9
2.1 Parameterizing topological disks 10
2.2 Parameterizing topological spheres 15

2.2.1 Star shapes . 15
2.2.2 Star shapes around an axis 15
2.2.3 Curve evolution . 16
2.2.4 Simplification . 16
2.2.5 Spring embedding . 17
2.2.6 Embedding in the plane 19

2.3 Isomorphic dissection . 20
2.3.1 Automatic dissection of shapes 20
2.3.2 User specification of isomorphic dissections 20

2.4 Feature alignment . 23
2.4.1 User-selected vs. shape features 23
2.4.2 Transforming to align features 24
2.4.3 Warping parameterizations to align features 25

2.5 Conclusions . 26

3 Constructing representations 29
3.1 Mapping parameter values to the surface 30
3.2 Map overlay data structure . 30
3.3 Open meshes embedded in a disk 31
3.4 Closed meshes in arbitrary position 32
3.5 Finding the intersections . 32
3.6 Generating the data structures 34
3.7 Remeshing . 34
3.8 Comments . 36

i

ii CONTENTS

4 Interpolating corresponding shapes 37
4.1 Linear Interpolation of Boundary and/or Orientation 38

4.1.1 Interpolation of orientation 38
4.2 Interpolation of intrinsic boundary representation 40

4.2.1 Closing the polygon . 40
4.3 Differential boundary representation 41

4.3.1 Laplacian representation 47
4.3.2 Representing transition states 48
4.3.3 Computing absolute coordinates 48
4.3.4 Defining transitions and transition states 49
4.3.5 Results and applications 50
4.3.6 Free-from modeling . 52
4.3.7 Conclusions . 52

4.4 Interpolation using isomorphic dissections 55
4.4.1 Isomorphic dissections of shapes 56
4.4.2 Polyhedra . 57
4.4.3 Transforming shapes . 60
4.4.4 Least-distorting triangle-to-triangle morphing 61
4.4.5 Closed-form vertex paths for a triangulation 61
4.4.6 Symmetric solutions . 63
4.4.7 Results and Conclusion 64

5 Spaces of shapes from morphing 71
5.1 Definition of morphing . 72
5.2 Properties of morphing functions 73
5.3 Definition of morphing space . 74
5.4 Morphing space as a affine/vector space 76

5.4.1 Representation of elements and dimension ofΦn 77
5.4.2 Isomorphism betweenΦn andRn−1 77

5.5 Algorithms for object synthesis and analysis 79
5.5.1 Synthesis of objects . 79
5.5.2 Analysis of objects . 81
5.5.3 Analysis in linear morphing spaces 81
5.5.4 Analysis in non-linear morphing spaces 83

5.6 Spaces of meshes from morphing 84

6 Applications in Visualization 87
6.1 Visualization by Examples . 88
6.2 Visual representations from morphing 89

6.2.1 Examples . 91
6.3 Mapping Data to Coordinates . 94

6.3.1 Finding an affine mapping 94
6.3.2 Non-linear mappings . 95

6.4 Results . 97

CONTENTS iii

6.4.1 Visualizing city rankings 97
6.4.2 CT scan data . 97

6.5 Conclusion . 99

7 Applications in animation 103
7.1 Building animations using base shapes 105

7.1.1 Representing facial animations 106
7.1.2 Altering and combining animations 109
7.1.3 Streaming and displaying animations 111

7.2 Decomposing key frame animations 112
7.2.1 Principal Component Analysis 114
7.2.2 Results . 115

7.3 Implementation in graphical standards 119
7.3.1 State-of-the-art . 119
7.3.2 Proposed extensions and changes 123
7.3.3 Optimization issues . 125

7.4 Conclusions . 129

8 Conclusions 131
8.1 Summary of contributions . 131
8.2 Future research directions . 132

Bibliography 135

Chapter 1

Intr oduction

Art always serves beauty,
and beauty is the joy of possessing form,

and form is the key to organic life
since no living thing can exist without it.

Boris Pasternak, Doctor Zhivago

Every thing has a shape. We can see, touch, even hear shape. It is the funda-
mental concept for interaction with the world we live in. We compare one shape
with another to assess it, to put it into context: Every shape can be seen as as a
variation of another shape or the combination of a few shapes.

A formalism is needed to communicate shape. Many such formalisms exist,
however, most of them describe shape in an absolute way, without relating to other
objects. This cannot be avoided if only one single object has to be described.
If many (relating) objects are concerned, an absolute description not only misses
information about the relation to other objects it might also be inefficient since the
differences of shapes could be described more compactly than the whole shape.

This work mainly deals with the description of shapes ascompoundsof a set
of base shapes. Each base shape is described absolutely as set of planar patches,
being an approximation of the “real” shape. These base shapes can be combined
and, altogether, form aspace of shapes. Such representation of shape is particularly
suited to deal with sets of shapes with some common ground. For example, think of
a space of shapes representing faces: This space is more appropriate for modeling
a face, generating or storing animated sequences of faces. Limiting the possible
choices means, in this context, the need for less information or storage space to
generate or represent the intended object. An illustration is given in Figure 1.1.

1

2 CHAPTER 1. INTRODUCTION

Bob

Joe Pat

Ed

Figure 1.1: Describing shapes as a compound of base shapes. It seems natural to
describeEd as having the eyes of Bob, the nose of Joe, and the mouth of Pat rather
than giving details of the shape of each feature. If we wanted to communicate
information about Ed’s face, the description in terms of Bob, Joe, and Pat is also
much smaller and, yet, absolutely precise. Note that the faces of Bob, Joe, and Pat
allow to generate a variety of other faces. This could be useful to model a face
that can be described in terms of their features. This space of faces also contains
sequences smoothly transforming from one face to another. Thus, it allows to
generate and store animated sequences.

1.1 Technical motivation

In computer graphics, models of three-dimensional shapes are nowadays mainly
represented asmeshes. A mesh contains a set of vertices describing geometric
positions (and other attributes such as color, etc.) and topological information
describing edges containing vertices and forming faces. Meshes are universal in
the sense that they can represent every shape with arbitrary precision (assuming
infinite space to store the description).

In many applications one deals not only with one single mesh but with many
meshes. The most prominent example are geometric animations, which is typically
stored a set of meshes describing the shape over time. We like to exploit the idea of
a shape space, where shapes are described as the combination of a few base shapes.
Here, base shapes are meshes, and all combinations are meshes.

We start exploring this idea by looking at the simple case of only two base
meshes. The main idea of this work is to usemorphingtechniques to generate the
family of shapes described as the combination of two base shapes. Morphing tech-
niques are used to generate smooth transitions from one object to another. They
have become popular and widespread in the special effects industry but have appli-

1.2. OVERVIEW & FRAMEWORK 3

cationsin many areas such as medical imaging and scientific visualization. We can
say that a morph represents the family of shapes generated by two base shapes, i.e.
the space is one dimensional. By adding a third base shape and morphing between
an element of the family resulting from the first two base shapes we add another
dimension. This process can be repeated to add any number of dimensions.

Such spaces of shapes allow to represent each shape in the space with a vector
of scalars not longer than the number of base objects spanning the space. Assum-
ing the number of base shapes is relatively small with respect to the amount of
information needed to describe a single shape, this is an extremely compact and
meaningful way of describing a shape.

Why is the representation meaningful? Imagine a set of faces (smiling, frown-
ing, blinking, staring, etc.) comprising the base of a space. If we want to generate a
particular expression we simply describe the face in terms of the features we want.
The modeling process is intuitive and simple. In addition, if such a face has to be
stored or communicated only the small vector is needed.

The major aim of this work is to build spaces of polyhedral objects and demon-
strate their usefulness in practical applications. However, at the current state of
science even morphing between two polyhedral objects is a difficult process. For
that reason, a large part of this work is dedicated to generating morph sequences
between two meshes. This is a remunerative subject in itself, as morphing object
representations is superior to morphing representations of space (such as images).

1.2 Overview & Framework

The first part of this work is dedicated to mesh morphing techniques. Mesh mor-
phing techniques involve computations on the geometry as well as the connectivity
of meshes. For simplicity this report concentrates on triangle meshes. In the con-
text of morphing it seems to be acceptable to triangulate polygonal meshes prior
to the application of a morphing technique. To classify and understand mesh mor-
phing techniques it is helpful to use the now widespread terminology from Spanier
[1966]. A meshM is described by a pair(K, V), whereK is a simplicial complex
representing the connectivity of vertices, edges, and faces andV = (v1, . . . ,vn)
describes the geometric positions of the vertices inRd, where typicallyd = 3.

The abstract complexK describes vertices, edges, and faces as{0, 1, 2}-simplices,
that is, edges are pairs{i, j}, and faces are triples{i, j, k} of vertices. Thetopo-
logical realizationmapsK to a simplicial complex|K| in Rn: The vertices are
identified with the canonical basis ofRn and each simplexs ∈ K is represented
as the convex hull of the points{ei} ∈ Rn, i ∈ s Thus, each 0-simplex is a point,
each 1-simplex is a line segment, and each 2-simplex is a triangle inRn.

The geometric realizationφV (|K|) is a linear map of the simplicial complex
|K| to Rd, which is defined by associating the basis vectorsei ∈ Rn with the vertex
positionsvi ∈ V . The mapφV is anembeddingif φV is bijective. The importance
of an embedding is that every pointp on the mesh can be uniquely represented

4 CHAPTER 1. INTRODUCTION

with a barycentric coordinateb, i.e. p = φV (b). Such barycentric coordinates
have at most three non-zero components and specify the position of a point relative
to a simplex. If the point is coincident with a vertex it is a canonical basis vector,
if the point lies on an edge it has two non-zero components, otherwise it has three
and lies on a face.

The neighborhood ring of a vertex{i} is the set of adjacent verticesN (i) =
{j|i, j ∈ K} and its star is the set of incident simplicesS(i) =

⋃
i∈s,s∈K s.

In the classical setting of mesh morphing two meshesM0 = (K0, V0) and
M1 = (K1, V1) are given. The goal is to generate a family of meshesM(t) =
(K, V (t)), t ∈ [0, 1] so that the shape represented by the new connectivity to-
gether with the geometriesV (0) andV (1) is identical with the original shapes, i.e.
φV (0)(|K|) = φV0(|K0|) andφV (1)(|K|) = φV1(|K1|). Most of the time the paths
V (t) are required to be smooth. The generation of this family of shapes is typically
done in three subsequent steps:

1. Finding a correspondence between the meshes. More specifically, comput-
ing coordinatesW0,W1 that lie on the other mesh, i.e.W0 ∈ φV1(|K1|) and
W1 ∈ φV0(|K0|). Each coordinate inW0,W1 is represented as a barycen-
tric coordinate with respect to a simplex in the other mesh. Note thatφW0

will not map |K0| to φV1(|K1|) (and vice versa), as only the vertices are
mapped to the other mesh but not the edges and faces. Particularly impor-
tant is the alignment of automatically detected or user specified features of
the meshes. The process of finding correspondence between meshes is dis-
cussed in Chapter 2.

2. Generating a new, consistent mesh connectivityK together with two geo-
metric positionsV (0), V (1) for each vertex so that the shapes of the original
meshes are reproduced. The traditional morphing approach to this problem
is to create a superset of the simplicial complexesK0 andK1. However, re-
meshing techniques as used in multi-resolution techniques are also attractive.
Methods to generate such representation are discussed in Chapter 3.

3. Creating pathsV (t), t ∈]0, 1[for the vertices. While in general this is an
aesthetic problem, several constraints seem reasonable to help in the design
process. For example, in most applications the shape is not expected to col-
lapse or self intersect and, generally, the paths are expected to be smooth.
Techniques tackling the path problem are discussed in Chapter 4.

An illustration of this process is shown in Figure 1.2.
Using such mesh morphing techniques, a shape space can be build. However,

it is interesting to know the mathematical properties of the resulting space from
the mathematical properties of the morphing technique. This calls for a theoretical
model of shape spaces. In addition, some mesh morphing techniques are better
suited to be extended to more than one dimension. These issues are analyzed in
Chapter 5.

1.2. OVERVIEW & FRAMEWORK 5

in
it

ia
l
e
m

b

ed
ding

initial em
b
e
d
d
in

g

w
arp

in
g

ro
t a

t i
n
g

&

w
arping

merging

re
constru

ctiong reconstructiong

vertex interpolation

Figure 1.2: The process of mesh morphing illustrated at the example of meshes that
allow a mapping to the sphere. First, the meshes are embedded on the sphere, thus,
establishing correspondence between the set of vertex positions. The correspon-
dence is refined using information about feature correspondence. The embeddings
are used to generate one mesh containing, which can represent both input meshes.
A vertex interpolation scheme yields the morph.

6 CHAPTER 1. INTRODUCTION

The last two chapters of this work show applications of this approach. On one
hand, the idea of mapping from an abstract vector to a shape is used for informa-
tion visualization. On the other hand, spaces of meshes are used to generate and
compress geometric animations. This seems to be the most fruitful application of
this work so far.

While in general shapes will be represented as meshes throughout this work,
other types of representations (polygons,images) are used occasionally. In some
cases an algorithm was developed for such other representations and we believe it
is best explained for that representation and later extended to meshes. However,
sometimes the extension has not been found, yet, we present the algorithm for the
sake of completeness of this work.

1.3 Context of prior work

The idea of ashape spacehas been used occasionally for a long time. The term
seems to be first used by Herbert Edelsbrunner (in a private communication) and
has been published later [Cheng et al. 1998; Edelsbrunner 1999]. Spaces of shapes
have been used for a long time in visual computing, particularly face recognition
applications (Eigenfaces [Kirby & Sirovich 1990; Turk & Pentland 1991]). Re-
cently, a linear space has been used to model faces [Blanz & Vetter 1999], however,
the space is particularly designed for faces. In animation, a configuration space has
been limited by forming cross-products of small linear spaces [Ngo et al. 2000]. It
seems that most approaches to date use a space to solve a particular problem rather
than viewing the space as a fundamental concept for shape representation (as in
[Cheng et al. 1998; Edelsbrunner 1999] and this work).

Mesh morphing techniques have drawn much attention recently, following the
success of image morphing techniques. Image morphing has been developed for
special effects in feature films and commercials (see [Wolberg 1998] for a recent
survey on image morphing). The extensions of some of the concepts in image mor-
phing to explicit representations of shapes (such as meshes) are difficult because
of topological restrictions. Images do not carry the topology of the objects they
depict and, therefore, no problems from different topology can arise. The topology
problem as well as feature alignment and local control over the morph are recent
topics of research in mesh morphing. Lazarus & Verroust [1998] surveys 3D mor-
phing algorithms. This work has also resulted in survey on mesh morphing [Alexa
2001b; Alexa 2002b].

1.4. CONTRIBUTIONS 7

1.4 Contributions

The primary contributions of this work to the field of computer graphics are:

Mesh morphing Several contributions to the field of morphing meshes have been
made.

Feature alignment A mesh morphing technique for topological spheres
is introduced, which allows for particular easy feature specification
[Alexa 1999; Alexa 2000].

Mesh merging A new algorithm for generating one mesh from two input
meshes (mesh overlay) is presented, generalizing previous results. In
contrast to other approaches, the algorithm is asymptotically optimal
[Alexa 2002b].

Local control In image morphing one can easily specify which region trans-
forms when in the morph, e.g., first the nose, then the eyes and then the
rest of a face. We present similar techniques for mesh morphing [Alexa
2001a; Alexa 2002a].

Vertex path A method to generate intuitive and well behaving vertex paths
in morphing is introduced. The paradigm employed is that the object
is transformed rigidly as much as possible to avoid unnecessary defor-
mations [Alexa et al. 2000].

Visualization of multiparameter data Morph spaces are shown to be a useful
way to generate glyphs and icons in the visualization of multiparamter data.
Additionally, the paradigm allows for a flexible and ituitive generation of the
visualization [Alexa & M̈uller 1998b; Alexa & M̈uller 1999b].

Geometric animations Spaces of meshes are shown to be a particularly elegant
and effective way to generate, store, and communicate geometric animations.
The resulting compression is progressive and the achieved compression ra-
tios progress over previous work [Alexa et al. 2000; Alexa & Müller 2000].

8 CHAPTER 1. INTRODUCTION

Chapter 2

Corr espondence of shapes

In this chapter we aim at finding corresponding vertex positions on two or more
shapes.We assume the boundaries of the shapes to be manifolds and homeomor-
phic (as long as not noted otherwise). Given two manifold meshesM0 andM1,
the result of this procedure is a set of barycentric coordinatesB0 so that the geom-
etryW0 = φV1(B0) of the barycentric coordinates onM1 is an embeddingφW0 of
M0 on the surface ofM1, and vice versa. The idea is that this mapping of vertices
from one mesh to the other accomplishes the main part of a bijective mapping be-
tween the surfaces ofM0 andM1. After this step only the edges and faces have
to be adjusted accordingly.

The process is typically done by finding a common parameter domainD for
the surfaces. By mapping each surface bijectively to that parameter domain, the
mapping between the shapes is established. The typical parameter domains for
meshes in the context of morphing are the sphereS2 (in case the meshes are topo-
logical spheres) or a collection of topological disks represented as a piecewise lin-
ear parameter domainL. In case of the disks, the meshes have to be decomposed
into isomorphic structures of disks (which requires them to be homeomorphic).
A major constraint is to take into account user specified or automatically gener-
ated feature correspondences (i.e. vertex-vertex correspondences). Depending on
the approach chosen, this is done by re-parameterization or by decomposing the

9

10 CHAPTER 2. CORRESPONDENCE OF SHAPES

meshes according to the feature correspondence.
In case of mapping to a sphere, an embeddingφS with S = {s0, s1, . . .}, si ∈

R3, |si| = 1 is computed. The embeddings on the sphere are aligned according to
the feature correspondence using a bijective mapf that maps spheres into spheres.

{i} ∈ K0
W0−−−−→ φV1(B0)

φS0

y xφ−1
S1

S2 −−−−→
f

S2

The main problems in this approach are to compute the vertex coordinatesS0, S1

on the sphere and the re-parameterizationf .
The decomposition approach is more general and more difficult. In addition

to generate embeddings of the topological disks one has to decompose the meshes
in an isomorphic way, taking possible feature correspondences into account. For-
mally, an abstract simplicial complexL consisting of a subset of the vertices in
K0,K1 is used as coarse approximation of both meshes:

φV0(|L|) ≈ φV0(|K0|), φV1(|L|) ≈ φV1(|K1|)

Typically, L is topological minor ofK0 as well asK1, i.e. it is a partition of the
meshes. Vertices inK0,K1 are identified with a face inL and all vertices belonging
to a particular face are embedded in its planar shape. Thus, the common parameter
domain is the topological realization|L|, where each vertex is represented with
a barycentric coordinate with respect to a particular face inL. This requires to
embed pieces of the mesh in the plane.

{i} ∈ K0
W0−−−−→ φV1(B0)

φL0

y xφ−1
L1

|L| −−−−→
f

|L|

Following, techniques to embed simply-connected bounded and unbounded
meshes in the plane and on the sphere are explained. Then, approaches to dis-
sect the meshes into isomorphic patch-networks (or, equivalently, inducing base-
domains|L| on M0,M1) are discussed. After these basic embedding steps re-
parameterization for feature alignment is introduced. Finally, some comments on
rarely mentioned details in the correspondence problem are given.

2.1 Parameterizing topological disks

Simply-connected parts of the boundary of three dimensional shapes are homeo-
morphic to a disk and, therefore, called topological disks. In order to find a param-
eterization of such pieces we need a bijective map of a bounded, simply connected
mesh to the plane.

2.1. PARAMETERIZING TOPOLOGICAL DISKS 11

In our application we need to find a bijective map between patches. Thus, it
is necessary to constrain the boundary of the patches to a particular shape. Here,
we concentrate on mapping an arbitrary bounded and simply connected mesh to a
unit disk so that boundary vertices of the mesh lie on the unit circle. This limits the
applicability of several parameterization approaches, which allow the boundary
of a triangulated surface to be non-convex or not to be fixed a priori to achieve
smoother or less distorted mappings [Hormann & Greiner 2000; Lévy & Mallet
1998; Zigelmann et al. 2002].

In a first step the boundary vertices are fixed on the unit circle. First, the three
vertices from the base domainL are fixed in an equiangular way. This is necessary
to make sure that adjacent faces in the base domain have a continuous parameteri-
zation across base domain edges. The remaining boundary vertices are fixed so that
the arc lengths between neighboring vertices are proportional to the original edge
lengths. The remaining (interior) vertices are free and their position is determined
by a relation to neighboring vertices.

Most of the publicized approaches to solve this task minimize a quadratic er-
ror functional expressed as the vertex position relative to its neighbors. This boils
down to solving a system of linear equations. Non-linear approaches either use
higher order functionals to be minimized [Hormann & Greiner 2000; Lévy & Mal-
let 1998] or are of algorithmic nature (e.g. Gregory et al. [1999], which is discussed
after the linear techniques).

More specifically, let{vi} be the vertices to be mapped to the disk so that the
free interior vertices have indices0 ≤ i < n and the fixed boundary vertices have
indicesn ≤ i < N . We aim at finding positionswi in the plane with|wi| = 1, n ≤
i < N . The mapping is bijective if and only if no edges cross or, alternatively,

∀(i, j, k) ∈ K. det

wix wiy 1
wjx wjy 1
wkx wky 1

 > 0. (2.1)

However, this quadratic expression is awkward to use as a criterion to guarantee
that the planar embedding is valid, which is why most approaches resort to the
more restrictive but sufficient linear conditions.

In the following we discuss three ways to define a linear system, whose solution
yields positions for the vertices. In addition, the Divide&Conquer approach of
Gregory et al. [1998, 1999] is explained.

Barycentric mapping

Tutte [1963] has shown how to embed planar graphs in the plane using a barycen-
tric mapping. In our restricted setting, the idea is simply to place every interior
vertex at the centroid of its neighbors:

wi =
∑

j∈N (i)

1
|N (i)|

wj (2.2)

12 CHAPTER 2. CORRESPONDENCE OF SHAPES

SettingΛ = {λi,j} with

λi,j =

{
d−1

i {i, j} ∈ K

0 {i, j} 6∈ K
(2.3)

this can be written as the mentioned system of linear equations

(I − Λ)


w0

w1

. . .
wn−1

 =


∑N−1

i=n λ0,iwi∑N−1
i=n λ1,iwi

. . .∑N−1
i=n λn−1,iwi

 (2.4)

The matrix(I − Λ) has full rank and, thus, there is exactly one solution. Tutte
[1963] has shown that this solution is a valid embedding of the mesh.

Note, that the shape of the mesh has no effect on the placement of vertices in
the plane. All information for the embedding comes fromK and it is clear that the
embedding cannot reflect geometric properties contained inV of the mesh. In the
following we try to incorporate information about the original shape.

Shape preserving parameterization

In the barycentric mapping the weightsλ contain only topological information.
Floater [1997] determines weights that reflect the local shape of the mesh. More
precisely, theλ are so chosen that the angles and lengths of edges around a vertex
are taken into account.

To compute the weights for a particular vertexvi this vertex is placed in the
origin and incident edges are laid out in the plane using the original edge lengths
and angles proportional to the original angles. This is assumed to be the ideal
parameterizationw′i of the mesh with respect tovi.

The weights are computed in way that would result in placingwi in the origin
if the neighborsw′j were fixed and the system of equations had to be solved. Thus,
we have

wi =
(

0
0

)
=
∑

j∈N (i)

λi,jw′j (2.5)

and
1 =

∑
j∈N (i)

λi,j . (2.6)

If vi has only three neighbors this exactly determines the positive weights, for more
than three neighbors a positive solution has to be chosen from the space of possible
solutions. Note that positivity results in convex combinations, which are necessary
to assure a valid embedding. Floater presents a method to compute reasonable
weights, which are guaranteed to be positive: Take the cyclically ordered set of
neighborsjk ∈ N (i), k ∈ Z|N (i)|. Determine sets of weightsλi,j(k) with respect

2.1. PARAMETERIZING TOPOLOGICAL DISKS 13

Figure 2.1: A part of a mesh parameterized on the unit disk using different mapping
techniques.The original geometry is highlighted in red. A barycentric mapping
(see Section 2.1) does not reflect the geometry of the mesh. The shape preserving
embedding tries to capture the local shape of the mesh by locally approximating
conformal maps (see Section 2.1). Discretized harmonic embeddings minimize
metric distortion (see Section 2.1). The area preserving embedding is a recur-
sive process, which aims at approximating the original area of triangles (see Sec-
tion 2.1).

to three subsequent neighborsjk, jk+1, jk+2. This yields non-negativeλi,j(k) for
eachk. These weights are averaged to yield the final weights:

λi,j =
1

|N (i)|
∑

k

λi,j(k) (2.7)

The positionswi are computed by solving (2.4). Recently, Floater [2002, 2001]
has proven a generalization of Tutte’s theorem, which shows that it is sufficient
that each vertex is a convex combination of its neighbors.

Discrete harmonic mappings

Harmonic mappings are a concept found in several fields in mathematics using
differentials. Harmonic maps are often described as the functionu among all func-
tions mapping to a given domainΩ that minimize the Dirichlet energy

ED(u) =
1
2

∫
Ω
|∇u|2. (2.8)

Pinkall and Polthier [1993] show how to discretize this problem for triangles, so
that weights are derived per vertex and neighbor leading to a system of linear equa-
tions of the form of Eq. (2.4). A somewhat clearer derivation can be found in a
more recent work of Polthier [2000]. There, it is shown that the discrete Dirichlet
energy is

ED(u) =
1
4

∑
i,j|{i,j}∈K

(cot αi,j + cot βi,j)|vi − vj|2,

αi,j = ∠(i, k0, j), βi,j = ∠(i, k1, j), {i, j, kc} ∈ K (2.9)

14 CHAPTER 2. CORRESPONDENCE OF SHAPES

and that the minimizer∇E = 0 solves

0 =
1
2

∑
j∈N (i)

(cot αi,j + cot βi,j)(vi − vj) (2.10)

at each vertexi. This leads to weights

λi,j =

{ cot αi,j+cot βi,j∑
j∈N (i)(cot αi,j+cot βi,j)

{i, j} ∈ K

0 {i, j} 6∈ K
(2.11)

which are used to obtain an embedding by solving Eq. (2.4).
Another formulation, which is probably better known in the graphics commu-

nity, is given by Eck et al. [1995].

Area preserving Divide&Conquer mapping

Gregory et al. [1998, 1999] describe a recursive algorithm that aims at preserving
the area of triangles in the mapping. The idea is to induce the mapping be recur-
sively dividing the patch into two pieces, which are then mapped independently.
The dissections are so chosen that the ratio of areas in the original mesh and the
embedding are approximately the same.

In particular, two diametrical vertices on the boundary of a patch are chosen.
A shortest path is computed using Dijkstra’s algorithm. This path is mapped to
the segment connecting the two vertices. Then the path is altered to minimize the
difference of the ratio of areas in the embedding and on the triangulated surface.
The segment divides the patch into two halves, which are treated in the same way,
until all vertices are mapped.

Comparison and Conclusion

We have embedded parts of a mesh using the four approaches presented above.
Note that the solution of matrix equation (2.4) could be performed using hierarchi-
cal techniques [Lee et al. 1998; Hormann et al. 1999], which is equivalent to using
multi-grid methods. However, the matrix has sparse structure and we have found it
sufficient to use iterative solvers exploiting the sparseness.

Some of the results of the comparison are shown in Figure 2.1. It is appar-
ent that the general structure of larger and smaller triangles is very similar in all
embeddings generated using linear optimization techniques. This suggests that
connectivity is the major factor in these type of embeddings. Changing the weights
used to compute the embedding only changes the local behavior of the embedding.
They share the problem of area compression: Inner triangles have much less area
than outer triangles. The area preserving scheme eliminates this problem at the
cost of distorted triangle shapes.

In fact, all these parameterizations might be unusable due to the high ratio
of either areas or angles and the limited precision of floating point numbers. It

2.2. PARAMETERIZING TOPOLOGICAL SPHERES 15

hasbeen observed that the base domain should have enough “skin” to allow for a
reasonable parameterization of the mesh.

The small differences in local shape do not seem to have much influence on the
resulting correspondence of the shapes. This is even more true when local features
of the shapes are aligned by re-parameterization (see Section 2.4).

2.2 Parameterizing topological spheres

Unbounded simply-connected 2-manifolds are called topological spheres because
they are homeomorphic to spheres. A natural parameter domain for such shapes is,
therefore, a unit sphere.

2.2.1 Star shapes

Kent et al. [1991, 1992] were the first to present techniques to map certain classes
of genus 0 meshes to a sphere. A particularly simple class of objects are convex
shapes. A convex shape has the property that a straight line connecting any two
boundary points of the shape lies completely inside the model. Thus, all points
are visible form any interior point of the shape and a projection through an interior
point onto an enclosing sphere is necessarily bijective.

A generalization of this idea extends the class of shapes to star shapes. Such
shapes have at least one interior point so that straight lines connecting this interior
point with boundary points lie completely inside the shape. Interior points with
this property are called star points. Obviously, projecting the boundary points of a
shape through a star point onto an enclosing sphere is a bijective mapping. Specif-
ically, if point O is visible from all vertices of the mesh then translate all points
so thatO coincides with the origin. Then normalize all vertex coordinates. These
vertex coordinates are the parameterization of the mesh vertices on a unit sphere.
An illustration is given in Figure 2.2

The only problem is to determine whether a shape is star shaped and if so to find
a star point. For piecewise linear shapes (meshes) this can be done by intersecting
half-spaces induced by the face elements of the mesh. The intersection of all half-
spaces is called kernel. If the kernel is non-empty the mesh is star shaped and every
point inside the (convex) kernel is a suitable star point. The kernel of a mesh in
3D can be computed inO(n log n) using standard techniques [Preparata & Shamos
1985].

2.2.2 Star shapes around an axis

However, genus 0 objects can be parameterized not only on the sphere. Lazarus
and Verroust [1997] parameterize the polyhedra over an axis and two spherical
caps at the ends of the axis. The objects which are suitable for this approach can be
considered as star-shaped around a 3d curve. The curves have to be specified by the
user for each input object. The curves are used as axes to parameterize the object

16 CHAPTER 2. CORRESPONDENCE OF SHAPES

Figure 2.2: A polygonal star shape and its projection to a circle. The kernel of a
starshape is the intersection of all open half spaces over the edges (faces in case of
a polyhedron). Every point in the kernel induces a bijective mapping to the circle
by projection.

onto three sheets. One domain results from cross-sections which are orthogonal
to the axis, and two result from hemispherical regions around the endpoints of the
axis.

2.2.3 Curve evolution

Carmel and Cohen-Or [1998] use curve evolution to find a parameterization of a
mesh. The curve evolution process iteratively deforms the curve over time. The
deformation of the curve from one time instance to the next is defined by curva-
ture and normal field of the curve. Points of the curve are moved along normal
directions with a step width depending on the local curvature. Using the right pa-
rameters, curve evolution will transform a simple curve into a convex curve so that
the curve is simple in all time steps. Carmel and Cohen-Or adapt curve evolution
for polygons and polyhedra since the theory for the continuous case does not hold
in the discrete one. See Figure 2.3 for an illustration.

2.2.4 Simplification

Shapiro and Tal [1998] seem to be the first to present a reliable scheme that turns
arbitrary genus 0 polyhedra into convex shapes. They first simplify the shape us-
ing vertex removal until the simplified shape is a tetrahedron. Only vertices with
valence 3,4, and 5 are removed. Since the mesh is triangular such vertices always
exist: It follows easily from the Euler-Poincare formulas that the average degree in
any triangular (surface) mesh is less than 6. Thus, at least one vertex with degree

2.2. PARAMETERIZING TOPOLOGICAL SPHERES 17

Figure 4: Two examples of polygon evolution

parameterizing the vertices positions on the polygon and using it to reposition
the vertices on the circle, might be possible in the 2D cases. These algorithms
are not extendable to 3D, and since our goal is a 3D algorithm we discarded
them.

The discrete normal's direction at a given vertex is computed as the
direction of the angle bisector of the angle formed by the two edges meeting
at the vertex. The discrete curvature ci at vertex vi is computed by

ci =
_xi�yi � �xi _yi

(_x2i + _y2i)
3

2

(10)

where

_xi =
xi+1 � xi�1

Lf + Lb

; _yi =
yi+1 � yi�1

Lf + Lb

;

_xfi =
xi+1 � xi

Lf

; _xbi =
xi � xi�1

Lb

;

�xi =
_xfi � _xbi
Lf + Lb

; �yi =
_yfi � _ybi
Lf + Lb

;

where Lf is the forward edge's length from vi to vi+1, and Lb is the backward
edge's length from vi�1 to vi.

12

Figure 2.3: Two examples for curve evolution adapted to polygons.

strictly less than 6 has to exist.
Once the shape is simplified to a tetrahedron, vertices are re-attach making sure

that the shape stays convex. More specifically, it is shown how to attach vertices
with degree 3, 4 and 5 to a convex shape so that the shape stays convex. More
specifically, if a vertex{i} has to be added to a facef , its position has to be outside
the convex hull of the current mesh but inside the kernel of faces adjacent tof .

2.2.5 Spring embedding

We have introduced a variation of spring embedding to embed polyhedra on the
unit sphere [Alexa 1999; Alexa 2000]. In spring embedding algorithms, one tries
to minimize a potential defined as

W =
∑
{i,j}∈E

κi,j ‖wi −wj‖2 . (2.12)

Algorithms based on this paradigm produce nice results in the plane (see the previ-
ous section). In the planar case, the embedding is supported by a fixed peripheral
cycle of the graph. Obviously, a peripheral cycle does not make sense on a closed
manifold. But, if none of the vertices is fixed, the minimum energy state is reached
when all vertices coincide.

Our solution to this problem is as follows: Start with a reasonably equal dis-
tribution of the vertices on the sphere. During the relaxation towards a minimum
energy state longer edges are penalized. Because the collapse of the vertices into
one point has to pull at least one triangle over the equator, penalizing long edges
effectively prevents the vertices from collapsing.

More precisely, in each step of the relaxation process, vertexi is moved

pi = c

∑
{i,j}∈E (wi −wj) ‖wi −wj‖

|N (i)|
(2.13)

Multiplying (wi −wj) by its length results in a quadratic weight for the edge
lengths, such that longer edges are shortened. The constantc is used to control

18 CHAPTER 2. CORRESPONDENCE OF SHAPES

the overall move length. Withc = 1, the relaxation runs robustly but not very
efficiently. For very short edges, the quadratic weight makes moves very short and,
thus, convergence very slow. Therefore, it is advisable to scale up the move length
proportionally to the inverse of the longest edge incident upon one vertex. The
result is a much faster convergence.

Because(wi + pi) is not necessarily on the unit-sphere, we normalize the term.

Gumhold [2000] has reported another solution to the same problem, which is
simpler and more elegant: The sphere is re-centered after each relaxation round,
i.e.

wi =
1
n

∑
j∈K

wj

−wi (2.14)

If we want to guarantee the topological correctness of the embedding, an ep-
silon bound of any kind is inadequate as the only termination criterion. Instead, the
process is finished only when a valid embedding is found. The embedding is valid,
if and only if all faces are oriented the same, i.e. the side that was on the outside of
the model is on the outside of the sphere (obviously, the surface cannot fold back
upon itself without at least one triangle being upside down).

We can check this condition by testing the orientation of three consecutive ver-
tices along the boundary of each face. Here, orientation refers to whether the three
vertices make a clockwise turn on the surface of the sphere. This can be computed
by evaluatingsgn ((w0 ×w1) ·w2). So, the relaxation is not terminated until the
orientation of each face is the same as in the original model. Because this test is
rather expensive, it should be done only everyR iterations. We useR = 10000.
After the embedding is valid a conventional epsilon bound is used as the final ter-
mination criterion. Actually, we usemaxi (‖pi‖) < ε.

A relaxation process for the polyhedral model of a horse is depicted in Fig-
ure 2.4 and resulting embeddings for several models are shown in Figure 2.5.

0 iterations 10 iterations 100 itarations 1000 iterations 10000 iterations

Figure 2.4: Embedding a polyhedral object on a sphere using relaxation. Initially,
thevertices are projected through an interior point of the model onto a unit sphere.
The relaxation is finished when all faces are oriented correctly. Incorrectly oriented
faces are surrounded by red edges.

2.2. PARAMETERIZING TOPOLOGICAL SPHERES 19

Figure 2.5: Sphere embeddings of the models of a giraffe, a hammerhead shark,
anda swordfish.

2.2.6 Embedding in the plane

It is long known that the topology of the sphere can be embedded into the 2d plane.
Kanai et al. [1997, 1998] use harmonic mappings to embed genus zero meshes in
the plane. To find the parameterization in the plane they use the discrete harmonic
mappings (see Section 2.1).

Comparison and Conclusion

None of the techniques discussed above makes a particular attempt to preserve the
properties of the original mesh. Additional constraints (as discussed in Section 2.4)
are necessary to make these embeddings useful. The central projection is obviously
limited to a small class of objects. We find that the two techniques for general
genus 0 meshes have somewhat complementary features/problems: The simplifi-
cation approach is more robust (in terms of geometric computations and sensitivity
to topological defects in the mesh) while the relaxation generates smooth embed-
dings. Both techniques suffer from the area compression problem mentioned ear-
lier.

20 CHAPTER 2. CORRESPONDENCE OF SHAPES

2.3 Isomorphic dissection

The more general approach to establish correspondence between meshes is to dis-
sect them into pieces. Each piece is a topological disk and can be mapped to a
to the plane using one of the techniques discussed in Section 2.1. Of course, the
shapes have to be split in such a way that the graphs representing the dissections
have equivalent topologies.

This approach is not limited to a particular topology of the shapes, since the
dissection results in a set of topological disks. However, the shapes need to be
homeomorphic so that their dissections could be topologically equivalent. With
extra conditions it is possible to deal also with topologically different shapes.

2.3.1 Automatic dissection of shapes

Ideally, the dissection process would not require the user to assist. However, the
fully automatic dissection of two meshes into isomorphic structures seems to be
a hard problem. The approach of Kanai et al. [1997, 1998] uses a single patch
and, thus, automatically decomposes into isomorphic structures. However, the ap-
proach is limited to genus 0 meshes and suffers from the already mentioned area
compression problems in the embedding.

Several techniques exist for the dissection of a single mesh. In the context
of multi resolution models several approaches require the mesh to be broken into
patches. This problem is known as mesh partitioning and naturally related to graph
theory. Some algorithms try to balance the size of patches (e.g., Eck et al. [1995],
Karypis & Kumar [1998]).

In many multi resolution methods, however, the base domain (the structure of
large patches) is found by simplifying the mesh using vertex removal [Schroeder
et al. 1992; Schroeder 1997; Klein 1998; Kobbelt et al. 1998] or edge collapse
[Hoppe 1996; Garland & Heckbert 1997; Lindstrom & Turk 1998].

These techniques might help in deriving a single base domain for two meshes.
Lee et al. [1999] use two independently established base domain to generate one
base domain for both meshes. They employ their MAPS scheme [Lee et al. 1998]
to build independent parameterizations over different base domains. These base
domains are merged (see Section 4) so that the resulting merged base domain con-
tains both independent base domains as subgraphs. Note, that in general the cor-
respondence problem had to be solved for the geometry of the base domains. Lee
et al. assume that the geometry of the base domains is so similar that this problem
could be solved with simple heuristics (e.g. projecting in normal direction).

2.3.2 User specification of isomorphic dissections

The underlying idea of all works in this section is that the user specifies the topol-
ogy/connectivity of the base domain and the location of the base domain vertices

2.3. ISOMORPHIC DISSECTION 21

on the original meshes. Tracing the edges of the base domain on the mesh is more
or less done automatically.

DeCarlo and Gallier [1996] do not assist the user specifying the edges. While
this way of defining the dissection gives a lot of freedom to the user it is very time
consuming.

Gregory et al. [1998, 1999] assist the user in defining the edges (see Fig-
ure 2.6). The base domain is developed while intersecting the surfaces. The user
defines a pair of vertices on a mesh and the system finds a shortest path of mesh
vertices connecting the defined vertices. Subsequently, feature vertices can be con-
nected to existing feature vertices using shortest paths along the mesh. By picking
corresponding vertices in the input meshes the system will construct the same graph
in the input meshes. A problem could arise from the fact that only mesh vertices
are used to find shortest path.

Figure 2.6: User guided decomposition of meshes. Here, the user constructs
closedloops and segments to dissect two meshes into isomorphic patch networks.
Reprinted from Gregory et al. [1998].

The works of Bao & Peng [1998] and Zöckler et al. [2000] are similar in spirit.
However, it seems that they allow to use more points to define the boundary of a
patch. Points are connected with the shortest paths in the vertex-edge graph as in
the work of Gregory et al. [1998, 1999]

In the approach of Kanai et al. [2000] the user first defines a set of correspond-
ing feature vertices. Aware of the problems resulting from using a shortest path

22 CHAPTER 2. CORRESPONDENCE OF SHAPES

consisting of mesh vertices the authors compute the shortest path on the piecewise
linear surface connecting the feature vertices. This path may or may not coincide
with vertices and edges. Figure 2.7 shows the resulting dissection for two cars.
Since computing exact shortest path on polyhedral surfaces is difficult and time
consuming they employ an approximate method that refines the original mesh and
uses Dijkstra’s algorithm [Kanai & Suzuki 2000].

Figure 2.7: In the approach of Kanai et al. [2000] the user selects only correspond-
ing vertices and how they are to be connected. The mesh is the dissected using
shortest path connecting the vertices. Reprinted from Kanai et al. [2000].

However, even using the exact shortest path can lead to problems. Praun et al.
[2001] illustrate the problem and propose better solutions: If a shortest path would
cross an already established edge of the base domain, the shortest possible con-
nection avoiding the intersection is computed using a wavefront algorithm. How-
ever, also the order of vertices being connected is important, because several edges
might enclose an unconnected vertex. This problem can be avoided by traversing
the vertices along a spanning tree.

In our view, the underlying problem is that on non-convex and unbounded
shapes more than one geodesic between two points exists on the surface. We be-
lieve that a set of these geodesics is sufficient to trace out the given connectivity of
the base domain. To implement this, first all geodesics between connected vertices
of the base domain would be computed. Then, these edges would be inspected for
possible intersection. The intersection-free subset yields the decomposition of the
original mesh.

2.4. FEATURE ALIGNMENT 23

2.4 Feature alignment

The necessity for aligning prominent features becomes evident even in very simple
examples. Figure 2.8 shows two morphs between models of a young pig and a
grown-up pig. In the upper sequence, no features were aligned and the resulting
morph is unacceptable. The lower sequence of Figure 2.8 shows a morph produced
with some features (ears, eyes, hoofs, and the tail) aligned. The result is obviously
more pleasing. Surprisingly, the need of user guidance becomes more obvious
when the shapes are similar. This is because we can envision a transformation, i.e.
we expect common features of the models (head, legs, etc.) to be preserved. But
this does not happen, of course, due to the different mesh topology of the models
(in this example, the different mesh topologies are obvious from the different vertex
counts of the models).

Figure 2.8: Morphs between the models of a young pig and a grown-up pig. In
theupper row, no feature alignment is used, which leads to unpleasant effects (e.g.,
eight legs in the intermediate models). In the lower row, the eyes, ears, hoofs, and
the tail are aligned (a total of 17 vertex-vertex correspondences), yielding a smooth
transformation.

2.4.1 User-selected vs. shape features

A difficult task is to identify common features of several shapes. It seems im-
possible to automatically find such common features as they are mostly defined in
a semantic and not necessarily in a geometric way. The user can identify these
features and provide information about their location and correspondence (for in-
stance as vertex-vertex correspondence of a few vertices). The algorithm should
exploit this information as much as possible.

All dissection type methods explained above offer this way of user-control.
Since the user explicitly chooses corresponding patches (and, therefore, corre-

24 CHAPTER 2. CORRESPONDENCE OF SHAPES

sponding edges and vertices) they can specify which parts of the meshes corre-
spond. However, except for the techniques presented by Kanai et al. the user is
also involved in other tasks, which make the process complicated and lengthy.

However, the shapes’ geometries also contain information useful to exploit.
One could extract prominent geometric features of the shapes (e.g. Hubeli & Gross
[2001]) and try to match them. Several functions over the parameter domain of the
function seem to be worth looking at. It is important that these functions are inde-
pendent of the parameterization, i.e. are intrinsic to the shape and do not change if
the description of the shape is changed. Such functions are especially considered in
differential geometry, which could be seen as exploring a shape on the shape, with-
out a distant view. The most prominent assets for describing shapes in differential
geometry are

• normals (which are independent of translation and scaling but sensitive to
rotation) and

• curvature (principal curvatures,mean or Gaussian curvature), which is inde-
pendent of translation and rotation but sensitive to scaling.

The parameterization of the shape’s boundary allows to represent these quantities
as a function in two variables, i.e. the normaln : R2 → R3 or the Gaussian cur-
vaturec : R2 → R. More generally, these descriptions are part of the fundamental
forms of the approximated smooth surface.

It is clear that this information about the shapes does not lead to point to point
correspondences such as user selected features. Instead the quality of the match
of two shapes is quantified as a function of the distance of the shape descriptors.
For example, Surahzky and Elber [2001] use the Integral over the inner products
of normals:

D =
∫

S
〈n1, n2〉 dS (2.15)

Here, the inner product between normals and the integration over the surface rep-
resent particular choices. One might choose another metric for the difference of
normals as well as another method to take into account the set of differences (e.g.
the maximum of the angles between normals). In order to match shapes based on
such criteria the parameterization is changed so that the functional is minimized.
Note that no point has an a-priori optimum placement making this problem much
harder to solve than aligning specified point to point correspondences.

2.4.2 Transforming to align features

As a first step in an alignment procedure the parameter domains should be trans-
formed using affine transform to roughly align the features. Note that this is not
possible for parameterizations resulting from dissection as the orientation of each
patch is determined by neighboring patches.

2.4. FEATURE ALIGNMENT 25

In [Alexa 1999; Alexa 2000] we align a set of point to point correspondences
by rotating the spherical embeddings of the mesh. The objective function to be
minimized is the squared distance of corresponding points, however, we could have
also used the inner products of points on the sphere. The minimization problem can
be solved using multidimensional numerical minimization (three values have to be
found: an axis of rotation and an angle).

2.4.3 Warping parameterizations to align features

In general, one could generate any parameterization of the meshes as a first step
to establish correspondence. After this, the parameterization domain can be used
to align user selected features or automatically generated features in terms of a
re-parameterization of one or more of the initial parameterizations.

Zöckler et al. [2000] and our approaches [Alexa 1999; Alexa 2000] allow the
user to select a set of point to point correspondences. Warping techniques similar
to those used in image morphing (e.g., see [Ruprecht & Muller 1995; Wolberg
1998]) are used deform the parameterization so that cooresponding points coincide.
Whether the parameter domain is a disk as in [Zöckler et al. 2000] or a sphere as
in [Alexa 1999; Alexa 2000] does not make a difference for the general approach.

In contrast to image warping, it is absolutely necessary that the warp does not
introduce incorrectly oriented faces, This would be less of a problem, if vertices as
well as edges would be warped. But since the algorithm later requires edge-edge
intersection tests, warping the edges is impractical. Instead, edges should be (still)
defined as the shortest path between vertices. That is, we warp the vertices only.
Thus, even injective warping functions might introduce fold-over.

The solution is to make several local and small deformations instead of search-
ing for one warping function that is applied once to all vertices. This way, we can
control the effect of the deformation (does it introduce fold-over, or not). The map-
ping function proposed in [Alexa 1999; Alexa 2000] to move a vertex fromw to
ŵ is

f(x) =
{

x + c (r − ‖x−w‖) (ŵ −w) ‖x−w‖ < r
x ‖x−w‖ ≥ r

(2.16)

wherer is the radius of influence for the map. However, other functions could be
used as well.

We have proposed to warp only as much as is possible with the given trian-
gulation. If the mapping starts to introduce fold-over in the triangulation we first
shorten the move length by adjusting the constantc and then make the map more
local by adjusting the radius of influencer. However, the features are not guaran-
teed to coincide after this process.

The map is applied to both models and the necessary move is derived from the
current positions. That is, we do not define an intermediate position for the feature
vertices, as is common in image morphing. So, in case the deformation in one

26 CHAPTER 2. CORRESPONDENCE OF SHAPES

model would introduce fold-overs, coincidence can still be achieved by deforming
the other model.

Zöckler et al use the fold-over free warping scheme of Fujimura and Makarov
[1998]. They also warp in small steps. However, if fold-over occurs they change
the mesh topology to assure that the embedding stays valid. In particular, they use
edge flips for this task. This changes the original triangulation of the meshes.

Recent work in texture mapping allows to incorporate point constraints [Eck-
stein et al. 2001; Ĺevy 2001]. These techniques could be applied for the problem
here.

Lévy [2001] formulates the problem of satisfying given point constraints by
incorporating the squared error of the point correspondences into the energy func-
tional used to generate the parameterization. Using a scalar to weigh the impor-
tance of the point correspondence allows to trade between the regularization term
for the smoothness of the parameterization and the accuracy of satisfying the con-
straints. On the other hand this mixed energy functional does not guarantee a valid
embedding. A possible way would be to start with a valid embedding and then
increasing importance of the constraints as long as the embedding stays valid.

Eckstein et al. [2001] propose a scheme that allows to exactly satisfy con-
straints whenever possible. It might be necessary to introduce additional vertices
in the triangulation for this. The triangulation is first simplified so that it contains
only the constrained vertices. These are placed accordingly and the mesh is then
refined again. During the refinement process it might be necessary to insert addi-
tional vertices because straight edges connecting vertices could intersect.

2.5 Conclusions

The ideal algorithm for finding a parameterization of a mesh has not been found.
In general, coarse simplifications of the original meshes are accepted as useful
parameter domains. In the context of morphing they are not ideal for two reasons:

• For seemingly different shapes a common base domain might be hard to find
and the decomposition of the original meshforcesthe user to interact.

• The alignment of features (e.g. shape features) is restricted to corresponding
patches of the base domain.

In view of these limitations the simple solution to embed topological spheres on
a unit sphere has some appeal. However, embedding complex shapes on a sphere
might result in a distorted parameterization because the local ratio of surface area
between sphere and original shape differs.

It seems that finding a common base domain is the method of choice. For appli-
cations, in which one base domain is needed for more than one shape, techniques
should be developed that include geometric features in the decomposition process.

2.5. CONCLUSIONS 27

We still search for a reliable method that works on arbitrary input, takes any
number of user-constraints into account, optimizes a reasonable resemblance of the
shapes, and is sufficiently fast.

28 CHAPTER 2. CORRESPONDENCE OF SHAPES

Chapter 3

Constructing representations

+ =

Given two embeddingsW0,W1 of meshes(V0,K0), (V1,K1) on a common
domainD we aim at generating one mesh connectivityK with vertex positions
V (0),V (1) so that the original shapes are reproduced, i.e.

φV (0)(|K|) = φV0(|K0|), φV (1)(|K|) = φV1(|K1|). (3.1)

Note that the vertex positionsV (0), V (1) are already available using the barycen-
tric coordinates of each vertex w.r.t. the base domain. These barycentric coor-
dinates allow to map each vertex from one mesh to the other. However, the exact
mapping of vertices onto the piecewise linear surface might lead to bad results. The
next subsection discusses better alternatives for the absolute position of vertices.

The main point of this chapter is to establish the common connectivityK. The
typical approach found in the morphing literature is to generate a supergraph of the
connectivitiesK0,K1, i.e. one that contains the simplices of both plus additional
vertices if edges cross. This graph is found bymap overlay. Here, we distinguish
two cases:

1. Bounded meshes embedded in a disk.

2. Unbounded meshes, assuming the geometries of several meshes are suffi-
ciently close.

These cases stem from the parameterization methods presented in the previous
chapter.

29

30 CHAPTER 3. CONSTRUCTING REPRESENTATIONS

Looking at multiresolution techniques for meshes is an alternative way of gen-
erating a common connectivity is remeshing. In particular, the parameterization is
exploited to map planar coordinates of refinement operators to coordinates on the
surface of the shapes. Provided the base domain accurately represents sharp fea-
tures of the meshes this approach has the advantage that it is much easier to scale.
The size can be easily adapted to the desired precision. For the same reason this
approach is easier to extend to more than two meshes.

3.1 Mapping parameter values to the surface

After the meshes have been parameterized it is easy to find the position of a par-
ticular vertex on the surface of a mesh. Assume we want to find the position of
vertexv1i

of the first mesh on the second mesh. We determine the vertices{w2j
}

comprising the face in the parameterization in which the parameter domain posi-
tion w1i

lies. Then,w1i
is represented in barycentric coordinates with respect to

{w2j
}:

w1i
=
∑

bkw2j(k)
(3.2)

The position ofv1i
in the other mesh is found as

w1i

′ =
∑

bkv2j(k)
(3.3)

This is the exact position on the piecewise linear shape and the way used in most
of the morphing literature.

However, this does not take into account the idea that piecewise linear shapes
are (in most cases) just approximations of smooth shapes. Particular practical prob-
lems occur when normals have to be rebuild from these new geometric positions:
Vertices inside a face get the face’s normal. If standard rendering methods are used
(vertex normals and Gouraud shading) this results in degenerate shading.

It would be advantageous to find positions which result in a smooth surface.
More specifically, we would like to use the barycentric coordinates to find positions
overa triangular face and not necessarily on the face. This calls for methods defin-
ing a smooth surface from a coarse mesh. An obvious choice for such a method
would be subdivision (e.g., Loop subdivision [Loop & DeRose 1990] or Kobbelts√

3-scheme[Kobbelt 2000]).

3.2 Map overlay data structure

We need a data structure to store the meshes, which allows to add and remove
edges, gives quick access to topological information (e.g., the ordering of edges
around a vertex), and is not too heavy in terms of storage. We choose the doubly
connected edge list [Muller & Preparata 1978] (sometimes called twin-edge data
structure). The basic data type of this data structure is the edge. Edges are stored
as two directed half edges. More specifically, the following information is stored:

3.3. OPEN MESHES EMBEDDED IN A DISK 31

e

Twin(e)

Next(e)

IncidentFace(e)

Origin(e)
Next(Twin(e))

Figure 3.1: The doubly connected edge list.

Face The face record contains a pointer to an arbitrary half edge on its boundary.

Edge Each edge record contains pointers to

• its originating vertex,

• the face it bounds,

• the half edge connecting the same vertices but in the opposite direction
(its twin),

• the next half edge along the boundary of the bounded face.

Vertex The vertex record contains a pointer to an arbitrary half edge originating
from this vertex as well as location in space and other attributes (e.g., normal,
color, texture coordinate).

Figure3.1 illustrates the data structure. Note that it is particular easy to iterate along
the boundaries of faces (next pointers) or through all edges incident upon a vertex
in their circular order (twin→ next). A good description of the doubly connected
edge list can be found in de Berg et al. [1997].

3.3 Open meshes embedded in a disk

Several algorithms were proposed for the problem of overlaying planar graphs -
see a textbook [de Berg et al. 1997]. In general, the planar map overlay has the
complexityO(n log n + k), wheren is the number of edges andk is the number
of intersections. If the two subdivisions are connected (as in our case) the planar
overlay can be computed inO(n + k) [Finke & Hinrichs 1995].

The general paradigm for planar overlay isplane sweep. Sweep algorithms
process the input with a virtual line moving along its normal direction. Whenever
a vertex intersects the sweep line the corresponding edge is added (the vertex is the

32 CHAPTER 3. CONSTRUCTING REPRESENTATIONS

starting point of this edge) or removed (the vertex is the endpoint) from the list of
active edges. The list of active edges is tested for intersection with added edges. To
further reduce the number of necessary intersection tests the active edges are stored
in their order along the sweep line. This is done by inserting edges in the correct
position. In addition, the order has to be updated at intersection points. Using the
ordering, only neighboring edges have to be tested for intersection. This processing
leads to an algorithm with complexityO(n log n + k). By exploiting that two
connected graphs are intersected the complexity can be reduced toO(n + k).

In the case that meshes are embedded on the disk special care has to be taken
for the boundaries of the meshes. While we assume that the embedding is surjective
(i.e. fills the disk), the boundary in fact is a polygon leaving small empty regions
between the disk and the polygon. However, it is clear that the boundaries of the
meshes to overlay should be mapped onto each other. So in order to avoid that
the boundary polygons intersect with inner edges of the other mesh the boundaries
have to be merged first. This is done by simply connecting the vertices of all
meshes on the disk along the linear order given by the disks boundary. After this
boundary polygon has been established the planar mesh overlay procedure can be
computed.

3.4 Closed meshes in arbitrary position

There seem to be only a few publications about the overlay of meshes in general
position (i.e. the triangulated surfaces are close to each other but not e.g. planar).
Note that plane sweep solutions are not applicable in this case. Few publications
deal with overlaying two subdivision of the sphere. Kent et al. [1992] give an algo-
rithm for the sphere overlay problem, which needsO(n + k log k) time. We have
presented a solution to this particular problem, whichreports the intersection of
two spherical subdivisions in the optimum time ofO(n + k) [Alexa 2000]. Also,
both algorithms exploit the topological properties of both subdivisions, which are
used to guarantee the correct order of intersections. Here, we generalize these
algorithms to work on two arbitrary shaped meshes, which are assumed to be suffi-
ciently close to each other. We also alleviate the problem that the published version
[Alexa 2000] had a worst case complexity ofO(n + k log n) for theconstruction
of the merged mesh using the already reported intersections.

The algorithm consists of two main parts: First, finding all intersections, and
second, constructing a representation for the merged model.

3.5 Finding the intersections

In the algorithm two geometric functions are needed: One to decide if and where
two edges intersect on the sphere, and a second to decide whether a point lies in-
side a face. Both geometric properties can be checked in a projection to the tangent

3.5. FINDING THE INTERSECTIONS 33

Figure 3.2: Edge-edge intersections are determined by following an edge (blue in
this illustration) over the faces of the other triangulation (red). After finding an
intersection the face-to-face coherence exploited and only the edges of the next
face are tested.

plane of the surfaces. Since the meshes are supposed to be close in space their tan-
gent planes should not differ to much. A suitable way of finding a common tangent
plane is to take the cross product of two edges (i.e. the two edges to intersect, or
two edges of the face to check).

The basic idea is to traverse the graphs breadth first, keeping information about
the face that contains the current working edge and exploiting face-to-face neighbor
information. Choose an arbitrary vertex{i} ∈ K0 and search the 2-simplexf =
{f1, f2, f3} ∈ K1 that contains it in under the bijective mapping. Start with an
edgee ∈ S(i). Storee together withf on a stack. In general, the stack will
always contain a directed edge together with the face in the other mesh containing
the origin of this edge. The basic idea of the traversal is to walk over the faces
following an edge (see Figure 3.2). Each edgee = {e1, e2} is intersected first with
the three edges{f1, f2}, {f2, f3}, {f3, f1} boundingf , which containsφW0(e1).
When an intersection is found the working edgee is emanating to the next face, i.e.
the one that shares the intersected edge. This face is set to bef and is inspected in
turn.

The same process is repeated with edges inK1. This is necessary to find the
topological orders of edges inK0 cutting edges inK1. Each edge is tested against
three edges plus two additional intersection tests for each intersection being found.
Thus, the algorithm has constant costs per edge and per intersection and the com-
plexity isO(n + k).

34 CHAPTER 3. CONSTRUCTING REPRESENTATIONS

3.6 Generating the data structures

An appropriate data structure for storing the intersections is needed. Information
about an intersection should be accessible from both intersecting edges at constant
costs. We use a hashtable with edge indices as key values. When edge-edge in-
tersections are found and stored in the intersection lists a pointer to the entry in
the hashtable is stored. This means, both edges point to the same data structure
containing information about the intersection (the intersecting edges in the begin-
ning). The hashtable is only needed to access the entry when the intersections have
already been computed by processingK0 and need to be found when intersections
from K1 are generated. After reporting all intersections the hashtable is discarded.

The following two step algorithm constructs the merged mesh: First, edges in
K0 are cut. We iterate through the intersection list of an edge and cut the edge at
each intersection point. Thus, a new edge (two half edges) are generated for each
intersection. The new edge represents the part of the edge that has to be processed.
At each intersection the data structure containing the respective information is up-
dated to now contain the two parts of the edge incident upon the intersection point.
At this point only the twin pointers of the half edges are updated. The next pointers
are left empty.

Second, edges inK1 are processed. As in the first step edges are cut into
two pieces at each intersection point. However, this time also the next pointers
are updated. This is done by using the information stored in the intersection data
structure, which now contains both edges of the already cut edge inK1.

After all intersections are processed in this way we have a valid vertex and
edge lists of the embedding. It remains to compute the records for the faces. Note
that faces created from intersecting triangles are convex polygons with 3 to 6 sides,
which should be triangulated. This is another subtlety, which is more involved
as it may seem: While the polygon resulting from the intersection is convex it is
not clear what shape it has in other geometric configurations, e.g. those of the
source meshes. In principle one should find a triangulation that is admissible in all
source geometries. This might be difficult and could lead to the need for additional
vertices. The problem is known ascompatible triangulationand discussed in detail
in another context in Section 4.4.1.

Note that it has been communicated that this approach could be extended to
bounded meshes, however, boundaries require special treatment beyond the scope
of this work.

3.7 Remeshing

A mesh is typically just an approximation of a shape. We have already seen that
the mesh overlay process together with using coordinates lying exactly on the mesh
might introduce artifacts into the source meshes (see Section 4.1). Thus, even if the
original mesh connectivities are available as subsets ofK the reproduction of the

3.7. REMESHING 35

Figure 3.3: A multiresolution mesh representation build over the same base domain
to represent two geometries. Reprinted from Michikawa et al. [2001].

original shapes though exact is not ideal. It seems that the perfect reconstruction
of the source shapes is impossible and we could as well use any mesh connectivity
to approximate both given shapes.

Remeshing techniques have been used to construct semi-regular meshes from
irregular input [Lee et al. 1998]. The irregular mesh is reduced to an irregular
base domain. The base domain is refined inserting only regular vertices. The
idea is to use refinement operators as known from subdivision surfaces, however,
without using the geometric rules attached to the refinement. Instead, geometric
positions are found by exploiting the bijection between original surface geometry
and the parameterization. For example, using the 1-4 split the parameter domain
positions of inserted vertices are given as edge bisectors. This parameter leads to
the coordinate on the surface of the mesh.

This idea has recently been used to construct morphable meshes by Michikawa
et al. [2001] (see Figure 3.3). In this context, each parameter value leads to two
coordinates. After several refinement steps a semi-regular mesh connectivityK is
constructed together with coordinatesV (0), V (1) as desired. Because the refined
connectivity is defined by the rules of the refinement used, only the base domain
connectivity has to be stored explicitly.

To achieve a desired approximation accuracy, the number of refinement steps
should be adapted to the geometric complexity of the meshes. Note that refinement
could be done adaptively depending on the viewing conditions without necessarily
computing and storing all coordinates of the refinement levels.

36 CHAPTER 3. CONSTRUCTING REPRESENTATIONS

3.8 Comments

The remeshing approach is appealing because it allows to scale the size of the
representation mesh. Its only limitation is the accurate representation of sharp fea-
tures in the original shapes. In conventional multiresolution models this problem
is alleviated by fitting the base domain to these features. In the context of mor-
phing the base domain has to represent the features of several meshes, which do
not necessarily coincide. This, again, incurs extra burden on the user, because a
more complex base domain has to be induced on the input meshes. In addition, a
more complex base domain limits the possibilities of automatic feature alignment
methods. However, the flexible and lean representation mesh seems worth it.

Chapter 4

Inter polating corresponding
shapes

Using the methods presented in the previous chapters, it is possible to generate
onetopological shape representation for several shapes. Topology, in this context,
refers to the number and structure of primitives used to describe the shape, e.g. the
number of line segments in a polygon or the connectivity information of a mesh.
In any case, the shape is represented as the coordinates of vertices.

A morph sequence contains several states of an object transforming from one
state to another. The natural idea to generate morphs is to interpolate representa-
tions of shapes. The easiest way is to interpolate coordinates of vertices as they are
readily available. However, as with corresponding features of the shapes, the hu-
man observer has certain expectations regarding interpolated shapes. It is difficult
to define a set of rules which have to be followed. Different approaches to the in-
terpolation of shapes are characterized by different conditions, which are believed
to describe natural shape interpolation.

37

38 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

The coefficients describing such linear interpolation are sometimes called tran-
sition parameters. In classical morphing applications, the transition parameter can
be represented by a single scalar ranging from 0 (representing the source shape)
to 1 (representing the target shape) and is mentally connected to time values in an
animated sequence.

4.1 Linear Interpolation of Boundary and/or Orientation

The easiest way to produce blends of corresponding shapes is to interpolate the
coordinates of vertices. Assume a set ofn shapes is represented by a topological
structureS and vectorsVi containing vertex coordinates.S might be polygon,
a skeleton, a triangulation, a mesh, a tetrahedralization, or some other structural
description of – at least – the shape’s boundary. TheVi’s just contain real numbers.

Given a transition parameterti the coordinates of an interpolated shape are
computed by

V =
∑

i

tiVi (4.1)

This is the easiest way of computing interpolated shapes. It produces good results
if the shapes have the same orientation and are somewhat similar. Figures 4.1, 4.2,
and 4.3 show morph sequences obtained by linear interpolation.

Different orientation could lead to displeasing results. Imagine two squares
that are rotated by 180 degrees against each other. If simple vertex interpolation is
applied in this configuration, the interpolated shapes will shrink until the shape is
collapsed to one point and then grow again. This is not the desired result in most
applications. It is advisable to interpolate the orientation separately from the vertex
coordinates.

4.1.1 Interpolation of orientation

Several ways exist to compute a relative orientation of two shapes. Note that it
is difficult to interpolate the orientation of more than two shapes in 3D so the
following discussion will be restricted to two shapes.

As a first step, the shapes are usually translated so that their centers of mass co-
incide with the origin. Then, a rotation [Cohen-Or & Carmel 1998; Cohen-Or et al.
1998] or an affine transform [Alexa 2000] is computed seprating the rigid/affine
part from the elastic part of the morph. A way of defining the rigid/affine part is
to minimize the squared distances of corresponding vertices using the correspond-
ing transform. The minimization problem of finding an affine transform can be
solved using the pseudo inverse of the coordinate vector. Let the vertex vectors be

4.1. LINEAR INTERPOLATION OF BOUNDARY AND/OR ORIENTATION39

arrangedas an× 3 matrix

V =


v1x v1y v1z

v2x v2y v2z

v3x v3y v3z

. . .

 .

Then the squared distance of coordinates under an affine transformA is

(V (0)A− V (1))2 (4.2)

and has to be minimized. This leads to linear system of equations, which can be
solved using pseudo inverseV (0)+:

A = V (0)+V (1) =
(
V (0)T V (0)

)−1
V (0)T V (1) (4.3)

Alternatively, the least squares solution (or, the pseudo inverse) could be computed
using the SVD, which allows explicit control over the sensitivity to near rank defi-
ciencies [Golub & Van Loan 1989].

Intermediate shapesV (t) = {v1(t),v2(t), . . .} are described asV (t) = A(t)V (0).
The question is how to defineA(t) reasonably? The simplest solution would be:
A(t) = (1 − t)I + tA. However, some properties ofA(t) seem to be desirable,
calling for a more elaborate approach:

• The transformation should be symmetric.

• The rotational angle(s) and scale should change monotonic.

• The transform should not reflect.

• The resulting paths should be simple.

The basic idea is to factorA into rotations (orthogonal matrices) and scale-
shear parts with positive scaling components. We have examined several decom-
positions [Alexa et al. 2000]. Through experimentation, wehave found a decompo-
sition into a single rotation and a symmetric matrix (i.e. the polar decomposition),
to yield the visually-best transformations. This result is supported by Shoemake &
Duff [1992] for mathematical, as well as psychological, reasons. The decomposi-
tion can be deduced from the SVD as follows

A = RαDRβ = Rα(RβRT
β)DRβ =

(RαRβ)(RT
β DRβ) = RγS (4.4)

however, there are computationally cheaper alternatives [Shoemake & Duff 1992].
Based on the decomposition,A(t) is computed by linearly interpolating the free
parameters in the factorizations in (4.4) , i.e.

Aγ(t) = Rtγ((1− t)I + tS). (4.5)

40 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

Figure 4.4 illustrates the resulting transformations for a triangle. For compar-
ison, 4.4(a) shows linear interpolation of vertex coordinates. The transformation
resulting from a singular value decomposition and linear interpolationAα,β(t) is
depicted in 4.4(b). Note that the result is symmetric and linear in the rotation angle
but still unsatisfactory, since a rotation of more thanπ is unnecessary. However, if
we subtract2π from one of the angles (depicted in 4.4(c)) the result is even more
displeasing. We have found that decomposingA into one rotation and a symmetric
matrix and usingAγ(t) yields the best results (Figure 4.4(d)). It avoids unneces-
sary rotation or shear compared to the SVD and is usually more symmetric than a
QR decomposition-based approach.

4.2 Interpolation of intrinsic boundary representation

Linear interpolation of vertices can lead to undesirable effects such as shortening
of parts of the boundary during the transition. To avoid such problems, Sederberg
et al. [1993] propose to interpolate an intrinsic representation of the boundary.
For polygons, such an intrinsic representation is edge length an interior angles.
Unfortunately, there is no simple analogue in 3D. An attempt was made to extend
the ideas of to polyhedra [Sun et al. 1997] but the methods are computationally
expensive and unreliable. Here, only the 2D case will be explained.

Assume the polygonsP andQ are described by their vertex positionspi,qi.
Let θpi , θQi be the interior angles aroundpi,qi and

LPi = |pi+1 − pi|, LQi = |qi+1 − qi| (4.6)

the length of thei-th edge. Additionally, letαPi , αQi be the angles between the
i-th edge and a fixed axis. An intermediate polygon is represented by

Li(t) = (1− t)LPi + LQi (4.7)

θi(t) = (1− t)θPi + θQi (4.8)

αi(t) = (1− t)αPi + αQi (4.9)

However, this description will lead to an open polygon in the general case.

4.2.1 Closing the polygon

The idea is to close the polygon by small changes of the defining parameters. Since
the edge length has to be changed in some cases and, on the other hand, it is easier
to change only one of three parameters, only the edge lengths will be changed to
close the polygon.

The interpolated edge becomes

Li(t) = (1− t)LPi + LQi + Si (4.10)

4.3. DIFFERENTIAL BOUNDARY REPRESENTATION 41

To uniquely determine theSi, the squared relative length change

g(S0, . . . , Sn) =
∑

i

S2
i

|LPi − LQi |
2 + ε

, ε > 0 (4.11)

will be minimized under the constraint that the polygon has to be closed. Closure
of the polygon can be formulated by the following necessary conditions:

φ1(S0, . . . , Sn) =
∑

i

((1− t)LPi + LQi + Si) cos αi = 0 (4.12)

φ2(S0, . . . , Sn) =
∑

i

((1− t)LPi + LQi + Si) sinαi = 0 (4.13)

This kind of minimization problem can be solved using Lagrange multipliers.

Φ(λ1, λ2, S0, . . . , Sn) = g + λ1φ1 + λ2φ2 (4.14)

This leads to the surprsingly compact solution

Si = −1
2
|LPi − LQi |

2 (λ1 cos αi + λ2 sin αi) (4.15)

4.3 Interpolation of differential boundary representation

In classical morphing applications the transition parameter can be represented by
a single scalar ranging from 0 (representing the source shape) to one (representing
the target shape) and is mentally connected to time values in an animated sequence.

Now we want to locally morph certain features or regions of interest, i.e. the
transition parameters are different for different vertices. We will call the set of
transition parameters for vertices thetransition state. A major problem when mor-
phing only locally arises from the fact that corresponding features might not have
the same position in space and, thus, interpolation of absolute coordinate could
lead to undesirable effects. This problem is illustrated in Figure 4.5 The shapes
in a) and b) are source and target geometry of one mesh. The idea is to locally
change the geometry of the baby’s face so that the nose takes the shape of the
boy’s. Locally interpolating vertex coordinate leads to the shape depicted in c),
which is clearly not usable. Note that the faces are overall aligned in space and that
the misalignment of the noses results from different relative positions in the faces.

We could ease the problem of misalignment by assigning an affine transform
to a local morph. However, this leads to problems when features overlap. More
generally, a shape should be defined by the transition state of its vertices. In that
way, the transition states is representative for the shape of a morphable object. This
could be a very compact way of representing deforming or animated objects.

The main idea to overcome the mentioned problems is to represent vertex co-
ordinates with respect to their neighbors in the mesh. Given a vertex and its one-
neighborhood ring (see Figure 2 a), the position should be described relative to

42 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

the positions of vertices in the neighborhood ring. Further, the representation of a
vertex should be linear in the absolute coordinates. Non-linear functions tend to be
numerically difficult to handle and many morphable meshes have sliver triangles,
which, together, leads to unpredictable results.

The relative representation aims at making the shape of the mesh invariant to
translation or, ideally, invariant under affine transforms. If a vertex were repre-
sented in the affine space of its neighbors invariance under affine transforms would
trivially follow. Floater and Gotsman have shown how to use such representa-
tions to morph planar triangulations [Floater & Gotsman 1999]. The extension
to triangulations inR3is difficult because vertices of a the neighborhood are not
necessarily affinely independent.

4.3. DIFFERENTIAL BOUNDARY REPRESENTATION 43

Figure 4.1: A morph sequence obtained by linear interpolation of merged embed-
dingson the sphere.

44 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

Figure 4.2: A morph sequence obtained by linear interpolation using the base do-
mainsdepicted in Figure 4.3. Reprinted from Kanai et al. [2000].

Figure 4.3: A morph of objects with genus higher than zero. Reprinted from Lee
etal. [1999].

4.3. DIFFERENTIAL BOUNDARY REPRESENTATION 45

a)

b)

c)

d)

Figure 4.4: Transformations of a single triangle. (a) Linear vertex interpolation. (b-
d)An affine map from the source to the target triangle is computed and factored into
rotational and scale-shear parts. Intermediate triangles are constructed by linearly
interpolating the angle(s) of rotation, the scaling factors, and the shear parameter.
(b) is generated using the SVD; (c) shows the results of reducing the overall angle
of (b) by subtracting2π from one of the angles; (d) corresponds to Equation 4.5
and represents the method of our choice. The last column in all rows shows plots
of the vertex paths.

46 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

a) b)

c) d)

Figure 4.5: Given a mesh with two geometries a) and b) so that corresponding
features(eyes, ears, nose, mouth, etc.) are represented by the same vertices in both
geometries. If one feature (in this example the nose) is morphed towards the target
geometry in absolute coordinates, different positions in space lead to undiserable
effects shown in c). The shape in d) shows a more pleasing result achieved by
interpolating a differential encoding of the vertices.

4.3. DIFFERENTIAL BOUNDARY REPRESENTATION 47

4.3.1 Laplacian representation

We have decided to use a rather simple scheme, which is not invariant under ro-
tation, scaling, and shearing. Yet, it is very stable and proved sufficient for the
application intended. Let the center of mass of the neighbors of vertexi be

v̄i =
1

|N (i)|
∑

i

j ∈ N (i)vj (4.16)

and let the new representation be the difference of this center of mass to the original
position:

ṽi = vi − v̄i (4.17)

For an illustration see Figure 4.6. If we write all vertices as a vector the forward

a) b)

Figure 4.6: A vertex (black) and its neighborhood ring (white) in a). In Laplacian
coordinatesa vertex is represented by the difference to the centroid of its neighbors
(b).

transformation (from absolute to relative coordinates) can be represented in matrix
form. LetA = {aij} be the adjacency matrix of theM = (K, V), i.e.

aij =

{
1 {i, j} ∈ K,

0 else.

and D = {dij} be a diagonal matrix withdii = 1/|N (i)|. The transform is
represented byL = I − DA. Note thatL is a Laplacian of the mesh [Taubin
1995]. This is an important observation as it generalizes the approach to shape
representations other than meshes, e.g. parametric or implicit functions.

The backward transformation (from relative to absolute coordinates) is, by con-
struction, not unique. It should be uniquely determined up to a translation. This
means,L ∈ Rm×m should have rankm − 1, which is indeed so: Note that DA
is a stochastic as well as a normal matrix. A stochastic matrix has an eigenvalue
equal 1. In addition, the eigenvectors of normal matrices form a basis of full rank,
meaning that all eigenvalues have multiplicity one. It follows thatDA has exactly
one eigenvalue equal 1 and, thus,L has exactly one eigenvalue equal 0.

48 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

The main idea of this work is to morph by linearly interpolating Laplacian co-
ordinates rather than absolute coordinates. Since Laplacian coordinates are linear
in absolute coordinates morphing the whole shape (i.e. all vertices have the same
transition state) will be the same in absolute and Laplacian coordinates. Yet, if
the desired transitions are different for subsets of vertices interpolating Laplacian
coordinates yields more reasonable results.

4.3.2 Representing transition states

Given one mesh topology (vertex-edge graph) andd vectorsVi ∈ Rm, i ∈ {0, . . . , d−
1} representing different shapes of the mesh we can compute their Laplacian rep-
resentationsWi = (IDA)Vi. A transition state is a matrixT ∈ Rm×d. The tran-
sition state defines how Laplacian coordinates are combined to form the Laplacian
coordinate of the morphed mesh. Each row ofT specifies weights for the linear
combination of one vertex. If, for example, we want to morph between two meshes
a row ofT will consist of two entries, which, typically, sum up to one.

The Laplacian representatioñW with respect to a particular transition stateT
is given by

W̃ (i) = T (i)

 W T
0 (i)
...

W T
d−1(i)

 (4.18)

whereW (i) denotes thei-th row ofW . The set of respective absolute coordinates
is found by solving(I −DA)Ṽ = W̃ for Ṽ .

4.3.3 Computing absolute coordinates

Solving the equationLṼ = W̃ for Ṽ is not possible in a naive way for two reasons.
First,L is singular and second, typical meshes will induce matrix dimensions that
make the use of explicit techniques prohibitive.

The first problem is easy to overcome. It was already shown in 4.3.1 that the
solutionṼ is specified up to a translation. This means fixing one arbitrary vertex
will lead to a linear system of equations with full rank.

A practical solution of the resulting linear system should account for the fol-
lowing conditions:

• L is very large and sparse, which prohibits explicit matrix techniques.

• The equationLṼ = W̃ has to be solved three times, i.e. for thex, y, andz
vectors.

• In practice, good approximate solutions are known forṼ as morphing changes
the shape gradually and smoothly from one state to another. Knowing good
approximate solutions calls for iterative matrix methods.

4.3. DIFFERENTIAL BOUNDARY REPRESENTATION 49

• The condition of L is 1. This causes traditional relaxation techniques to
converge slowly.

We have decided to use an iterative method with pre-conditioning (see e.g. [Golub
& Van Loan 1989]). Since pre-conditioning the matrix equation greatly influences
convergence and has to be done only once we have decided to use incomplete LU
decomposition as a pre-conditioner. The system is then solved using the conjugate
gradient method.

4.3.4 Defining transitions and transition states

A transition state is represented by a matrixT as described in section 4.3.2. A
morph, or transition, would be defined as a matrixT changing over time. In prac-
tice, one would define several key frames in terms of matrices. Interpolation of key
frames is done in matrix space as interpolation in absolute coordinates has to be
avoided.

Obviously, it is impossible to specify transition matrices by hand. We either
need a user interface or automatic methods.

GUI for defining transition states

The basic requirement for a GUI is to make it easy to define a region of interest
(ROI). A ROI is a part of the shape’s boundary, for which the transition state will
be modified. Modification is performed relative to the current overall transition
state of the shape. Technically speaking, prior to the modification the shape is
represented by a transition stateT .

We have found it very comfortable to specify a ROI by two boundaries. An
outer boundary separates the ROI from the rest of the shape. The inner bound-
ary has to lie completely inside the region specified by the outer boundary. The
inner boundary specifies the part of the region of interest, which is assigned the
user defined values for this ROI. The region between inner and outer boundary is
assigned values that range from the user’s specification for the inner part to the old
transition state. Specifically, we define a distance valued, which is zero inside the
inner boundary, one outside the outer boundary, and represents the distance from
the boundaries between them. A simple Dijkstra algorithm is used to compute the
distances.

Assume the user specifies a new transition stateT̃ for the ROI. The new overall
transition stateT ′ is defined for each vertex by

T ′ = (1− d)T̃ + dT (4.19)

In a typical modification process, the user selects several ROIs and changes their
respective transition states one after the other.

50 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

Spatially dependent transition states

Instead of defining the transition state of the shape explicitly using ROIs, the tran-
sition state could be defined implicitly. In particular, the transition state might be
a function of absolute coordinates. This makes several interesting and important
effects possible, e.g. a plane cutting the shape into parts with different transition
states.

The definition of a transition state from absolute coordinates is given as a func-
tion that maps points inR3 to weights defining how to combine Laplacian coordi-
nates in this point. It is assumed that the source shapes as well as the generated
shape have their centers of mass at the origin ofR3. Since, in the general case, the
system of equations to be solved will be non-linear we use a simple heuristic to
define a transition state. The absolute coordinates of vertices for each of the source
shapes define a transition state. These transition states are averaged to yield the
final transition state.

This definition has the advantage that smooth changes of the spatial distribution
lead to smooth changes in the shape. For example, assume the user wants to move
a plane through a shape so that the two parts correspond to two source shapes.
The heuristic given above assures that moving the plane will grow one region and
shrink the other, as desired.

Automatic transition sequences

The basic idea is to start the transition at one or several points of the shape and then
to “grow” regions representing the target shape until the shape is “covered”. In this
process, the graph representing the mesh can be exploited.

Nice effects result from “flooding” the mesh, i.e. traversing the graph breadth-
first and setting each visited vertex to its target coordinate.

Spatial effects can be achieved as was described in the previous section.

4.3.5 Results and applications

The main application intended for Laplacian coordinates and the presented user in-
terface is, of course, spatially non-uniform mesh morphing. However, other mod-
eling techniques, such as free-from modeling, could also benefit from this repre-
sentation.

Spatially non-uniform morphing

We have produced several morphable meshes with the techniques described in the
previous chapter.

The use of regions of interest for defining transition states and interpolating
through these transition states to define an interesting morph sequence is presented
in Figure 4.7. A morph sequence from the shape of an egg to the shape of a giraffe
is produced. The idea was to let parts of the body pop out the egg one after the

4.3. DIFFERENTIAL BOUNDARY REPRESENTATION 51

Morph Sequence by Marc Alexa

Frame 01

Morph Sequence by Marc Alexa

Frame 02

Morph Sequence by Marc Alexa

Frame 03

Morph Sequence by Marc Alexa

Frame 04

Morph Sequence by Marc Alexa

Frame 05

Morph Sequence by Marc Alexa

Frame 08

Morph Sequence by Marc Alexa

Frame 07

Morph Sequence by Marc Alexa

Frame 06

Morph Sequence by Marc Alexa

Frame 25

Morph Sequence by Marc Alexa

Frame 26

Morph Sequence by Marc Alexa

Frame 27

Morph Sequence by Marc Alexa

Frame 28

Morph Sequence by Marc Alexa

Frame 29

Morph Sequence by Marc Alexa

Frame 32

Morph Sequence by Marc Alexa

Frame 31

Morph Sequence by Marc Alexa

Frame 30

Morph Sequence by Marc Alexa

Frame 17

Morph Sequence by Marc Alexa

Frame 18

Morph Sequence by Marc Alexa

Frame 19

Morph Sequence by Marc Alexa

Frame 20

Morph Sequence by Marc Alexa

Frame 21

Morph Sequence by Marc Alexa

Frame 24

Morph Sequence by Marc Alexa

Frame 23

Morph Sequence by Marc Alexa

Frame 22

Morph Sequence by Marc Alexa

Frame 09

Morph Sequence by Marc Alexa

Frame 10

Morph Sequence by Marc Alexa

Frame 11

Morph Sequence by Marc Alexa

Frame 12

Morph Sequence by Marc Alexa

Frame 13

Morph Sequence by Marc Alexa

Frame 16

Morph Sequence by Marc Alexa

Frame 15

Morph Sequence by Marc Alexa

Frame 14

Figure 4.7: A morph sequence between an egg and a model of a giraffe genrated
from several transition states. Transition states were defined using regions of in-
terest (ROI). Each ROI corresponds to either the tail, one of the legs, the neck
including the head, or the body. Eight transition states were defined, letting the
different body parts of the giraffe pop out the egg one after the other.

other. This was achieved by defining ROIs for the different parts of the body and
using them to specify transition states. A smooth transition sequence was produce
by interpolating the key transition states.

Several examples of defining transition states from absolute coordinates are
shown in Figure 4.8. A morphable model of a cow/pig is cut by a plane in two
positions. Rather than a sequence several models are presented showing that spatial
morph control could be used for modeling. One can imagine how many different
creatures could be modeled with virtually no effort using this approach.

An explicit example of modeling using spatial morph control is depicted in
Figure 4.9. The intent was to model a Pegasus, i.e. a horse with wings. One easily
finds polyhedral models of a horse and an animal with wings. Using ROIs around
the wings it is easy to define a transition state which yields the desired result.

In all of these examples morphing is performed between rather different shapes.
An interesting application arises from locally morphing among different version of
the same shape. In particular, think of different versions representing only parts of
the spectrum of the mesh. The eigenvectors of the LaplacianL form a basis, which
is the equivalent to a Fourier basis of a mesh [Karni & Gotsman 2000]. This basis
could be exploited to define several band-limited versions of the shape. Locally
morphing among these shapes has the effect of a local spectral filter.

52 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

4.3.6 Free-from modeling

Laplacian coordinates are not only useful for morphing. They can easily be used for
free from modeling of meshes by exploiting that they describe the relative position
of vertices. The general idea is this:

1. Compute Laplacian coordinates from the original model.

2. Specify the absolute coordinates of several vertices.

3. Compute a linear least squares solution to find the absolute coordinates of
the free vertices.

In order to specify fixed vertices we found it convenient to use ROIs, again, defined
by an inner and outer boundary. Vertices outside the outer boundary are fixed to
their original position. Vertices inside the inner boundary can be moved by the
user. The remaining vertices are free and will be computed using the linear least
squares approach.

An examples is depicted in Figure 4.10. In the face of a young boy the nose tip
is displaced. The remaining vertices are relaxed to approximately fit their Lapla-
cian coordinates using varying sets of free vertices to achieve different effects.

4.3.7 Conclusions

We have presented a well defined method to allow mesh morphing in a spatially
non-uniform way. The main idea is to use differential coordinates. Specifically,
Laplacian coordinates are introduced, which seem to be well suited for the task of
modeling. The advantages of Laplacian coordinates are that they are independent
of transformations of the shape and rigorously defined.

However, Laplacian coordinates are sensitive to scaling and rotation of the
shape. This can be a problem if corresponding regions of shapes have different
size or orientation - despite the fact that shapes are overall reasonably aligned. A
representation of coordinates as an affine sum of neighboring vertices would be
insensitive to affine transforms. In the future we will try to explore this idea and
overcome the problem that neighboring vertices might not be a base ofR3.

4.3. DIFFERENTIAL BOUNDARY REPRESENTATION 53

a) b)

c) d)

Figure 4.8: Defining the transition state using spatial constraints. Here, a plane is
usedto split the shape into two parts corresponding to one of two source shapes
(representing the models of a cow and a pig). In a) and b) the plane separates head
including neck from the body of the animals. In c) and d) the plane is approxi-
mately in the middle of the body.

54 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

Figure 4.9: Using spatial control for modeling. A Pegasus is modeled by morphing
betweenmodels comprising its features. Local morph control is used to define a
transition state so that only the wings of the duck appear on the horse.

a) b)

c) d)

Figure 4.10: Using Laplacian coordinates for free-form modeling. The model of a
boy?s face a) is deformed. The nose tip is displaced, b) is showing the displaced
vertices. The shapes in c) and d) result from defining a set of free vertices, which
are least-square fitted to their Laplacian coordinates.

4.4. INTERPOLATION USING ISOMORPHIC DISSECTIONS 55

4.4 Interpolation using isomorphic dissections

Sederberg et al. [1993] introduced techniques that minimize the deformation of the
boundaries. Shapira & Rappoport [1995] suggested that a proper morph cannot
be expressed merely as a boundary interpolation, but as a smooth blend of the
interior of the objects. To achieve such an interior interpolation, they represented
the interior of the 2D shapes by compatible skeletons and applied the blend to the
parametric description of the skeletons. The automatic creation of corresponding
equivalent skeletons of two shapes is involved, and though theoretically possible
for all shapes, it seems natural for similar shapes, but ambiguous for rather different
shapes like the lettersU andT.

Here, we present an object-space morphing technique that blends the interior of
the shapes rather than their boundaries to achieve a sequence of in-between shapes
which is locally least-distorting. Assuming that a boundary vertex correspondence
of the source and target shapes is given, we apply an algorithm for dissecting the
source and target shapes into isomorphic simplicial complexes, i.e. triangles or
tetrahedra. Then, we develop a method for interpolating the locations of corre-
sponding vertices, both boundary and interior, along their paths from the source to
the target object.

Simplicial complexes allow the local deformation of the shapes to be analyzed
and controlled. Floater and Gotsman have used barycentric coordinates to morph
compatible triangulations with convex boundary so that no triangles flip on their
way from the source to the target configuration [Floater & Gotsman 1999]. How-
ever, interpolation of barycentric coordinates is not motivated by or related to phys-
ical or esthetic principles.

We start by determining an optimal least-distorting morphing between a source
simplex and a target simplex (triangles in the 2D case and tetrahedra in the 3D
case). Then, the general idea is to find a transformation which is locally as sim-
ilar as possible to the optimal transformation between each pair of corresponding
simplices.

a)

b)

Figure 4.11: Contour blends of the elephant-giraffe example. Simple linear vertex
interpolationin (a) vs. as-rigid-as-possible shape interpolation in (b).

56 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

Figure 4.12: The homeomorphic dissections of the shapes in the elephant-giraffe
example

4.4.1 Isomorphic dissections of shapes

In this section, we construct isomorphic dissections given two shapes in boundary
representation. We assume that the correspondence of the boundaries has been es-
tablished, i.e. a bijective map between boundary vertices is given. For polygons,
reasonable correspondence can be found automatically [Sederberg & Greenwood
1992; Cohen et al. 1997]. In difficult cases, few correspondences could be specified
manually and the remaining vertices are matched automatically. For polyhedral ob-
jects, several techniques exist, which are based on topological merging introduced
by Kent et al. [1992]. Recent work [Gregory et al. 1998; Lee et al. 1999] also al-
lows the specification of corresponding features which seems sufficient to produce
acceptable results for a variety of polyhedral models.

Polygons

The problem of constructing a common triangulation for two given polygons is
discussed in the literature ascompatible triangulation[Aronov et al. 1993]. Trian-
gulating a single polygonπ is possible using only the vertices of the polygon (e.g.
[Chazelle 1990]). However, this is usually not possible for two different polygons.
Aronov et al. [1993] show how to triangulate two polygons in a compatible way if
at mostO(n2) additional vertices (so-called Steiner points) are allowed. The gen-
eral scheme [Aronov et al. 1993] is to first triangulate each polygon independently.
Then, both polygons are mapped to a regularn-gon so that corresponding bound-
ary vertices coincide. The compatible triangulation is established by overlaying
the two edge sets in the convexn-gon. The resulting new interior vertices are then

4.4. INTERPOLATION USING ISOMORPHIC DISSECTIONS 57

mappedback into the original polygons, yielding compatible triangulations of the
source and target shapes.

We would like to stress that the quality of the blend, in terms of the quality
of the in-between shapes, strongly depends on the shape of the simplices. In par-
ticular, skinny triangles (or tetrahedra in 3D) cause numerical problems. Thus, in
the following, we describe how this scheme can be enhanced to yield compatible
triangulations with a significantly better triangle shape.

First, we apply Delaunay triangulations (see any textbook on Computational
Geometry, e.g. [de Berg et al. 1997]) as the initial triangulation since Delaunay
triangulations maximize the minimum interior angle and, thus, avoid skinny trian-
gles. Of course, any skinny triangle in the independent triangulations is inherited
by the merged triangulation. Moreover, Delaunay triangulations are unique, and
similar regions in the shapes will result in similar triangulations. Thus, skinny
triangles resulting from the overlay process can be avoided.

Nevertheless, the merged triangulations still have skinny triangles, and further
enhancement is required to avoid numerical problems. We optimize the triangula-
tions by further maximizing the minimum interior angle, which is known to be a
reasonable triangulation quality criterion (see e.g. [de Berg et al. 1997]). We use
two independent operations:

1. Moving interior vertices. Freitag et al. [1999] show how to find vertex posi-
tions which maximize the minimum angle for a given triangulation.

2. Flipping interior edges simultaneously in both triangulations. This proce-
dure follows the edge flip criteria used in Delaunay triangulation. Given that
an edge flip is legal in both triangulations, it is performed if the operation
increases the overall minimum angle.

The above two operations are applied in turn until no valid flips are necessary.
Convergence is assured since each step can only increase the minimum angle. We
call this procedurecompatible mesh smoothing. The smoothing step optimizes the
compatible triangulations without changing the vertex count.

However, we also consider changing the vertex count by means of splitting
edges. The split operation is well-defined in terms of topology, if it is applied
to both triangulations simultaneously, the isomorphy remains. The idea is to split
long edges to avoid long skinny triangles. Splitting edges according to their lengths
does not guarantee an increase in triangle quality. In practice, smaller triangles are
more likely to be improved by the smoothing step. After each edge split, the trian-
gulations are smoothed. This avoids the generation of edges in regions where the
smoothing operation would produce nicely-shaped triangles. Figure 4.14 illustrates
the results of splitting edges, as well as of the smoothing process.

4.4.2 Polyhedra

To the best of our knowledge, the three-dimensional analog to compatible trian-
gulations has not been discussed in the literature. Work has been done to dissect

58 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

Figure 4.13: A comparison of compatible triangulations. The upper row shows
triangulationsgenerated from using ear-capping for the initial triangulation step.
Initial triangulations are overlaid on a convex domain to produce compatible tri-
angulations. The triangulations in the lower row were generated with the same
general procedure, but using initial Delaunay triangulations. Far fewer triangles
are induced, since Delaunay triangulations yield similar partitioning for similar
regions.

4.4. INTERPOLATION USING ISOMORPHIC DISSECTIONS 59

Figure 4.14: The mesh refinement process. In the first row, the merged Delaunay
triangulationsfrom Figure 4.13 are refined by edge splits until all edge lengths
are bounded. The second row shows the result of compatible mesh smoothing on
this triangulation. The third row shows the actual technique, where splitting and
smoothing is performed concurrently. Note that the edge length bound is the same
in the first and third row.

polyhedra into simplicial complexes, a process referred to as tetrahedralization.
However, the work of Aronov et al. [1993] can be extended to genus 0 polyhedra.

First, the source and target polyhedra are tetrahedralized independently using
common techniques, e.g., [Chazelle & Palios 1989]. Then, the tetrahedralizations
are mapped to a corresponding convex shape. We as well as Shapiro & Tal [1998]
describe methods to map an arbitrary genus 0 polyhedron to a convex shape. Since
the source and target polyhedra are assumed to have the same vertex-edge topology
and the convexification process is deterministic, the polyhedra are mapped to the
same convex shape. The interior vertices of their tetrahedralizations are mapped
using barycentric coordinates. The fact that vertices are mapped to a convex shape
using barycentric coordinates for interior vertices assures that no tetrahedra will
be flipped. Then, an overlay of the two tetrahedralizations is computed, where
faces are cut against faces, resulting in new edges. Note that the intersection of
two tetrahedra results in four-, five-, or six-sided convex shapes, which are easy to

60 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

tetrahedralize. The resulting structure is mapped back into original polyhedra. In
case the source and target shapes are not genus 0, they have to be cut into genus 0
pieces which are independently treated as explained above.

4.4.3 Transforming shapes

Given two objects together with a set of point-to-point correspondences between
user-defined control (anchor) points, one can define an elastic transformation be-
tween the objects that exactly satisfies the correspondences. However, to reduce
the distortion of the in-between shapes, it is advisable to determine therigid part
of the transformation and interpolate it separately from theelasticpart [Cohen-Or
& Carmel 1998; Cohen-Or et al. 1998; Zhang 1996]. The rotational component of
the rigid part should be interpolated so that the object is non-deforming, e.g. using
quaternion interpolation [Shoemake & Duff 1992]. The rigid-elastic decomposi-
tion of the warp function and its particular interpolation are so chosen to minimize
the distortion of the intermediate shapes. The rigid part performs the general posi-
tional changes, while the fine details are gradually changed by the elastic part.

In many applications, this decomposition does improve the morphing results,
though it cannot prevent local distortions in cases of body movements which are
more involved as may be found in articulated objects. The underlying assump-
tion in [Cohen-Or & Carmel 1998; Cohen-Or et al. 1998; Zhang 1996] is that the
movement can roughly be approximated by rotation, stretching and translation. If
we consider objects such as animals’ bodies or sophisticated mechanical objects,
such as industrial robots, it is clear that even the simplest movements cannot be
well approximated by a single rotation and translation. To reduce distortions in
transformations of bodies comprising local rotations, the decomposition should be
more elaborate. The idea is to determine local non-distorting motions rather than a
global one. The composed shape morphing should behave locally as close as pos-
sible to the ideal local ones. Figure 4.11 shows a blend between an elephant and
a giraffe. The two shapes are aligned and a single rotation cannot prevent the dis-
tortions of a linear interpolation, whereas the locally least-distorting interpolation
yields a pleasing blend of such articulated objects.

Based on a compatible dissection of the interiors of the shapes (see Figure 4.12),
we first define local affine transformations. Each of the local linear maps can be
separately decomposed into a rotation and a stretch. Thus, locally, we know how
to achieve a non-distorting morph. Then, these local transformations are composed
into a global coherent non-distorting transformation, which minimizes the overall
local deformation. It should be noted that our transformation is (globally) rigidly
reducible; that is, if there is a single rigid transformation that aligns the objects, the
morph follows such a path.

We only consider simplicial complexes as dissections of shapes. Specifically, a
two-dimensional shape is apolygonand its dissection atriangulation, and a three-
dimensional shape is apolyhedronand its dissection atetrahedralization. In the
following, we introduce an interpolation technique for determining vertex paths

4.4. INTERPOLATION USING ISOMORPHIC DISSECTIONS 61

in shape blending, given a source and a target shape represented by homeomor-
phic (compatible) triangulations. In Section 4.4.1, we show how to compute such
homeomorphic dissections from boundary representations. Note that we describe
the concept of determining the vertex paths in two dimensions for clarity; the ex-
tension to three or more dimensions is straightforward.

4.4.4 Least-distorting triangle-to-triangle morphing

Suppose the triangulation of the source and target shapes consists of only one tri-
angle each. Let the source vertices beP = (p1,p2,p3) and the target vertices
beQ = (q1,q2,q3), where vertices with the same index correspond. An affine
mapping represented by matrixA transformsP into Q:

Api + l =
(

a1 a2

a3 a4

)
pi +

(
lx
ly

)
= qi, i ∈ {1, 2, 3} (4.20)

We do not take the translationl into account for shape interpolation since it does
not describe any property of the shape itself except for its placing in the scene.
Rather, we want to describe intermediate shapes by varying the rotational and scal-
ing parts comprisingA, over time. Note that the coefficients ofA are linear in the
coordinates of the target shape.

a1 = q1x (p2y−p3y)+q2x (p3y−p1y)+q3x (p1y−p2y)

p1xp2y +p2xp3y +p3xp1y−p1y p2x−p2y p3x−p3y p1x

a2 = − u1x (p2x−p3x)+q2x (p3x−p1x)+q3x (p1x−p2x)
p1xp2y +p2xp3y +p3xp1y−p1y p2x−p2y p3x−p3y p1x

a3 = u1y (p2y−p3y)+q2y (p3y−p1y)+q3y (p1y−p2y)

p1xp2y +p2xp3y +p3xp1y−p1y p2x−p2y p3x−p3y p1x

a4 = − u1y (p2x−p3x)+q2y (p3x−p1x)+q3y (p1x−p2x)

p1xp2y +p2xp3y +p3xp1y−p1y p2x−p2y p3x−p3y p1x

(4.21)

IntermediateshapesV (t) = (v1(t),v2(t),v3(t)) are described asV (t) =
A(t)P , whereA(t) is defined as explained in section 4.1.1.

Note that the rotation of the triangle does not contribute to its shape. However,
this is no longer true for more than a single triangle, as we shall see in the next
section, which discusses the generalization to more than one triangle.

4.4.5 Closed-form vertex paths for a triangulation

We now consider a triangulationT = {T{i,j,k}} rather than a single triangle.
Each of the source trianglesP{i,j,k} = (pi,pj,pk) corresponds to a target triangle
Q{i,j,k} = (qi,qj,qk). For each pair of triangles, we compute a mappingA{i,j,k},
which can be factored by Eq. 4.5 to determineA{i,j,k}(t). Since most of the ver-
tices correspond to more than one triangle, a mapping of all vertices could not (in
general) be conforming with all the individual ideal transformationsA{i,j,k}(t).
Let

V (t) = (v1(t), . . . ,vn(t)), t ∈ [0, 1] (4.22)

62 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

be the desired paths of the vertices, satisfying

V (0) = (p1, . . . ,pn)
V (1) = (q1, . . . ,qn).

We defineB{i,j,k}(t) to be the matrix in the affine transformation fromP{i,j,k} to
vi(t),vj(t),vk(t), i.e.

B{i,j,k}(t)pf + l = vf (t), f ∈ {i, j, k} (4.23)

Note that the coefficients ofB{i,j,k}(t) are linear invi(t),vj(t),vk(t). We de-
fine an intermediate shapeV (t) as the vertex configuration which minimizes the
quadratic error between the actual matricesB{i,j,k}(t) and the desired onesA{i,j,k}(t).
This quadratic error functional is expressed as

EV (t) =
∑

{i,j,k}∈T

∥∥A{i,j,k}(t)−B{i,j,k}(t)
∥∥2

, (4.24)

where‖ · ‖ is the Frobenius norm. In this expression, theA{i,j,k}(t) are known
for a fixed timet and eachB{i,j,k} is linear in thevi(t),vj(t),vk(t). Thus,EV (t)

is a positive quadratic form in the elements ofV (t). In order to have a unique mini-
mizer toEV (t), we should predetermine the location of one vertex, sayv1x(t), v1y(t),
for example, by linear interpolation.
The functionalEV (t) can be expressed in matrix form, setting

uT = (1, v2x(t), v2y(t), . . . , vnx(t), vny(t))

as

EV (t) = uT

(
c GT

G H

)
u, (4.25)

wherec ∈ IR represents the constant,G ∈ IR2n×1 the linear, andH ∈ IR2n×2n

the mixed and pure quadratic coefficients of the quadratic formEV (t). The mini-
mization problem is solved by setting the gradient∇EV (t) over the free variables
to zero:

H

 v2x(t)
v2y(t)

...

 = −G (4.26)

Note thatH is independent oft. This means we can invertH and find solutions for
time t by computing the correspondingG(t) and a single matrix multiplication:

V (t) = −H−1G(t) (4.27)

In practice, we compute the LU decomposition ofH and findV (t) by back sub-
stitution. Furthermore, the computations are separable and are performed inde-
pendently for the two coordinates. Note that onlyG depends on the dimension,

4.4. INTERPOLATION USING ISOMORPHIC DISSECTIONS 63

Figure 4.15: Transformations of different shapes representing solid objects. Note
thatparts of the shapes transform rigidly whenever possible. The lowest row shows
an example where the shapes have no obvious common skeleton.

while H is the same for thex andy components. Thus,H is effectively of size
n−1×n−1, which means the dominating factor of the computation is independent
of the dimension.

The above definition has the following notable properties:

• For a givent, the solution is unique.

• The solution requires only one matrix inversion for a specific source and
target shape. Every intermediate shape is found by multiplying the inverted
matrix by a vector.

• The vertex path is infinitely smooth, starts exactly in the source shape, and
ends exactly in the target shape. These are properties typically difficult to
achieve in physically-based simulations.

Figure 4.15 shows transformations of some simple shapes produced with the de-
scribed method.

4.4.6 Symmetric solutions

While we were satisfied with the degree of symmetry the previously explained
approach exhibited in most of our test cases, a symmetric solution can be advanta-
geous – in particular, if the corresponding triangles in the source and target shapes
have largely differing area. We can make the solution symmetric by simply blend-
ing the optimization problems from both directions. LetA→f (t) be the affine trans-
formation of trianglef from source to intermediate shape at timet, andA←f (t)

64 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

Figure 4.16: The contour of a maple leaf blended with a plane using as-rigid-as-
possibleshape interpolation. Note that the features of the plane grow out of contour
according to the current direction of wings and not their final position.

the respective transformation coming from the target shape. Similarly, we define
B→f (t) andB←f (t). We define intermediateEV (t), the vertex configuration at time
t, by

EV (t) = (1− t)E→V (t) + tE←V (t) (4.28)

where

E→V (t) =
∑

f∈ Tri

∥∥A→f (t)−B→f (t)
∥∥2

(4.29)

E←V (t) =
∑

f∈ Tri

∥∥A←f (1− t)−B←f (1− t)
∥∥2

(4.30)

With this definition, we lose the advantage of only one matrix inversion for
given source and target shapes. Instead, every timet requires the solution of a
linear system of equations. Whether the computation times are acceptable depends
on the shapes and the desired application.

4.4.7 Results and Conclusion

We have applied the techniques explained above to various inputs. The two-
dimensional shapes are generated by extracting a contour out of an image. For
the correspondence of contours, we defined manually several vertex-to-vertex cor-
respondences, while the remaining vertices were automatically aligned. The result-
ing polygons were dissected as described above. In Figures 4.17, 4.18, 4.19, and
4.23, the triangulations were used to map a texture to the shape (as was suggested
by Tal & Elber [1999]). Textures were extracted with the contours from the source
images. More elaborate techniques for space-time control (e.g. [Lee et al. 1995])
could be easily integrated in our work to give the user more control as to what is
transformed and when. Also note that the techniques are not restricted to simple
polygons.

Since our technique interpolates shapes “naturally” in the sense that it pre-
serves parts that just change relative position or orientation, it could be also used
to extrapolate beyond the source and target shapes. Figure 4.20 demonstrates this
with the example of Leonardo DaVinci’s studies on proportions (see Figure 4.23

4.4. INTERPOLATION USING ISOMORPHIC DISSECTIONS 65

Figure 4.17: Morphs between Egyptian art pieces using textures from the original
images. Contours are blended using as-rigid-as-possible shape interpolation and
texture colors are linearly interpolated.

Figure 4.18: Contour blend of a penguin and a dolphin using only the texture of
thepenguin.

Figure 4.19: Morph between photographs of a tiger and a dinosaur.

66 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

Figure 4.20: Shape extrapolation. Using as-rigid-as-possible shape interpolation,
shapescan be naturally extrapolated beyond the source and target shapes. The
images show the human figure of Leonardo DaVinci’s proportions at time values
-0.5 and 1.5.

for the interpolation). We can generate shapes for time values -0.5 and 1.5 while
preserving the proportions of the human figure.

We have also applied the interpolation technique to three-dimensional mod-
els. The examples in Figure 4.21 were generated by using deformed versions of
a polyhedral model. Note the difference between linear vertex interpolation (up-
per row) and as-rigid-as-possible interpolation (lower row). In Figure 4.22, mor-
phable polyhedral models were generated using topological merging. As in the
two-dimensional case, the vertex paths result from defining transformations for
each pair of corresponding tetrahedra by factoring the affine transform into rota-
tional and stretching components and, then, minimizing the deviation from these
ideal transformations.

The current implementation seems to be robust and fast. The most time-consuming
step is optimizing triangle shape. Without optimizing triangle shape numerical
problems are likely to occur. In all our examples no simplex changed orientation
(i.e. flipped), however, we have not been able to prove this to be a property of our
approach.

The examples clearly demonstrate the superior quality of our approach com-
pared to plain linear vertex interpolation. Additionally, it offers the possibility to
texture the shapes, so that shape blending becomes applicable to images. In turn,

4.4. INTERPOLATION USING ISOMORPHIC DISSECTIONS 67

Figure 4.21: A simple example of three-dimensional objects. The difference of
linearand as-rigid-as-possible vertex interpolation is demonstrated on a bent cigar-
like shape.

Figure 4.22: Our technique is also useful to mimic motions of articulated three-
dimensionalobjects in case the underlying skeleton is missing, as demonstrated
for a horse turning its head. The example in the lower row was produced using
a polyhedral morphing technique (facilitating topological merging). Note that the
lengths of the tails/necks are preserved.

68 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

traditional image morphing techniques could serve to generate the homeomorphic
dissections of the shapes and, thus, make use of more advanced vertex/pixel in-
terpolation technique(s). However, the quality of a morph lies in the eye of the
beholder. Nevertheless, there is a clear consensus that - lacking other information
- the geometry along the morph sequence should change monotonically with no
superfluous distortions. The idea of as-rigid-as-possible shape interpolation is to
avoid distortions as much as possible and let angles and scales change linearly. We
believe that this captures the notion of the above-mentioned consensus.

Despite this, shape blending is always an esthetic problem and no automatic
method will meet the needs that arise in different applications. Consequently, user
interaction will always be necessary to produce the desired results. Nevertheless,
we believe that more elaborate methods for shape blending simplify and minimize
the involvement of the designer.

Finally, we want to mention that dissections of shapes seem to extend the con-
cept of skeletons while fully capturing their information. Dissections are more
powerful in representing the mechanics of shapes as they allow fine grained anal-
ysis of local behavior. In many cases, shapes naturally have no skeleton or their
metamorphoses could not be described in terms of a skeleton. These benefits come
along with easier and less ambiguous computation of dissections as compared to
skeletons.

4.4. INTERPOLATION USING ISOMORPHIC DISSECTIONS 69

Figure 4.23: Leonardo DaVinci’s studies on proportions. The two rows contrast
linearand as-rigid-as-possible interpolation of the figure. The difference is subtle,
but Leonardo proves our method right (see the feet leaving the circle in the linear
interpolation). The last row shows a transformation with more involved movements

70 CHAPTER 4. INTERPOLATING CORRESPONDING SHAPES

Chapter 5

Spacesof shapes from morphing

In this chapter we formalize the concept of spaces from morphing [Alexa &
Müller 1998a; Alexa & M̈uller 1999a]. Therefore we take a closer look at existing
morphing techniques in order to identify the core properties of morphing. Based
on this view of morphing we will give a definition of the general spaces from
morphing.

By defining morphing in an abstract way we will get a scheme to classify ex-
isting morphing techniques. Since the properties of morphing spaces will depend
on the properties of the morphing techniques, the classification of morphing tech-
niques allows to predict the properties of morphing spaces. Moreover, certain prop-
erties of the morphing space will result in more efficient and elegant algorithms for
the analysis of objects. This will be shown later.

71

72 CHAPTER 5. SPACES OF SHAPES FROM MORPHING

5.1 Definition of morphing

In order to find a formal definition of morphing we pose ourselves the question:
What do we intuitively think of, when we speak about morphing? The answer
could read as follows: Given a source and a target object, morphing will produce a
transition between these two objects. The answer has a certain strength, i.e. it does
not restrict morphing to a certain application. For instance, the use of morphing as
an animation tool might be very common, but it does not seem to be a property of
morphing itself. On the other hand, morphing cannot be reduced to the production
of single objects.

Notice that we already made a first observation: Morphing operates on objects
- these can be real or virtual. Morphing needs two objects as input and produces
one object as output. All of these objects belong to the same set of objects. We
will denote this as follows:

Axiom 5.1 Morphing operates on an object set.

In the following we will use the identifierΩ whenever we refer to the object set.
The objects ofΩ will be identified by upper-case Latin letters. SinceΩ is the
domain of morphing we assumeΩ 6= ∅. We want to useΩ to define properties of
morphing, thus we need at least an equivalence relation onΩ , which we denote
with =. Note that we cannot imply thatΩ is ordered and we (in general) have no
metric onΩ .

We believe there are only two more core properties of morphing, and a third
property that is typically demanded for most morphs. These properties concern
the objects produced by morphing, which are commonly referred to as in-between
objects. The first two properties are covered by the following axiom.

Axiom 5.2 The set of in-between objects produced by morphing between two ob-
jects is ordered and dense.

We say that morphing induces an ordering on the objects resulting from morphing.
The term dense reflects the fact, that for every two in-between objectsA < B there
exists an in-between object C withA < C < B.

The third property is continuity of the in-between objects. For two reasons
we do not include continuity in our axioms of morphing. First, there exist use-
ful applications where the morph cannot be continuous (morphing between non
homeomorphic objects), and second, without other properties we cannot formalize
continuity (for instance, we have no metric onΩ). But nevertheless continuity
might be of interest in the application, and after the definition of morphing based
on the above axioms we introduce a criterion to assure continuity.

The easiest way to obey the axioms is to represent the in-between objects by an
ordered and dense set. The canonical choice is the interval of real numbers [0,1].
We can look at the reals of this interval as one parameter that - together with a
source and target object - identifies an in-between object. We call this parameter
the transition parameter. Thus morphing can be described as a function of three

5.2. PROPERTIES OF MORPHING FUNCTIONS 73

variables. Choosing the transition parameter 0 will reproduce the source object and
conversely the transition parameter 1 will reproduce the target object. Formally:

Definition 5.1 LetA,B ∈ Ω andt ∈ [0, 1]. We will refer tom : Ω× Ω× R 7→ Ω
as the morphing function, ifm is well-defined for allt ∈ [0, 1] and the following
equations hold:

m(A,B, 0) = A (5.1)

m(A,B, 1) = B (5.2)

In most of the following discussion it will be more convenient to think ofm as
a generalized morphing function. That means the transition parameter ofm is
not limited to the interval[0, 1] but can be assigned any real value. The above
definition remains the same, except that [0,1] is replaced by the real numbersR
(the interval[−∞,∞]). The transition parameters 0 and 1 will still reproduce the
source and the target object, respectively. Transition parameters outside of[0, 1]
can be understood as an extrapolation of the objects.

5.2 Properties of morphing functions

We will define some common mathematical terms for morphing functions. We
limit the discussion to those necessary for the properties of morphing spaces.

Definition 5.2 A morphing function isinjective, if for all A,B ∈ Ω the following
implication holds:

t 6= t′ ⇒ m(A,B, t) 6= m(A,B, t′) (5.3)

We need the property of injectivity only for the transition parameter. Note that we
can invert the morphing function on its domain exactly when it is injective. We will
denote the inverse of the morphing function with w.r.t. to the transition parameter
asw : Ω× Ω× Ω 7→ t. The following is the characteristic property ofw:

w(A,B, m(A,B, t)) = t (5.4)

For the next property we need to introduce a formal description concerning the set
of in-between objects:

ΨAB(a, b) = {X ∈ Ω|X = m(A,B, t) ∨ t ∈ [a, b]} (5.5)

Now we formalize the following idea: Suppose we produce an objectC by morph-
ing between objectsA andB. A morph betweenA andC or C andB will result
in objects that could have been produced by morphing between A and B, as well.

Definition 5.3 A morphing function iscompositionable, if the following equations
hold for everyC = m(A,B, τ):

ΨAC(0, 1) = ΨAB(0, τ) (5.6)

ΨCB(0, 1) = ΨAB(τ, 1) (5.7)

74 CHAPTER 5. SPACES OF SHAPES FROM MORPHING

While compositionable morphing functions are crucial for the construction of mor-
phing spaces they also allow the discussion of continuity. In many applications a
continuous morph seems desirable. The axioms and the resulting definition of the
morphing function did not suffice to define continuity in the common way, since
we have no metric onΩ . We have found to a way to describe continuous morphing
functions by an analogy to theorems from calculus.

Theorem 5.1 A compositionable morphing functionm is continuous, if everyC =
m(A,B, τ) can be represented by a composition of functionsm(A,B, χ with every
fixedχ, 0 < χ < 1.

In order to prove the above theorem we show the analogy to the Bolzano theorem of
real calculus. CalculateD1 = m(A,B, χ). If D1 = C we are done. If not, identify
the intervalΨAD1(0, 1) = ΨAC(0, χ) or ΨD1B(0, 1) = ΨAC(χ, 1) to which C
belongs (remember thatm is compositionable). According to the chosen interval
calculateD2 = m(A,D1, χ) orD2 = m(D1, B, χ). Again if D2 = C we are done
and if not the interval will be divided by the calculation ofD3. EventuallyC is
either represented by aDi or by an infinite process of interval divisions. The latter
representation is analogous to the Bolzano’s theorem, which requires continuity of
the underlying set. More specifically it is the representation of a value by interval
division that needs the property of continuity.

5.3 Definition of morphing space

Suppose we are givenn base objects that are the basis of our morphing space. Intu-
itively, the morphing space consists of all objects that can be produced by applying
the morphing function to the base objects and to objects that have been produced
by applying the morphing function to the base objects, and so forth. Formally, we
use the following definition:

Definition 5.4 Given an object setΩ , baseobjectsB0, B1, . . . , Bn−1 ∈ Ω, and a
morphing functionm: Let the setsΦ ⊆ Ω be defined by:

Φ0 = {B0, B1, . . . , Bn−1} (5.8)

Φi = {m(C,D, t)|C,D ∈ Φi−1, i ≥ 1} (5.9)

The set(Φ = Φ∞) ⊆ Ω is called thegeneral morphing space.

This definition expresses the idea of the space of all objects generated by morphing
between the base objects but is not really helpful in practice. Since we haven base
objects we are interested in an description (or representation) of elements relative
to these objects but not to the actual calculation. We want to describe objects in
terms of weights representing the shares of each of the base objects: Every element
A ∈ Φ has a representationa ∈ Rn with vector elementsai representing the share
of base objectBi. In order to analyze this case we restrict the defintion of general
morphing spaces as follows:

5.3. DEFINITION OF MORPHING SPACE 75

Definition 5.5 Given an object setΩ , baseobjectsB0, B1, . . . , Bn−1 ∈ Ω, and a
morphing functionm: Let the setsΦ ⊆ Ω be defined by:

Φ0 = B0 (5.10)

Φi = {m(A,Bi, t)|A ∈ Φi−1, i ≥ 1} (5.11)

The setΦn ⊆ Ω is called the finite dimensional morphing space.
Obviously, we can represent the elements ofΦn uniquely by vectors inRn.

This might be useful in some special applications but in general this will result in
two major drawbacks:

1. The space is limited by the fixed order of base objects, i.e. the space does
not contain all objects that might be produced by morphing among the base
objects.

2. The space is not closed against the morphing function, i.e. morphing be-
tween two elements of the space can result in a non-member of the space
(this is due to the limited dimension).

Therefore, we strive to answer the following question: What conditions mustm
satisfy such thatΦn = Φ∞ for every set of base objects? Note that the combination
of the following two conditions seems to be sufficient:

1. The morphing function must be order independent when applied to more
than two objects.

2. The morphing function must be compositionable.

Since we have a condition for the second requirement, we only have to find a
condition for the first. In order to present a sufficient criterion we first introduce
linear morphing functions.

Definition 5.6 A morphing function islinear if for all A,B ∈ Ω the following
equation holds:

m(m(A,B, x),m(A,B, y), z) = m(A,B, x + z(y − x)). (5.12)

Interestingly, linearity encompasses composition:

Theorem 5.2 Linear morphing functions are compositionable.

In contradiction to the statement we assume the linear morphing functionm is
not compositionable. We investigate an elementC = m(A,B, τ) and the sets
ΨAC(0, 1) andΨCB(0, 1). Sincem is not compositionable at least one of the sets
is not equal the corresponding setsΨAB(0, τ) andΨAB(τ, 1). But the bijection

m(A,m(A,B, τ), z) = m(A,B, τz)

76 CHAPTER 5. SPACES OF SHAPES FROM MORPHING

connects the elements of the first intervals and the bijection

m(m(A,B, τ), B, z) = m(A,B, τ + z − τz)

connects the elements of the second intervals.
However, linearity is still not enough to ensure order independence. For that

we also need distributivity.

Definition 5.7 A morphing function isdistributiveif for all A,B ∈ Ω the following
equation holds:

m(m(A,B, x),m(A,C, x), z) = m(A,m(B,C, z), x) (5.13)

We have found a single equation that enforces both properties linearity and
distributivity:

m(m(A,B, x),m(A,B, y), z) = m

(
A,n

(
B,C,

yz

x + z(y − x)

)
, x + z(y − x)

)
(5.14)

We call morphing functions that satisfy the above equationneat. These morphing
functions fulfill all requirements forΦn = Φ∞. Furthermore, the linearity of neat
morphing functions gives rise to the assumption that neat morphing functions make
Φn an affine space, or, if we pick a zero element a vector space. We proceed with
proving this assumption, since the linearity of the space also implies the order
independence of the base objects. We will discuss later on what existing morphing
techniques could be described in terms of a neat morphing function.

5.4 Morphing space as a affine/vector space

We believe thatΦn is an affine space, if the morphing function is neat. We found
it advantageous to prove this by picking a zero element in the space and to prove
thatΦn together with this zero element is a vector space.

A vector space (or linear space) is characterized by its domain with an addition
and a scalar multiplication. In order to show that the morphing space can be a linear
space we need a definition for these two operations. We pick the base elementB0

as zero element of the space and denote it with0. Now we can define the scalar
multiplication.

Definition 5.8 A scalar multipleR× Φ 7→ Φ of an elementA ∈ Φ is given by

λA = m(0, A, λ) (5.15)

for λ ∈ R.

The definition of an addition is inspired by the graphical addition of vectors:

5.4. MORPHING SPACE AS A AFFINE/VECTOR SPACE 77

Definition 5.9 The additionΦ× Φ 7→ Φ of two elementsA,B ∈ Φ is given by:

A + B = m

(
0,m

(
A,B,

1
2

)
, 2
)

(5.16)

Notehere that we are making use of a more general understanding of a morphing
function with a transition parametert ∈ R. Now one can show, that the morphing
space with the above operations is a vector space, if the morphing function is neat.
The proof consists of simple equivalence transformations and is therefore omitted.

5.4.1 Representation of elements and dimension ofΦn

We look at an element of the morphing space as a kind of compound of the base
elements. The mathematical way to produce such a mixture is a weighted sum. In
our case the weights are the representation of an element. Such, we can write an
elementA ∈ Φn as

A =
n−1∑
i=0

xiBi (5.17)

Consequently,A is completely represented by thexi. As Φn is an affine space we
know that

n−1∑
i=0

xi = 1 (5.18)

Thexi are called barycentric coordinates ofA. Because we can choose onlyn− 1
of thexi independently, the dimension ofΦn is bounded byn − 1. If we useΦn

as a vector space withB0 as zero element, we will actually use the representation
x = (x1, . . . , xn − 1), i.e. dismissing the weightx0. This has the notational
advantage that the null-vector representsB0. In the remainder of the discussion
we will look at Φn as a vector space, because it is of greater relevance to the
applications than an affine space. Nevertheless, in most cases the statements for
affine spaces can be found by simply exchanging “linear” for “affine”.

With the definition of scalar multiplication and addition we have readily given
an algorithm that constructs an element out of its vector representation. This al-
gorithm is derived from the representation of the elements as a weighted sum. We
can also think of this construction process as a map fromRn−1 to Φn. Note that
this map is at least surjective, because every element ofΦn has a representation in
Rn−1. Naturally the question arises whether the map is also injective, which would
makeΦn andRn−1 isomorphic.

5.4.2 Isomorphism betweenΦn and Rn−1

To answer this question, we need to further investigate our base elements. As in
all vector spaces we can speak of linear dependence and independence of objects
according to the following definition:

78 CHAPTER 5. SPACES OF SHAPES FROM MORPHING

Definition 5.10 Given elementsB0, B1, . . . , Bn−1 ∈ Ω. The elements arelinear
independent, if the equationλ1B1 + . . . + λn−1Bn−1 = B0 has only the trivial
solutionλ1 = . . . = λn−1 = 0. Otherwise the elements arelinear dependent.

With this definition we can prove a possible isomorphism between morphing spaces
andRn−1. In addition to be neat the morphing function has to be injective. We will
show that the linear independence of the base elements and an injective morphing
function are both necessary and together sufficient for a morphing space to be iso-
morphic toRn−1 (given that the morphing space is a vector space according to the
above definitions).

To show that the morphing function has to be injective we take a look at one of
the axes ofΦn. Its domain is given by the values ofm(0, Bi, xi). These values are
represented by vectors(. . . , xi, . . .). If m is not injective, there exists an element
A = m(0, Bi, τ) = m(0, Bi, τ

′) with τ 6= τ ′ having the different representations
(. . . , τ, . . .) and(. . . , τ ′, . . .) and the map fromRn−1 to Φn would not be injective.
Thus,m has to be injective.

If the base elements are not linear independent, there exists a base element that
can be represented as a weighted sum of the remaining base elements, e.g.

B0 = λ1B1 + . . . + λn−1Bn−1 (5.19)

so that notλi = 0 and thus, the left-hand side(1, 0, 0, . . .) and the right-hand side
(1 −

∑
i λi, λ1, . . .) are not equal. Again the map fromRn−1 to Φn would not be

injective and, therefore, the base elements have to be linear independent.
To show that both conditions are together sufficient we look at an element

A = x1B1 + . . . + xn−1Bn−1 (5.20)

and assume in contradiction to the statement, there would exist another representa-
tion

A = x′1B1 + . . . + x′n−1Bn−1 (5.21)

But then we have

x1B1 + . . . + xn−1Bn−1 = x′1B1 + . . . + x′n−1Bn−1 (5.22)

and because of the injectivity ofm all xiBi, x
′
iBi are uniquely determined. The

uniqueness permits term-transformations and we get

0 = (x′1 − x1)B1 + . . . + (x′n−1 − xn−1)Bn−1 (5.23)

But because the basisB0, . . . , Bn−1 is linear independent the above equation has
only the trivial solution

x′1 − x1 = . . . = x′n−1 − xn−1 = 0. (5.24)

Thus all representations ofA are identical, or in other words the map fromRn−1

to Φn is injective.

5.5. ALGORITHMS FOR OBJECT SYNTHESIS AND ANALYSIS 79

5.5 Algorithms for object synthesis and analysis

The two basic operations in morphing spaces are synthesis and analysis of ele-
ments. Synthesis denotes the process of constructing an element in a given mor-
phing space out of a given vector representation. Analysis is the calculation of a
vector representation for a given element in a given morphing space.

As will be seen shortly, both problems can be solved without any knowledge
of the objects and the morphing technique. The algorithms assume only that a
classical morphing technique (i.e. one operating on two objects) is available. In
the procedure it is used as a black box: A source and target object and a transition
parameter are given as input and an in-between object is returned as output.

5.5.1 Synthesis of objects

In order to find a synthesis algorithm we will use the vector space properties of
morphing spaces. With this presumption we can present an algorithm that con-
structs an element in a proveably optimal way, assuming all we have is a classical
morphing technique. We will discuss the case of synthesis in non-linear morphing
spaces later.

Assume we want to synthesize an objectA with the given vector representation
x. The algorithm can be described as follows:

1. DeriveA by morphing between the null objectB0 and the projection ofA
into then−2-dimensional subspace spanned by the base objects withoutB0.

2. To calculate the projection, identify a null object in the subspace (i.e. the
base object with the least index) and repeat the procedure of steps one and
two.

3. If the subspace is one-dimensional (this must happen eventually) calculate
the projection by applying the morphing function directly.

4. Calculate the projection in the next higher-dimensional subspace, and so on,
until the object is synthesized.

The main problem is to find the vector representation of the projection in the sub-
space. But as it will turn out, all linear equations have ad hoc solutions and their is
no need to solve any matrix equations.

ObjectA has the representation(x1, . . . , xn−1) in the original morphing space.
We want to find its representation in the space with basisB1, . . . , Bn−1. Therefore,
we have to find the intersection of this subspace and a line throughB0 andA. Thus
we have

λA = B1 + µ1(B2 −B1) + . . . + µn−2(Bn−1 −B1) (5.25)

80 CHAPTER 5. SPACES OF SHAPES FROM MORPHING

or in vector formulation

λ


x1

x2
...

xn−1

 =


1
0
...
0

+ µ1


−1
1
...
0

+ . . . + µn−1


−1
0
...
1

 (5.26)

The resulting system of linear equations
x1 1 . . . 1
x2 −1 . . . 0
...

...
...

xn−1 0 . . . −1




λ
µ1
...

µn−2

 =


1
0
...
0

 (5.27)

can be solved easily. By adding all rows we obtain

λ
∑

i

xi = 1 ⇒ λ =
1∑
i xi

(5.28)

andby applying this to thej-th row of our linear equations we find

1∑
i xi

xj − µj−1 = 0 (5.29)

and, thus,
µj =

xj+1∑
i xi

(5.30)

Theweightsµj give the representation forA in the subspace with null element
(1, 0, . . . , 0).

With repeated insertion one eventually obtains the following closed form of the
procedure:

Ck = m

(
Bk, Ck+1,

∑n−1
i=k+1 xi∑n−1
i=k xi

)
, k < n− 1 (5.31)

The calculation begins withCn−1, because in this case the we immediately obtain
Cn−1 = Bn−1. Then,n− 1 applications of the morphing procedure are necessary
to findC0 = A.

Now it is already clear, why this algorithm is optimal: We have to combinen
objects with a given operation. Clearly, we have to apply this operation at least
n − 1 times. The algorithm has another advantage. IfA is really an “in-between”
element of the base elements, i.e. we havexi ∈ [0, 1] for all i, then all intermediate
elementsCk are also “in-between” objects. If we look for example at the definition
of addition in morphing spaces, this property is not evident.

In the derivation of the algorithm we actually used the vector space properties
of the morphing space. The resulting algorithm is applicable also to non-linear
morphing spaces. The only problem in the unique construction of an object is

5.5. ALGORITHMS FOR OBJECT SYNTHESIS AND ANALYSIS 81

the ordering of the base objects (since this is the only degree of freedom in the
algorithm). If the morphing space is a vector space the input order of the base
objects is not relevant in the construction process. It might be the case, that this
order is relevant for some morphing techniques. Then, the ordering of the base
objects has to remain constant in all applications in order to have reproducible
results. In other words, in this case the ordering of the base objects is one parameter
of the morphing space.

5.5.2 Analysis of objects

The other important task in a morphing space is to find a description of the object
in the space, which represents the object’s properties best. Until now, we did not
use any additional information to describe the morphing space properties and the
synthesis algorithm. The analysis of objects, however, cannot be performed with-
out the definition of a distance function on the objects. Note that the notion of
morphing functions actually defines a metric. Yet, we cannot compute it.

For this reason we have to resort to practical solutions for a metric. For ex-
ample, on images one could use the squared distances of pixel colors in a color
space.

For the analysis of objects we cannot use one scheme for linear and non-linear
morphing spaces. If the morphing space has the characteristic of a vector space
we can use a much more sophisticated algorithm to find the representation. In
non-linear morphing spaces we will further distinguish some situations.

In all cases we need to minimize along (one-dimensional) lines. In all cases
we have to do this, we know that the minimum is a unique local minimum. We
therefore employ a numerical method known as Brent’s method [Brent 1973]. This
method switches between a golden section search and the approximation of the
minimum by a parabola, according to the appropriateness.

Note that this one-dimensional minimization could be seen as a practical solu-
tion for finding the inverse element ofm. Therefore we will use the symbolw as
in the above mathematical discussion.

5.5.3 Analysis in linear morphing spaces

We have found a considerably fast method to analyze an object in a morphing
space, if the morphing space is linear and the distance function has a certain prop-
erty. We will explain this property later.

To find the representation of a given object in the morphing space we propose
the following technique. First, we project the element on the axes of the space.
This is done by minimizing the distance to the elements of one axis. All these
projections result in an − 1-dimensional vector. We claim that this mapping is
linear. In this case, the actual representation is a linear mapping of the found vector.
Linear mappings can be represented by matrix multiplications. Thus, all we have
to do is to find the representation matrix.

82 CHAPTER 5. SPACES OF SHAPES FROM MORPHING

First we want to explain why minimizing the distance to the elements of one
axis is linear: For linear morphing spaces there exists an object representation, such
that the morphing function is a simple linear interpolation. This is due to the fact
that the morphing space is a vector space, and in vector spaces all points between
to given points can be obtained by linear interpolation.

Assume our distance function is a norm (which is no restriction, since all math-
ematical distance functions are norms). Thus, the distance function is itself linear,
and the iso-distance surfaces are all similar. Minimizing the distance results in a
projection with a fixed angle to the axis. These projections are linear.

As we have seen, the projection onto one axis is linear. And because the com-
position of linear operations is linear, the mapping from the element to the vector
of projections is also linear.

Note, that we have assumed the distance function to be calculated on a repre-
sentation of the elements, such that morphing between elements is represented by
straight lines. This is the property we spoke about in the beginning of this section.
The function d has to be a norm on the vector representation of the elements. It
is not enough, that the morphing space is linear and the functiond is a norm on
another representation.

Assume the projection of an elementA results in the vector(a1, . . . , an−1)
while the actual representation of A is(x1, . . . , xn−1). We are searching for the
representation matrixM that connects those two representations:

Mx = a (5.32)

As we know from linear algebra, the rows ofM consist of the images of the base
vectors. Therefore, we obtainM by projecting the base elementsB1, . . . , Bn−1

onto the axes.
Note that we cannot decide, whether the above linear system has a solution.

This is due to the fact that the linear independence ofB1, . . . , Bn−1 is not known,
and not calculable so far. We suggest using the Singular Value Decomposition
(SVD) to analyzeM .

The SVD is a decomposition of a matrix into a product of an orthogonal matrix,
a diagonal matrix and again an orthogonal matrix. This decomposition is always
possible [Golub & Van Loan 1989]. The SVD sheds some light on the structure of
a matrix. For most applications the values of the diagonal matrix (singular values)
are of particular interest. If any of the singular values is zero, the determinant of the
decomposed matrix is zero and the matrix not invertible. In our context, the above
linear system would have no solution. If we replace any zero singular value by
infinity, we can invert the diagonal matrix (the orthogonal matrices are invertible
anyway). This way we find a best-approximation to the above linear system, no
matter what the condition of M is [Press et al. 1992].

Furthermore we get a quality measure of our basis. The singular values rep-
resent the different scaling factors of the linear mapping. If these scaling factors
differ substantially, the quality of the basis is obviously bad. If the scaling factors

5.5. ALGORITHMS FOR OBJECT SYNTHESIS AND ANALYSIS 83

areall the same, then the basis is orthogonal and to some degree optimal. As a qual-
ity measure we use the ratio between the maximum and minimum element of the
singular values. A ratio of zero shows that the base elements are linear dependent.

5.5.4 Analysis in non-linear morphing spaces

In a non-linear morphing space we cannot use the above method, because the pro-
jection on the axes is not necessarily a linear mapping of the vector representation.
However, we can treat the morphing space as anyn-dimensional space and search
for the minimum-distance element using a general minimization algorithm forn-
dimensional spaces. The classical techniques assume that the minimum is unique,
i.e. there is only one local minimum. In this case one can find the minimum by
repeated minimizing along orthogonal lines in the space.

Powell’s algorithm (see [Press et al. 1992] for instance) would be traditionally
the method of choice for such cases. But note that morphing spaces differ some-
what from other vector spaces: In vector spaces one can specify a line by one base
point and a direction vector. Conversely, in morphing spaces we need two base
points (objects). If a sophisticated algorithm (such as Powell’s) specifies some
lines, along which one has to minimize, this causes the calculation of additional
objects in the morphing space. But constructing objects is expensive and should be
avoided as far as possible. Therefore we propose the following scheme to minimize
in morphing spaces with a unique local minimum:

Given a morphing spaceΦ with the basisB0, . . . , Bn−1 ∈ Ω constructed with
a morphing functionm and an elementC, which has to be analyzed. Calculate
C0 = m(B0, B1, w(B0, B1, C)) and then interactively

Ci = m(Ci−1, Bi+1 modn, w(Ci − 1, Bi+1 modn)) (5.33)

With this,Ci→∞ converges againstC.
The idea is to minimize along lines given by the actual best approximation and

a base object. The indexi + 1 modn results in cyclic usage of the base objects.
This scheme converges due to the fact, that the respective direction vectors are
linear independent. The advantage is of course that each step no object has to be
predetermined to define the line along which one has to minimize.

Note that this trick works only when the distance-minimum is indeed unique in
the morphing space. The above algorithm finds the first local minimum it “comes
across”. It will not find the global minimum if other local minima exist. For such
cases more robust methods are needed.

We successfully adopted a simulated annealing scheme [Kirkpatrick et al. 1983]
adapted to our needs: First, calculateC0 = m(B0, B1, w(B0, B1, C)). In every
step, choosex ∈ [0, 1] randomly and calculate

D = m(Ci−1, Bi+1 modn, x) (5.34)

The probability to setCi = D is given by

p = e
d(C,D)−d(C,Ci−1

kT (5.35)

84 CHAPTER 5. SPACES OF SHAPES FROM MORPHING

Thus, ifD is closer to the minimum thanCi according to the distance functiond,
we always useD as the actual approximation (in this casep is greater than one). If
D is not closer than the result depends on a randomly chosen value in the interval
[0,1].

Obviously, this scheme represents a simulated annealing technique in morph-
ing spaces.

5.6 Spaces of meshes from morphing

The conceptual extension of the framework to more meshes is rather straight-
forward as compared to possibly non-linear morphing functions. Given meshes
Mi = (Vi,Ki) a common connectivityK together with vertex setsV (ei) is estab-
lished. The vertex sets form a base of a space, which is reflected by using canonical
base vectorsei as indices. A morphed shape(V (s),K) is represented by a vector
s = (s0, s1, . . .) reflecting the shares of the meshesM0,M1,

Not all techniques presented in this work are equally suited to be extended to
more meshes. The correspondence problem discussed in Chapter 2 seems to be
relatively easy to extend. All meshes are embedded in the given parameter do-
main, which leads to barycentric representation of the original vertices. If each
set of original verticesVi needs to be mapped to all other meshesMj , i 6= j the
complexity would grow quadratically with the number of meshes. However, this is
not necessary if a remeshing strategy is used to generate a consistent mesh connec-
tivity (see Section 3.5). This procedure generates the same set of vertices over all
shapes, thus, the complexity is linear in the number of meshes times the number of
vertices used in the remesh, which is the best we can expect. Concluding, the best
way to generate the set{(V (ei),K} is to embed all meshes in a common parame-
ter domain (spherical or piecewise linear) and then remesh to the desired accuracy.
This has been demonstrated by Michikawa et al. [2001] (see Figure 5.1).

The vertex path problem now extends to compute combinations of several ver-
tex vectors. Linear vertex combination is easily extended:

V (s) =
∑

i

siV (ei) (5.36)

Surprisingly, any technique involving rotations such as the ones explained in Sec-
tions 4.2 and 4.4 seem to be difficult to extend. Instead of interpolating the orien-
tation one could compute the principal components (moments) of the shapes and
align them with the canonical axes of the coordinate system. To extend the local
morph approach explained in Section 4.5 the linear combination has to be applied
to the Laplacian coordinates.

Applications of such spaces of meshes range from modeling and analysis of
shapes to animation. Praun et al. have termed the synthesis-analysis part digital
geometry processing (DGP) [Praun et al. 2001]. Modeling could be achieved be
combining several shape (features) to yield the desired result. This has applications

5.6. SPACES OF MESHES FROM MORPHING 85

Figure 5.1: A space of shapes generate from three input shapes and linear interpo-
lating their geometry vectors. Correspondence has been established using a coarse
base domain and a multiresolution mesh. Reprinted from Michikawa et al. [2001].

in information visualization (see Chapter 6). Using techniques such as the principal
component analysis, spectral properties of the mesh family can be explored.

The space of meshes(V (ei),K) allows to represent animations as a curves(t).
This idea will be detailed in Chapter 7.

86 CHAPTER 5. SPACES OF SHAPES FROM MORPHING

Chapter 6

Applications in Visualization

The visualization of scalar and multivariate quantitative data involves the map-
ping of data onto a visual scale. The principles of such a mapping of scalar data
to scales of visual attributes are well-known for a number of basic scales. In color
mapping, data values are mapped to appropriate hue of lightness values. Scatter
plots are based on the principle of mapping data values to positions, or more ex-
actly, to distances from an axis. Other variables often applied for such purposes are
scale, form, and texture. Bertin [1983] describes a general methodology of how to
select an appropriate mapping to these visual variables and how to combine them.
Cleveland gives a ranking of their effectiveness [Cleveland 1985]. For multivari-
ate data with two upto five dimensions more complex color and texture scales can
provide solutions in some cases. For the visualization of local variations higher di-
mensions data glyphs have been proposed and been applied successfully. Chernoff
faces [Chernoff 1973] and stick figures [Pickett & Grinstein 1988] are well-known
examples for this visualization approach. Tufte gives a good overview of relevant
visualization techniques and discusses their effectiveness in certain application ar-
eas [Tufte 1983]. Nevertheless, a generally accepted set of visualization rules does
not exist.

87

88 CHAPTER 6. APPLICATIONS IN VISUALIZATION

All the techniques mentioned above represent fundamental approaches to the
visualization of scalar and multivariate data. The general understanding is that
no single of these visualizations is effective in all possible situations. One visu-
alization may – and should of course – produce new insights and, by this, new
questions which again produce the need of different views to the data. A good
number of applications have proven that a user can gain knowledge about some
unknown data more effectively when provided with highly interactive techniques
[Rheingans 1992]. Techniques such as Focusing and Linking [Buja et al. 1991] ex-
tend this interactivity even further by connecting different views to the data using
interactive feedback.

However, effective visualization still is very, very difficult. There are a number
of reasons for this. First, a mapping of application data to these fundamental vari-
ables involves an abstraction. If the user is familiar with the idea of this mapping,
he may understand the generated visualization good. However, often the applica-
tion context is lost and the visualization which was applied to simplify the analysis
of the data involves an analysis step or experience by its own.

Second, it is not easy to visualize a number of parameters using these funda-
mental mappings only. Usually, the visualization of multi-parameter data involves
the generation of application specific models and solutions. General solutions and
general scales do not exist for this purpose. Consequently, the user needs methods
to define a visual scale for such applications very quickly and easily. Such methods
do hardly exist to date.

Last, and may be even most important, it is still difficult to change visualiza-
tion parameters and to produce a new, appropriate visualization intuitively. For
example, to highlight a specific data value one has usually to modify the data fil-
tering or to completely redefine the mapping of the data to visual attributes. A
direct and interactive modification of local data mappings is hardly provided by
any visualization technique today.

We have introduced a new approach for the visualization of scalar and mul-
tivariate data, which addresses the problems presented above [Alexa & Müller
1999b]. This approach is based on the direct and interactive specification of lo-
cal data mappings.

6.1 Visualization by Examples

The general paradigm of our visualization approach is to enable the user to visual-
ize some data by specifying the mapping of a small number of selected data values.
We call this Visualization by Example.

This approach can be explained best with an example. A simple mapping of
some scalar quantitative data to color can be defined by linking two arbitrary data
values with appropriate color values. This results in a linear mapping. Further links
can be supplied to adjust the mapping locally, resulting in a more sophisticated
mapping function. The visualization of any local feature and its neighborhood is

6.2. VISUAL REPRESENTATIONS FROM MORPHING 89

directly and intuitively controlled by the user and may be easily changed when
provided with appropriate visual attributes or objects on which the data may be
mapped. Note that this strategy is fundamentally different from the selection of a
color scale and applying this scale to all data.

While the direct and interactive linking of data values with visual representa-
tions is not new, it has not been combined with appropriate methods for the ap-
proximation of data mappings based on the supplied correspondences.

In the example presented above this approach seems simple and easy to fol-
low. However, the generalization of this approach calls for a mathematical model
describing the data objects, flexible visual scales, and the mapping between this
values based on a small number of parameters and features.

In addition, the user will have some additional knowledge about the data in
many cases, which can be exploited with our approach. Moreover, the user might
want to highlight several data values by mapping them to special representations.

There exist approaches to describe data spaces based on mathematical models
[Brodlie 1993]. However, in the context of this work mathematical models are pro-
posed to describe the spaces of visual scales and morphing is used to construct the
corresponding graphical objects for this purpose [Alexa & Müller 1998b; M̈uller
& Alexa 1998]. This approach allows to define rich sets of useful visual represen-
tations from only a few graphical base objects. As such, this method provides the
appropriate foundation for a Visualization by Example.

In the following section we will discuss the fundamentals and characteristics
in more detail.

6.2 Visual representations from morphing

For our visualization technique, the visual representations have to be structured
as a multidimensional space. That is, a visual object has to be element of ann-
dimensional space and represented by a vectorr ∈ Rn.

For many visual scales such a representation is quite natural:

• Color can be represented by real values in[0, 1]3, color scales might be rep-
resented by real numbers in[0, 1].

• Size or position is naturally a real number.

• For textures one defines a number of real valued parameters, which control
their appearance.

• In general: If the visual representations are used to depict quantitative data
there has to be a reasonable understanding in terms of real valued vector
spaces.

We have proposed a more flexible way to define spaces of visual representations
[Alexa & Müller 1998b; M̈uller & Alexa 1998]:

90 CHAPTER 6. APPLICATIONS IN VISUALIZATION

Figure 6.1: A smiling scale produced by morphing a mona lisa face.

Figure 6.2: Another scale produced by morphing a mona lisa face.

Given a number of graphical objects of any class (images, polyhedra, etc.)
we construct a space by morphing among these objects. Morphing between two
objects produces one-dimensional visual scales. Two such scales are depicted in
Figures 6.1 and 6.2. Here, the degree of smiling could be used to represent a scalar
value. While this scale might not be as visually strong as e.g. the size of a dot it is
easier to connect to the real-world phenomenon behind the data values. A smile is
obviously representative for “good” values in the context of the data, while abstract
representations need a legend, which has to be learned and remembered.

In this approach, a morph among multiple objects by performing several mor-
phing operations between two objects subsequently defines a multidimensional
space of objects (see previous chapter).

Since morphing is applicable to produce scales such as color, position, size,
etc. we understand this to be a generalization of these techniques to define spaces
of visual representations (e.g. glyphs or icons [Beddow 1990; Pickett & Grinstein
1988]). Note that our technique allows to represent glyphs or icons as ann-vector.

The strength of using morphing techniques to generate visual representations
of data becomes evident when applied to multivariate data. As mentioned before,
it has been proven difficult to find intuitive visual representations for multivariate
data and multidimensional objects. By morphing among multiple objects one could
visualize multivariate data as elements of a space of graphical objects.

6.2. VISUAL REPRESENTATIONS FROM MORPHING 91

U . S . A .

Chicago

Atlanta

Denver

El Paso

Houston

Los Angeles

Miami

New Orleans

Detroit

Salt Lake City

San Francisco

Seattle

Washington

New York

Pittsburgh

neutral good economics many recreational
facilities

high crime
rate

bad healthcare
situation

Boston

Figure 6.3: Mona Lisa faces as visual representatives of city rankings in the U.S.

6.2.1 Examples

Our visualization technique is based on the selection of a number of visual object
attributes and the specification of visual prototypes representing a high data value
against the global neutral object state. The visual prototypes are the base objects of
the representation space. The correspondence between visual prototypes and data
values induces a mapping from the data to coordinates, which are used to construct
the actual visual representations.

We demonstrate the above procedure at application examples. In the examples
we visualize data about U.S. cities from [Boyer & Savageau 1985] and the Ameri-
can Bureau of Concensus. Note that the examples are meant merely to demonstrate
the technique of generating multivariate visual representations, and not to show the
most effective way of communicating information.

In the first example we use warped images of Mona Lisa’s face as base objects
and visual prototypes (see figure 6.3). The idea of using faces as visual represen-
tations dates back to Chernoff [1973] and is advantageous due to human’s native
ability to recognize facial expressions. Note how morphing techniques add realism
and additional degrees of freedom to this concept: An undistorted image is used
as a representation of a neutral value. This image is distorted to represent good

92 CHAPTER 6. APPLICATIONS IN VISUALIZATION

economical situations (Mona blinks), many recreational facilities (Mona smiles),
high crime rates (Mona’s nose gets wider) and bad health care situations (Mona’s
cheeks tighten). Thus, the neutral face represents cities with bad economy, few
recreational facilities, low crime rate, and good health care. In order to find data
values that correspond to the intended meaning of the representations we simply
scan the values for minima and maxima. The neutral face represents the smallest
value in economics rating, recreation rating, and crime rating, but a high health
care score. The other faces are based on the neutral face and add their specific
characteristics (e.g.smile).

In the second example we use the 3D-model of a comic figure’s hand (see figure
6.4). Note that navigating in the 3d-scene yields better access to the information
than a single projection on 2D. The idea of using hands as glyphs is that, similar to
faces, gestures are recognized intuitively by a human observer. However, we do not
claim that this visualization is appropriate and effective for the given data. In this
simple visualization example the neutral position is an open hand and each variate
is represented by the flexion of one finger. A more sophisticated model could use
hand gestures similar to those from sign languages. The process of connecting data
values with objects is exactly the same as in the example above, as is the data set,
now using the categories climate, economics, transportation and the arts.

Figure 6.4: 3D hand glyphs generated by shape interpolation for the visualization
of city rankings.

6.2. VISUAL REPRESENTATIONS FROM MORPHING 93

Figure 6.5: Ethnic distribution in the USA.

Thethird example shows the distribution of ethnic in the USA (see Figure 6.5).
For each type of ethnical origin one prototype faces was used. Mergers of these
faces represent the relative amount of people living in a particular state. This ex-
ample shows how meaning of data could be connected directly to the visualization
primitive being used.

94 CHAPTER 6. APPLICATIONS IN VISUALIZATION

6.3 Mapping Data to Coordinates

The main idea of our approach is to let the user define several relations between
data values and graphical representations. These correspondences are used to con-
struct a mapping from data to visual representations. We want to allow the user to
define any number of correspondences, usually beginning with only a small num-
ber of correspondences. Depending on the application the user might decide to
generate an affine mapping in any case, or, if no simple affine mapping can be
found, to accept a non-linear function to depict the mapping.

To define a single correspondence, the user first chooses a data value and then
searches the space of graphical representations for a suitable element. That is, the
user gives an example for the intended relation between data and visualization.

We denote the space of data values asV d, i.e. each vector consists ofd vari-
ates. Assume a numbere of data vectorsq0,q1, . . . ,qe−1 should be mapped to
a coordinater0, r1, . . . , re−1 in the space of visual representations. Ife ≤ d
then an affine mappinga : V d → Rn exists that satisfiesa(qi) = ri for all
i ∈ 0, . . . , e− 1. However, ife > d that mapping does not necessarily exist.

We suggest to use a linear mapping whenever possible, i.e. in casee ≤ d.
The reason for this is that visual scales are still meaningful, properties of the data
variates are preserved in the visualization, and the order of the data values is not
changed.

If e is greater thand we offer three choices:

1. An affine mapping that fits the given correspondences as far as possible.

2. A non-linear mapping that satisfies all relations by locally changing a linear
approximation.

3. A non-linear mapping that satisfies all relations by globally interpolating the
relations.

The second and third mapping are constructed using the same approach. Both need
an approximation of the affine mapping similar to the one used in the first approach.
In the upcoming subsection we explain how to calculate that affine mapping, inde-
pendent of the number of given relations.

6.3.1 Finding an affine mapping

We want the mappinga to be represented by a matrix multiplication. Thus, we are
searching for an × d matrix A that maps fromV d to coordinates in the space of
visual representations. In casee ≤ d, A has to satisfy the simultaneous equations

Aq0 = r0

Aq1 = r1
... =

...
Aqe−1 = re−1,

(6.1)

6.3. MAPPING DATA TO COORDINATES 95

in casee > d we like to minimize the residual

(‖Aq0 − r0‖, ‖Aq1 − r1‖, . . . , ‖Aqe−1 − re−1‖) .

We now first solve the first case. The techniques we employ here will automatically
produce a solution to the second case.

If we look at the i-th rowai of A we get the simultaneous equations

aiq0 = r0i

aiq1 = r1i

... =
...

aiqe−1 = re−1i .

(6.2)

We define thed× e matrix

B =


− q0 −
− q1 −

...
− qe−1 −

 (6.3)

to rewrite the simultaneous equations in 6.2 as a matrix equation:

BaT
i = (r0i , r1i , · · · , re−1i,)

T (6.4)

The solutions of thesen systems of linear equations yield the rows ofA. In order to
solve one of these systems we use the Singular Value Decomposition (SVD, [Golub
& Van Loan 1989]). The SVD has several nice properties that are interesting for
our problem [Press et al. 1992]

1. It gives a stable solution in the quadratic case, even in the presence of degen-
eracies in the matrix.

2. It solves the under-specified case in a reasonable way, i.e. out of the space
of solutions it returns the one closest to the origin.

3. It solves the over-specified case by minimizing the quadratic error measure
of the residual.

Using the SVD we can compute all rows ofA and thus have found the affine
mapping we were searching for.

6.3.2 Non-linear mappings

We want to find a mappinga that satisfies all equationsa(qi) = ri. This could
be seen as a scattered data interpolation problem where we try to find a smooth
interpolation between the valuesri given at locationsqi. Contrary to some other
application domains of scattered data interpolation, we deal with different and high

96 CHAPTER 6. APPLICATIONS IN VISUALIZATION

dimensions of the vectors and typically the number of relations is close to the
dimension of the input data.

As explained before, it seems desirable to have an affine mapping from the
data values to the space of visual representations. Therefore, we always start with
a linear approximation of the mapping (as calculated in the previous section) and
then fit the relations in the mapping by tiny adjustments. For these adjustments
we use radial sums. The idea of combining an affine mapping with radial sums
for scattered data interpolation is considered in e.g. [Arad & Reisfeld 1994] and
[Ruprecht & Muller 1995] (for two-dimensional vectors, only).

Hence, we definea by

a(q) = Ar +
∑

j

wjf(|q− qj|),q ∈ V d, r ∈ Rn (6.5)

wherewi ∈ Rn are vector weights for a radial functionf : R → R. We consider
only two choices forf :

1. The Gaussianf(x) = e−x2/c2 , which is intended for locally fitting the map
to the given relations.

2. The shifted logf(x) = log
√

(x2 + c2), which is a solution to the spline
energy minimization problem and, as such, results in more global solutions.

We computeA beforehand as explained in the previous section. Thus, the only
unknown in (5) is a pure radial sum, which is solved by constituting the known
relations

ri −Ari =
∑

j

wjf(|qi − qj|) (6.6)

This can be written in matrix form by defining

F =


f(0) f(|q0 − q1|) . . . f(|q0 − qe−1|)

f(|q1 − q0|) f(0) . . . f(|q1 − qe−1|)
...

...
...

...
f(|qe−1 − q0|) f(|qe−1 − q1|) . . . f(0)


and separating 6.6 according to then dimensions ofri andwi:

F


w0i

w1i

...
we−1i

 =


r0i − air0

r1i − air1
...

re−1i − aire−1

 , i ∈ 0, . . . , n− 1 (6.7)

Again, we solve thesen equations by calculating the SVD ofF . This time we
are sure that an exact solution exist, because the solvability for the above radial
functionsf can be proven [Dyn 1989].

6.4. RESULTS 97

6.4 Results

We will demonstrate the techniques at two examples. These examples show two
principally different application scenarios:

• The first example shows the mapping from multivariate data onto low-
dimensional visual representation. That is, the dimension of the data is much
higher than the dimension of the representations.

• The second example shows a mapping from scalar data onto either basic or
more complex, multi-parameter representations. Here, specific aspects of
the scalar data set are mapped to a specific channel of the visual attribute
enhancing the expressiveness of the visualization.

6.4.1 Visualizing city rankings

In this example we visualize an overall (scalar) ranking of cities in the USA. Sup-
pose we want a visual aid for a decision which of the major cities would be nice to
live in. In order to quantify the different amenities and drawbacks of these cities
we use data from “The places rated almanac” [Boyer & Savageau 1985]. This
data contains values for nine different categories. That means, we need to project
nine-valued vectors onto scalar values.

To visualize the ranking of the cities we use a Chernoff-like approach. The
faces are generated by morphing among a standard set of facial expressions (as
explained in the following chapter). In this example we make use of only a smile
and a grumble, defining a one-dimensional visual scale. Thus, the degree of smiling
represents the living quality determined by a combination of the nine data attributes
from [Boyer & Savageau 1985].

One way to find this mapping might be to inspect the nine different categories
and try to find some weights for the values. This requires not only to define nine
values, also the correlation to the outcome of this mapping does not take into ac-
count the user’s knowledge about the cities.

A more intuitive approach is to allow the user to supply a ranking based on
personal experience. Remark that a ranking of a subset of all cities is sufficient. In
figure 6.6 only three examples were given to generate an affine mapping. Namely,
Chicago was thought to be nice to live in and was mapped to a smiling face,
whereas Miami was unacceptable and mapped to a grumble. Additionally, Wash-
ington appeared nice but expensive and, therefore, mapped to a neutral face.

6.4.2 CT scan data

In this example, we inspect CT scan data from the “Visible Human”-project. The
data is given as 16-bit data values on a 512 by 512 grid. A standard linear mapping
of the relevant CT data to gray values is depicted in figure 6.7. Note, that this image
could be produced by picking the two boundary values to define an affine map.

98 CHAPTER 6. APPLICATIONS IN VISUALIZATION

Figure 6.6: Cities of the united states represented by mona lisa faces. The repre-
sentationis generated from 9-valued ranking vectors. The mapping was defined by
mapping Chicago to a smile, Washington to neutral face, and Miami to a grumble.

In figure 6.7 the soft tissue is display relatively bright. We can adjust this for a
better distinction of bones and soft tissue by simply selecting one of the data values
from the soft tissue and assigning a dark gray to it. This time an affine mapping is
a bad choice, because the three correspondences cannot be satisfied. Instead, we
fit the mapping globally to the data value - gray value pairs by using radial basis
sums with the shifted logarithm as the radial function. The resulted is depicted in
figure 6.8 and clearly shows the advantage in comparison with figure 6.7.

If we take a closer look at figure 6.8 we find a brighter substructure in the
stomach. We would like to bring this region of data values to better attention in
the visual representation. We do this by mapping a data value of this region to a
red color. That is, instead of using gray values in the visualization we now use
RGB color. Note, that it is not necessary to use specific two-dimensional color
scales: We simply specify which data value maps to which RGB triple. The gray
value representations of the three correspondences defined earlier are mapped onto
corresponding RGB values. The resulting mapping is shown in figure 6.9. Note,
how the empty structures are colored in the complementary color of red. This gives
a nice distinction of empty spaces and tissues.

6.5. CONCLUSION 99

6.5 Conclusion

We present a new approach to the construction of visual scales for the visualization
of scalar and multivariate data. Based on the specification of only a few corre-
spondences between data values and visual representations, complex visualization
mappings are produced, hereby introducing a Visualization by Examples.

This approach exploits the user’s knowledge about the data in a more intuitive
way. Moreover, the user is enabled to adapt the visualization interactively and
easily. The technique of Visualization by Examples can be used in combination
with any visual representation

100 CHAPTER 6. APPLICATIONS IN VISUALIZATION

Figure 6.7: The CT-scan of the chest of a man. This image is generated from the
raw CT-data by linearly mapping the range of useful CT-data values to a grey-scale

6.5. CONCLUSION 101

Figure 6.8: Here, the CT scan was generated by a mapping defined from three
correspondences.The background was mapped to black, the bones were mapped
to white, and the soft tissues surrounding the lung were mapped to dark grey.

102 CHAPTER 6. APPLICATIONS IN VISUALIZATION

Figure 6.9: This image demonstrates the benefits of displaying scalar data with
multidimensionalvisual representations. In addition to an already defined gray-
scale, the soft structures of the bones were mapped to red color.

Chapter 7

Applications in animation

Computer animation has evolved to a standard technique in Computer Graph-
ics. In the last decades, a number of different animation techniques have been
developed. Starting from the standard frame-by-frame animation introduced by
Disney and others, key-frame animation has established itself as the standard tech-
nique for describing time-dependent scenes in Computer Animation. Instead of
describing every single frame only a sequence of principal frames - so called key-
frames - is defined and additional frames are generated by interpolating between
two consecutive key- frames using in-betweening. Elaborated techniques have
been developed to allow for the automated generation of physically-based behavior,
namely kinematics and inverse kinematics, and today animation systems are more
and more coupled with simulation engines to facilitate the production of complex
and realistic animations. However, key-frames and the concept of describing ob-
ject states at specific times remain the fundamental philosophy for representing
animations and time-dependent aspects in virtual scenes.

Despite its widespread use, the concept of merging object and geometry de-
scriptions has a fundamental problem. While it is easy to specify, design, or output
an animation in terms of key-frames, it is difficult to manage or change the time-
behavior since all meta-information is lost. In particular, the following problems
connected to geometric key-frame animations can be stated:

• Redundancy: A complete object description has to be recorded for each key-
frame, even if parts of the object do not change at all. Additionally, repetitive
patterns result in repeating the geometry description. Consequently, anima-
tion sequences are usually very large and hard to apply in streaming appli-

103

104 CHAPTER 7. APPLICATIONS IN ANIMATION

cations. The compression of such sequences is a problem which is under
intense investigation of the Computer Graphics research community today.

• Modification: Exchanging an animated object in a scene while reusing the
once specified animation at the same time is an involved task, even though
most of the necessary information should be available. In general, after in-
troducing the new model, it has to be animated again by hand. Similarly, it
is almost impossible to make use of a once defined animation and to extend
or exchange the object’s behavior. The aspect of reuse has been addressed
for specific object domains. One approach is standardized parameterization
of an object and its possible behaviors, thus allowing for the exchange of
both, geometry and animation (e.g. Humanoid Animation [Web3D Consor-
tium 1999a] or Facial Animation in MPEG-4 [Ostermann 1998]). Similar
but more general is the idea of animation elements [Dörner et al. 1997], gen-
eral object hierarchies with a defined interface. However, both approaches
do not provide a general solution to this problem.

• Level of detail: Another problem of high impact is the reduction of scene
complexity in interactive applications. LOD concepts such as progressive
meshes [Hoppe 1996] allow static objects to be fitted to the display require-
ments. Recent techniques try to provide a view-dependent level of detail on
static object based on mesh simplification techniques or sometimes by ex-
ploiting progressive transmission and decompression schemes. However, if
the objects are animated these standard techniques may fail or not be appli-
cable at all. Standard LOD hierarchies could not be applied for animation
since this would result in even a much higher redundancy since specific LOD
hierarchies would have to be provided for all key-frames. Key-frame inter-
polation also would become more difficult since an interpolation between
objects of different LOD would have to be supported.

Still, geometric simplification exploits just spatial coherence, while anima-
tions exhibit additional temporal coherence. Surprisingly, the application
of a LOD concept for animated geometry and animation itself has not been
discussed in the literature to the best of our knowledge. For the same rea-
sons small, static geometry features are omitted in standard LOD techniques,
small temporal features should be a target of LOD approaches also. Here, an
interesting potential for reducing scene complexity is hidden.

Key-frame animations and related concepts inhibit a compound of geometry and
animation in their scene description. For all the problems stated above, this compo-
sition represents the main obstacle. It makes an easy exchange of either geometry
or animation in a scene description impossible and makes the application of LOD
concepts and abstraction difficult.

Here, we address this problem and present an alternative representation of an-
imation sequences based on principal animation components, thus decoupling the
animation from the underlying geometry [Alexa & M̈uller 2000]. The idea is find

7.1. BUILDING ANIMATIONS USING BASE SHAPES 105

or use a set of basis shapes and represent each (key) frame as linear combination
of the basis objects. In the spirit of this work the basis objects form a space and the
animation is a curve through this space.

We present two ways of representing animations in this way. First, we start
from a suitable basis of shapes. The basis shapes and their blends are used to
author the animation and the animation is then naturally represented in terms of
the basis. Second, starting from a key frame animation we try to find a suitable
basis consisting of only a few shapes.

7.1 Building animations using base shapes

We demonstrate the idea of building animations from an existing set of base shapes
at the example of facial animations [M̈uller et al. 2000; Alexa et al. 2001].

Models for Facial Animation have been of much interest in Computer Graphics
in the last years. One of the first examples was presented by Parke [1979], who
used a selected number of key expression poses. Specific expression poses could
be generated by interpolating between these key expression poses. Interpolating
between these expression poses would then create facial animations. However, this
approach has been criticized to allow only a generation of a limited range of facial
expressions and to request a significant amount of modeling time to specify the key
expression poses [Parke 1982]. The need for more realism in facial animation lead
to the development of Facial Animation techniques based on physiological models.
Waters [1987] introduced a model for facial animation that incorporates skin and
virtual muscles corresponding to the ones in a human face. Activation of these
muscles results in different facial expressions. For the control of these muscles
FACS, a classification scheme for facial expressions [Ekman & Friesen 1978], was
applied. Magnenat-Thalmann et. al. developed a pseudomuscle-based model in
which the parameters control abstract muscle actions (AMA, [Magnenat-Thalmann
et al. 1988]). While the approach is similar to the one of Water, FACS actions are
exchanged here for more complex actions. While the application of muscle-tissue
based facial expressions may result in very realistic images, animations are still not
easy to control. Moreover, the corresponding models are much to complex and not
flexible enough for an application in the context of real-time animation.

Facial animation techniques have been suggested for bandwidth compression
in tele-communications for video images of a human speaker. Here the idea is to
transfer a geometric representation of the speaker’s head and face and their move-
ments rather than a complete image of the speaker every second [Parke 1982].
However, until now prototype systems in this area succeed in making use of the
head and shoulder’s geometry. The description of speakers in terms of geometric
models and facial expressions has gained much interest in the context of MPEG-4
[ISO JTC/WG11 1997]. MPEG-4 allows the definition of data streams with 2d
and 3d objects. Moreover, MPEG-4 specifies a set of face animation parameters
[Ostermann 1998]. Each one of these parameters corresponds to a particular fa-

106 CHAPTER 7. APPLICATIONS IN ANIMATION

cial action deforming a face model in its neutral state. The underlying approach
is again based on a physiological model. While the integration of facial animation
control techniques in this streaming standard gives a much higher degree of flex-
ibility, solutions for the modeling of animations and specific expressions are not
presented.

7.1.1 Representing facial animations

The main use of facial animations in our context is communication. Basically, we
are not interested in being able to represent every possible state of a human face.
But, we might want to represent facial expressions that are not realistic in order to
generate cartoon-like characters. For these two reasons, most of the documented
parameter sets used to describe facial expressions are not adequate: First, they
usually exhibit a very high degree of granularity and detail, more than might be
necessary for the sole purpose of communication. Second, they are derived from
the human face and have problems to represent unrealistic facial expressions.

When designing conversational user interfaces, the optimal origin for creating
facial expressions is a neutral, emotionless representation of a face, to which certain
features can be added, such as:

• Movements of the mouth representing phonemes (so called visemes)

• mimic (for example blinking, raising eyebrow, smiling, grumbling)

• overlaid moods (i.e. friendly, sad)

The systems should add these features non-exclusively, i.e. phonemes, mimics and
moods can be combined and result in an addition of features. Also, the number of
different features should be as small as possible while still satisfying the needs of
human communication. Obviously, the quantity of each feature has to be control-
lable. We will describe the single features we have used for our prototype system
in detail.

We will use the quantities of the above mentioned features (visemes, mimic,
moods) as the representation for facial expressions. In the following we will ex-
plain our idea of connecting this representation to geometries.

Our approach somewhat resembles the idea of Parke [1979]. We use not only
one geometry for the neutral state of the face, but an additional geometry for each
feature. But, instead of just blending between these geometries as in [Parke 1979]
we define a vector space of geometries. This vector space has the neutral face as
zero element and the differences of the features’ geometries to the neutral face as
base vectors. This alleviates one key problem of the blending technique: Features
may be added independently to the neutral face. For example, the designer can
combine speaking an “A” with a smile, where the blending technique would allow
only to trade off between speaking and smiling.

7.1. BUILDING ANIMATIONS USING BASE SHAPES 107

Also, the generation of the geometries can be eased with modern techniques.
We can produce several laser scans of a human model and use the morphing tech-
niques composed from the methods discussed in Chapters 2, 3, and 4. to produce
a consistent geometry. But even if the set has to be modeled by hand, several
advantages warrant the task.

Note that the movements of vertices for each feature are linear, which is ob-
viously not correct for every facial expression. However, in our experiments this
simplification has proven to be sufficient. It seems that linear approximations are
not too bad, because of the small distances and speed with which vertices move. If
necessary one could model movements of vertices in a more elaborated way and
use eigenvector analysis to decompose the movement into linear parts.

Distinct facial features

In our system we like to allow a designer to start forming a neutral face and to
add several expressions. The main goal of our work is to communicate in an easy
readable and easy understandable way. Facial expressions include a huge potential
in terms of conciseness and a wide spectrum in terms of communication state-
ments. The given principles of different communication channels such as speech
and mimics contribute to an easy understandable communication through redun-
dancy (e.g. synchronous appearance of speech and mimics) and thus prevent mis-
interpretation. We need a collection of features which allows to conveniently and
intuitively design communication by lifelike facial animations. We do not strive for
completeness in the sense of being able to represent the whole range of possible
facial expressions. But, the variety of facial expressions resulting from the defined
features must be diverse enough to be accepted by a human observer.

Obviously, such a set has to be found by analyzing special communication
requirements, such as:

• the syntactical, the semantical as well as the pragmatical context of facial
expressions (e.g. different meanings and interpretations of facial expressions
according to several cultural agreements)

• special communication requests and special facial expression codes of the
intended audience (i.e. target group).

After this analysis step, a base of elementary prototypes of facial expressions has to
be defined. This base can be refined in further steps by repeated experimentation.

108 CHAPTER 7. APPLICATIONS IN ANIMATION

Figure 7.1: Some basic facial expressions

7.1. BUILDING ANIMATIONS USING BASE SHAPES 109

Compact representation of the Animation

A complete representation of an animation consists of the geometry and the change
of this geometry over time. In our scheme such a complete representation is given
by

• the vertex edge-topology of the geometry

• vertex attributes of the neutral face.

• vertex attributes of the feature facial expressions or the differences to the
neutral face

• key-frames given by a feature vector together with a time stamp.

Representing vertex-edge topology in a compact way is a current research topic.
We are aware of schemes that guarantee less than 2 bit per vertex, also enabling
a compact way of representing vertex positions. In general, coding the vertex at-
tributes is linear in the number of vertices. For representing the features we can
exploit the fact that they differ only a small amount from the neutral face. Thus,
all values are small and we can use a small number of quantization levels resulting
in compact representations. Anyway, the cost for coding the geometries is inde-
pendent from the actual animation and might be used for a number of different
animations.

The key-frames consist of a time stamp (real valued number) and the repre-
sentation vector (n real valued numbers). Practice shows that a single precision
floating point number (2 byte) is sufficient for the time stamp. For the components
of the representation vector not more than 6-8 bits are needed. This sums up to less
than 20 byte per key-frame. Even if one likes to specify 25 key-frames per sec-
ond, the stream is represented with less than 4kBaud, a transfer rate each modem
can easily provide. Note that a rate of 25 frames per second eliminates all visual
problems originating from interpolation issues.

An important point is that an animation’s representation is independent from
geometry but based on quantities of facial expressions. Of course, the animation
makes sense only with a specified geometry, but, this geometry is exchangeable. In
the following two sections we will show how to exploit this idea in two ways. We
will show the effects of

• changing the representation of an animation (independent of the geometries
used)

• using different geometries for the facial expressions (independent of the ac-
tual animation sequence).

7.1.2 Altering and combining animations

In this section we show why the representation of facial expressions in terms of
quantities of different facial expressions is useful. For this section it is convenient

110 CHAPTER 7. APPLICATIONS IN ANIMATION

to represent the animation as a vector over time rather than defining key frames.
Simply speaking, the animation is defined by the quantities of saying-an-a over
time, smiling over time, and so on. Formally, an animation sequence is represented
by r(t) = (r1(t), . . . , rn−1(t)). Note that this is only a conceptual difference and
we get back to a key-frame animation by simply discretizingr(t). In the following,
we like to exploit the idea of filteringr(t) and combining different sequencesr(t)
ands(t).

Filtering animations

Given an animation sequencer(t). Each of the components describes the influence
of one of the facial base expression over time. First, lets look at the effect of
operations on only one component at the example of smiling: By adding a constant
to the component representing smiling or multiplying it with a factor greater one
we make the face ’happier’. Conversely, by subtracting a constant or multiplying
with a factor less than one the face appears less ’happy’.

For most geometries we should make sure that each the scalarri(n) is in [0, 1].
Another way of altering the animation would be limiting the range of values for a
component. In this way, one could e.g. set a minimum smile, so that the face is
always smiling.

The next level of operations would be to intertwine different components. That
is, we could e.g. exchange grumbles by smiles and vice versa. If we only look at
linear operations on the components, the idea of changing each component based
on the quantity of all components could be modeled by a matrix multiplication.

Even more flexibility is achieved by also involving time. If we let these changes
be triggered by some events on the components really interesting effects are possi-
ble. For example, we could add a smile following each blinking.

Combining animations

Combining animations is the key to powerful and convenient authoring. We will
start to explain the idea by looking at the combination of two animations,r(t)
ands(t). Basically, we understand combination as a weighted sum of respective
components over time:λrr(t) + λss(t). As in the previous section, clipping the
vector components to[0, 1] might be necessary. Additionally, a phase shiftτ might
be usefulλrr(t) + λss(t + τ), which also introduces the idea of smooth blending
from one animation into another (fading one animation out, the other one in).

Some useful example for the case of combining just two animations is this:
Typically, a human is blinking from time to time to moisten the eye. One could
create an animation, where the face is just blinking from time to time. This could
be added to any other animation, thus, eliminating the need to author blinking in
every animation.

Of course, the idea of combining animations fosters the paradigm of a compo-
nent based authoring system. Animators would author only small components and,

7.1. BUILDING ANIMATIONS USING BASE SHAPES 111

oncea base of useful components is established, just plug them together as needed.
This would be best done with a hierarchical approach. Ideally, a text to speech
system would serve for constructing the phoneme/viseme part of the animation.

The idea of animation components is also important for the design of interac-
tive systems. According to user input, the system would pick pre-authored compo-
nents to react flexibly. Smooth transitions from one animation to another also help
to change behavior quickly, but still visually pleasant and realistically.

7.1.3 Streaming and displaying animations

In this section we will show the effects of changing the geometry used to display.
Using different geometries serves several needs: First, we can change geometry
in order to achieve some changes in visual appearance and, thus, communication
behavior of the animation. Second, geometry changes might be necessary to adapt
to the actual display capabilities. This will be explained in more detail. Finally,
we will share the idea of a multicast scenario, where a number of different and
distributed graphical workstation will display an animation.

Geometries and style of animation

Remember that the neutral face as well as each feature is described by a geometry.
Obviously, we can change the whole set of geometries, without the need of re-
authoring anything. Thus, we can use one animation and play it using a human
face, but also e.g. a ’monster’ face, dragon/horse/dog/whatever face. Imagine a
large library of animations represented in our scheme - a designer, who wants to
use his geometry of a face to play-back all these animations. All to do, would be to
make the existing face smile, speak an ’A’, and so on. But also changing only some
of the geometries has interesting effects. One could change the style of some facial
expressions, for instance the way a face smiles. This could be used to ’personalize’
the facial expressions of a geometry.

Geometries and display capabilities

Of course, not every workstation displaying an animation will be the same. We
would consider the geometries presented here neither very small, nor big. Re-
member that cost for displaying an animation increases linear with the number of
vertices of the geometry. Therefore, small geometries will be displayed faster than
large ones. On the other hand, large vertex counts might be desirable from a de-
signer’s point of view. Thus, we need to trade off between display limitations and
designer’s demand.

In recent years, simplification of polyhedral meshes has drawn much attention.
One can find many schemes in the literature that allow a representation of meshes
at different levels of accuracy. If the geometries would be represented at different
levels of accuracy (and vertex count, of course) one could pick an appropriate
resolution according to display capabilities and current workstation load.

112 CHAPTER 7. APPLICATIONS IN ANIMATION

Streaming animations to groups

Because of the very compact size of the animation itself, it can be communicated
on demand or in real time from a server to clients. We envision multicast scenar-
ios, where one server streams an animation to several clients. Contrary to most
other approaches no quality of service considerations are necessary for the limited
and varying bandwidth of communication connections. The amount of bandwidth
needed for our representation will be always available, as long as the connection is
not broken.

So, we can assume that every animation can be distributed among several
clients. Every displaying workstation can adapt to its own limitations and to the
user’s needs. The former is obvious and was already explained in the previous
section. For the latter, we think of needs in terms of usage, experience, and taste.
The user might not want a fully detailed geometry, independent of the capabilities
of the workstation. Or, younger users might want special characters to speak to
them, while - at the same time - experienced users only need a very abstracted face
that just conveys the information. In general, the independence of geometry and
animation sequence is a key feature in distributed display scenarios.

7.2 Decomposing key frame animations

Assume we are given a scene comprising animated shapes described by key frame
geometriesFi. All shapes are assumed to have a constant isomorphic topologyK.
We assume that all base shapes have vectors of same length and that the attributes
are arranged identically. The state of an object in a key frame animation can then
be calculated by interpolating between two consecutive key frames. Formally, this
can be described as

A(t) =
∑

i

ai(t)Fi (7.1)

whereA(t) stands for the object’s state at timet andai(t) are the weights describ-
ing the key frame interpolation, i.e.

ai(t) =
(

0, . . . , 0,
ti+1 − t

ti+i − ti
,

t− ti
ti+i − ti

, 0, . . . , 0
)

(7.2)

whereti is the time stamp of thei-th key frame.
However, if we want to separate geometry from animation an alternative rep-

resentation would be useful, such as:

A(t) = a′0(t)F
′
0 +

∑
i

a′i(t)f
′
i (7.3)

whereF ′0 represents the average geometry of the shape and the sum describes de-
viations from this representative geometry. This process of extracting a base com-
ponent could be repeated in order to find the principal deviations from the average

7.2. DECOMPOSING KEY FRAME ANIMATIONS 113

geometry. Generally, it makes sense to sort the geometries based on their geometric
importance. We denote this description as

A(t) =
∑

i

ãi(t)Bi (7.4)

whereB0 represents the average static geometry while the remaining factorsBi

represent geometric changes with decreasing importance with respect to the recon-
struction of the animation. Note that representations (7.1), (7.3), and (7.4) are just
basis transformations of each other, i.e. a matrix multiplication transforms one into
the other.

However, simple rigid motions of the object may render this approach obsolete
because the linear deviationsBi from the base geometryB0 cannot include e.g.
rotations (see also Lengyel [1999]). For this reason we decompose the animation
into rigid body motion and an elastic part first: First, all shapes are translated so
that their center of mass coincides with the origin. Then, an affine map is com-
puted minimizing the squared distance of corresponding vertices with regard to the
first frame. The affine map is restricted to matrix representations with determi-
nants greater zero, since reflections seem not appropriate and the matrix has to be
invertible. Results of this approach are depicted in Figure 7.2.

Figure 7.2: The normalization step. The upper row shows frames from a chicken
animationtranslated so that the centers of mass coincide with the origin. The
lower row shows transformed shapes where the squared distances of corresponding
vertices are minimized.

If we assume our model to be represented in homogenous coordinates, we can
write the necessary transformation as a single matrix multiplication. That is, in-
stead of the key framesFi we use transformed key-framesT (ti)Fi. This has to be
taken into account when the animation is reconstructed. Here, we have to use a

114 CHAPTER 7. APPLICATIONS IN ANIMATION

slightly different representation:

A(t) = T−1(t)
∑

i

ãi(t)Bi (7.5)

Assumed theBi behave as described above, we have a representation where ani-
mation and geometry are clearly decoupled. The geometry part is described mainly
by B0, while the main animation is described by theTi andãi(t). B1, B2, B3, and
so on describe all possible deviations of the geometry.

This representation of the animation sequence makes it easy to perform com-
pression and LOD operations. By restricting the representation to the first few com-
ponentsBi, high compression ratios can be achieved while omitting only unimpor-
tant features. Furthermore, metric LOD techniques are directly supported since
progressive meshes have to be generated and hold in memory for these few com-
ponents only.

At the same time, the number of bases used in (7.4) affects the accuracy of the
animation. FewB1 result in a coarse representation of the animation, moreBi in
higher accuracy. Thus, this representation is inherently progressive.

Further implications of this representation are shown and discussed in sections
5 and 6. In the upcoming section we explain how to find the above description.

7.2.1 Principal Component Analysis

A process of analyzing the relationship between base vectors of a space is the
Principal Component Analysis (PCA). In our scenario, the PCA determines first
the average shape that contains the common properties of the shapes in all key-
frames. Other components will represent differences to this shape. This is also
interesting when it comes to coding the bases of a shapes, as it exploits similarity
and turns it into zeros, which are easily compressed using entropy encoding.

There are several ways of finding principal components. In our case we are not
only concerned in finding the most important principal components to give a rough
approximation of the shapes. In addition, we want to find an alternative basis and
cut only a few non-contributing vectors. A way of finding this basis is the singular
value decomposition (SVD) [Golub & Van Loan 1989].

Formally, we can write the non-rigid part of the original key-frames in matrix
form:

F = (T0B0, . . . , Tn−1Bn−1) (7.6)

Using the SVD we find the following:

F = BSÃ (7.7)

The values of the diagonal matrixS are the singular values. The closer singular
values are to zero, the closer the original base is to some linear dependencies. The
first orthogonal matrixB contains the basis of the space with base vectors corre-
sponding to the singular values, i.e. the rows contain theBi we are searching for.

7.2. DECOMPOSING KEY FRAME ANIMATIONS 115

The last matrixÃ contains the new weight vectors̃ai. The matrix representation
and SVD is visualized in Figure 7.3

=

original key frames principal component

bases

importance

factors

animation

representation

Figure 7.3: The Principal Component Analysis for geometric animations illus-
trated.

A severe problem with the SVD is that it is very costly and likely to reach its
limits on modern computers when applied to matrices with the size of the vertex
count of typical models times the numbers of key frames. A solution is to simplify
the base shapes and to not consider every key frame. This is rectified by the spatial
and temporal coherence typically exhibited in geometric animations. In particu-
lar, it is in many cases sufficient to consider only every second up to every fifth
key frame. However, adaptive schemes for the selection of key frames would be
desirable.

The representation vectorsãi for key frame which have not been considered in
the SVD can be obtained by projecting the key frame into the new basis. Since the
basis constructed with the SVD is orthonormal, computing inner products of the
key frames and the new base vectors is the desired projection.

7.2.2 Results

In this section we present results of computing a PCA for two animation sequences.
We show how the PCA leads to a compressed progressive representation and fos-
ters the exchange of geometry or behavior.

The first example is a part of the Chicken Crossing animation, in particular 400
frames of the chicken’s geometry. The sequence is highly non-linear, i.e. it com-
prises rigid body motion and dynamic soft body changes. The geometry consists
of 3030 vertices. Disregarding the topology information, this results in an uncom-
pressed size of 400 frames× 3030 vertices× 3 dimensions× 4byte = 14.544.000

116 CHAPTER 7. APPLICATIONS IN ANIMATION

bytes.
To generate the principal component representation we first normalized the

frames using the linear least squares fit. The resulting key-frames were composed
into a 9090x400 matrix and a SVD was performed. The resulting orthogonal matrix
was used to define the new base vectors replacing the key-frames.

all

50

10

5

3

Figure 7.4: Principal component analysis applied to the chicken animation. Prior
to the SVD base shapes are normalized. The sequences above show frames 0, 80,
160, 240, 320, and 400 using different number of bases in the reconstruction.

We reconstructed the animated sequences using different numbers of base ob-
jects. This was done by setting appropriate singular values to zero. The results
are shown in Figure 7.4. The animation still looks very reasonable with only 10
base shapes. Even the animation using only 5 bases can be used if viewed from far
away. This would correspond to the definition of a complex LOD.

By omitting a number of base objects high compression ratios can be achieved.
Table 7.1 shows the compression ratios for the animation. However, this anima-
tion is not typical. It comprises a highly deforming object. For typical animation

7.2. DECOMPOSING KEY FRAME ANIMATIONS 117

encoding size ratio
original 14,544,000 1
all base shapes 14,548,800 100.01 %
50 base shapes 1,818,600 12.50 %
10 base shapes 364,800 2.51 %
5 base shapes 181,8600 1.25 %
3 base shapes 109,116 0.75 %

Table 7.1: Compression ratios for principal component representation. Note that
sizesand ratios include the additional costs for storing the transformation matrices
from the normalization step.

sequences even better results can be expected.
In the second example we applied the principal component representation for

facial animation. Here we used several facial expressions coded as polyhedral mod-
els with isomorphic vertex-edge topology. Key frames are generated by blending
several expressions (e.g. speaking an “A” and smiling). In this system, the anima-
tion is represented as a vector over time that describes the linear combination of
base shapes. Thus, animation representation and geometry are already decoupled
in this specific application. In this example, we show how the geometry of the
avatar can be exchanged with another geometry making use of the already existing
animation descriptions.

We have used a feature based morphing technique to produce a mesh that can
represent both, the original avatar and another face. By defining a few vertex-vertex
correspondences we make sure that the same vertices represent common features
in the source and the target model. This results in the convenient fact that we can
combine the new face with expressions of the old one, e.g. we can add the smile
defined in terms of the original avatar to the new face. This means, by defining
the correspondences between the two neutral faces we get all other expressions of
the face automatically. Play-back animations authored for the original avatar can
directly be applied to the new face. In addition, we can morph between the two
faces while the animation is performed since the avatar and the new face now share
the same vertex edge-topology. This is an impressive example of the effectiveness
of decoupling animation representation from geometry. Results are depicted in
Figure 7.5.

118 CHAPTER 7. APPLICATIONS IN ANIMATION

a)

b)

c)

d)

Figure 7.5: Exchanging geometry in existing animations. a) A facial animation de-
finedby a linear combination of base shapes. b) A featured-guided morph between
the original avatar mesh and a new mesh. Topological merging is used to produce a
mesh which represents both shapes. Feature control assures that the same vertices
represent common features (e.g. mouth, eyes, etc.) c) The new mesh can be used
with the existing animation with no additional user intervention. d) The morph can
even be applied while the animation is performed.

7.3. IMPLEMENTATION IN GRAPHICAL STANDARDS 119

7.3 Implementation in graphical standards

The concept of morphing among several base shapes has proven to be a universal
tool in modeling and animation. We envision a construct that is able to perform the
necessary operations as a part of modern graphics APIs. Inspired by a scenegraph
we call the elementMorph Node[Alexa et al. 2000].

The basic task a Morph Node should be able to accomplish is to interpolate
among the vertex attributes of any number of homeomorphic shapes. Formally, a
number of base shapesBi are defined by different vertex attributes,Vi, whereVi

may consist of a coordinate, a normal, color information, a texture coordinate, and
possible other information. Given a vectora, we need means to compute a shape
B(a), that is,

B(a) =
∑

i

aiBi =

{∑
i

aiVi

}
(7.8)

However, it seems useful to be more flexible as to what is actually interpolated. For
instance, the shapes might have color attributes specified, but color is the same for
all base shapes. Obviously, it makes no sense to interpolate color. Or the user wants
to fix a set of colors for the blended shape, independent of the colors actually set
in the base shapes. This seems to be especially true for normals (see the upcoming
section on Optimization issues).

Additionally, not all have to be interpolated linearly. A linear interpolation of
normals is obviously not the only solution (to say the least). With respect to the
general concept of a Morph Node one should be able to exclude specified attributes
from the general linear interpolation and interpolate by means of other techniques.

To wrap up the needs for vertex attribute interpolation, we need to be able to

• interpolate linearly between any number of homeomorphic shapes,

• specify which subset of vertex attributes is actually interpolated

• specify fixed values attributes that are not interpolated or

• supply other interpolaters for these attributes.

For playing back animations we need an additional construct to interpolate the
given key frame vectors over time. This could be done either linearly or by using
splines. However, since the space requirements for a single key frame are so small,
we can afford to specify as many key frames as are necessary for linear interpola-
tion (e.g. more than 25 per second).

In the following subsections we will review the current 3D APIs with regard to
the above stated requirements as well as propose ex- tensions and changes.

7.3.1 State-of-the-art

We would like to use web-based 3D application interfaces to play back geometric
animations. We propose to use the techniques mentioned in the introduction to

120 CHAPTER 7. APPLICATIONS IN ANIMATION

accomplish this task. Thus, to playback an animation a workstation gets

1. the base shapes (several attributes, including position, normal, color, texture
coordinate, etc.) and

2. a set of key-frames comprising a time stamp and a weight vector.

We will examine VRML-97, MPEG-4, Java3D, and X3D as to what they offer to
play back an animation communicated in this way.

VRML-97

The first version of VRML, presented 1994, was largely a static scene description
file format. The lack of animation and interaction was leading to VRML-2.0 which
became the ISO standard VRML-97 [ISO JTC124 1997].

Even so, one of the main goals of the original VRML-2.0 proposal “Moving
Worlds” was to create a specification which allows animation rich environments,
the support for geometric morphing is limited. The designed concentrates on sim-
ple linear key-framed animation and supports only the linear interpolation of vertex
position values of two shapes. The blending of more than two shapes is not sup-
ported at all. Furthermore, theCoordinateInterpolater only handles the
vertex positions. Other vertex attributes like normal, color and texture coordinate
are not handled by theCoordinateInterpolator. It is unusual to change
the texture coordinate and color on vertex base during a key-frame animation and
therefore not directly supported in VRML-97. The normal computation per ver-
tex in contrast is very important but also time consuming and therefore different
technics are provided by the specification:

1. TheNormalInterpolator can be used to compute the normals for faces
or vertex. Like theCoordinateInterpolator, the Normalinter-
polator interpolates among a set of multi-valuedVec3f values. In addi-
tion, all output vectors will have been normalized by the node.

2. If the geometric node does not define any normals (the normal field is NULL),
then the system automatically generates normals, using the givennor-
malPerVertex andcreaseAngle settings to determine if and how nor-
mals are smoothed across shared vertices.

3. If the base shape includes normal definitions, the fastest and simplest way is
to keep the normals unchanged. Only the vertex positions are interpolated,
which is not correct, but might be visually acceptable if the position changes
are minimal

BesideCoordinateInterpolator andNormalInterpolater additional
Interpolator for rotation and position are defined in the VRML-97 standard. These
Interpolators are mainly used for rigid body animation which can be combined
(e.g. swimming fish) with the key-frame description to get the desired effect.

7.3. IMPLEMENTATION IN GRAPHICAL STANDARDS 121

Therehave already been various proposals to extend the animation capabilities
of VRML-97. Two proposals lead to officially accepted WEB consortium working
groups.

1. H-Anim: To create a standard VRML-97 representation for humanoids [Web3D
Consortium 1999a].

2. Natural Language Processing (NLP): Will be used to allow natural language
to interact with VRML-97 animation

Although both working groups are involved in animation description, none of these
two work items is directly related to the work presented in this paper.

Java3D

Java3D is the API for 3D graphics within Java [Deering & Sowizral 1997]. It fol-
lows the scene graph architecture of VRML-97. A Shape in Java3D is represented
by the node Shape3D comprising a Geometry and an Appearance node. Geometry
is specified as an array of attributes, including coordinate, color (with or without al-
pha), normal, and texture coordinate. The appearance of a Shape can be controlled
in various ways also depending on the geometry. In most application a material
description will define the appearance.

Java3D has a node called “Morph”. This node accepts several geometries of
exactly the same type, i.e. the same number of vertices with the same combination
of attributes specified in the same way (indexed, stripped, etc.). One appearance
object can be specified per Morph. The actual geometry can be altered by a call to
the setWeights method.

In order to interpolate between key frames, Java3D offers Interpolators that are
extended to take the time stamps of key frames into account.

As such, Java3D seems to offers the basic tools for the playback of animations
given as base shapes and weight vectors. However, there are limitations in the
design which hinder the use of Java3D in this context for now:

• base shapes need to have the same attributes

• and all these attributes are interpolated

• but no other than the predefined vertex attributes can be interpolated

We would like to give the user the flexibility to use one set of colors for all geome-
tries without specifying them for every shape or, even worse, without interpolating
them in any case. On the other hand it would be nice to allow the interpolation of
materials.

In our example of facial animation the shapes have vertex colors, but these ver-
tex colors do not change for different base shapes. In Java3D these float triples are
interpolated whenever setWeights is called. Also, normals are interpolated whether

122 CHAPTER 7. APPLICATIONS IN ANIMATION

the user likes it or not (see the section on normal interpolation for other opportu-
nities to set normals). Instead of interpolating only three floats for coordinates,
Java3D interpolates nine and additionally normalizes the result of normal interpo-
lation resulting in a more than three times worse performance.

MPEG-4

MPEG-4 represents one of the newest multimedia standards in the MPEG family.
MPEG-4 supports the standard video encoding schemes well known from MPEG-2
based on efficient frame en- coding and motion compensation. In addition, MPEG-
4 contains language components for 2d and 3d scene elements and scene structures
based on VRML-97.

Specific extensions are related to the animation of artificial faces and bodies
[Ostermann 1998]. The “facial animation object” in MPEG-4 can be used to render
an animated face. The shape, texture, and expressions of the face can be defined
by Facial Definition Parameters (FDPs) in BIFs. BIFs are downloadable models to
configure a baseline face model or to install a specific face model at the beginning
of a session along with the information about how to animate it. Facial Animation
Parameters (FAPs) can then be used to animate this model.

Face Animation Table (FAT) within FDPs are used to perform the functional
mapping from incoming FAPs to feature control points in the face mesh. Face
Interpolation Technique (FIT) in BIFS allow the interpolation between different
expressions based on weighted rational polynomial functions which is invoked by
conditional evaluation of a Face Interpolation Graph. This functionality can be
used for complex cross-coupling of FAPs to link their effects, or to interpolate
FAPs missing in the stream using the FAPs that are available in the terminal. Face
Animation in MPEG-4 provides for highly efficient coding of animation parame-
ters that can drive an unlimited range of face models. The models themselves are
not normative.

In addition, a new standard called “MPEG-4 The Body Animation” is being
developed by MPEG in concert with the Humanoid Animation Working Group
within the VRML Consortium, with the objective of achieving consistent conven-
tions and control of body models which are being established by H-Anim. This
Body Animation, to be standardized in MPEG-4 Version 2, is being designed into
the MPEG-4 fabric to work in a thoroughly integrated way with face/head anima-
tion. Here, decoding and scene descriptions directly mirror to technology already
proven in Face Animation and corresponding Body Definition Parameters (BDPs)
and Body Animation Parameters (BAPs) exist.

The facial and body animation elements in VRML-97 represent a very inter-
esting technology in the context of animated User Interfaces and User Interface
Agents. The standardization of the control of face animations is one of the ma-
jor achievements in this context. Technological systems supporting these concepts
may, especially when based on FIT, lead to similar problems as stated in the moti-
vation of this paper. The solutions provided in the following sections are therefore

7.3. IMPLEMENTATION IN GRAPHICAL STANDARDS 123

alsoapplicable in this context.

X3D

Another standardization activity in the area of 3d animation systems and exchange
formats is X3D [Web3D Consortium 1999b]. The goal of X3D is to represent
a next-generation extensible 3d graphics specification which makes use of the
VRML-97 structure and expresses it by the means of XML: As such, in the current
state of development X3D makes still use of the interpolator functionality known
from VRML-97 for morphing.

7.3.2 Proposed extensions and changes

Since neither VRML nor Java3D provide means to implement the concept of a
Morph Node as it would be suitable to support anima- tion and elaborate model-
ing techniques we propose the following changes and extensions to the existing
standards.

Extensions to VRML-97

We propose extend VRML-97 by three nodes in order to accomplish the ideas of
the Morph Node.

• A VectorInterpolator node, which handles interpolation of general
float-type vectors.

• A CoordinateMorpher, which interpolates linearly among coordinate
sets.

• A NormalMorpher, which interpolates linearly and normalizes normal
sets.

In the following we give specification and details about these nodes.

VectorInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFFloat keyValue []
eventOut MFFloat value_changed

}

The node is designed as an additional VRML-97 interpolator in the scene that de-
fines a piecewise-linear function,f(t), on the interval[infty,∞]. The general
aim of the node is the ability to interpolate between a set of vectors of any size.
The node sends multiple-value results like theCoordinateInterpolator
andNormalInterpolator. Therefore, the keyValue field is ann ×m ma-
trix of values, wheren is the number of values in the key field andm the size of

124 CHAPTER 7. APPLICATIONS IN ANIMATION

the vector. The number of scalar values in thekeyValue field shall be an inte-
ger multiple of the number of key-frames in thekey field. That integer multiple
defines only implicit the size of the vector and therefor the number of elements
which will be contained in thevalue changed events. Thevalue changed
outputis used in our proposal as input for theset weights eventIn slot in the
following CoordinateMorpher andNormalMorpher Node.

CoordinateMorpher {
eventIn MFFloat set_weights
exposedField MFVec3f keyValue []
eventOut MFVec3f value_changed

}

The CoordinateMorpher node interpolates linearly among a set ofMFVec3f val-
ues. Unlike theCoordinateInterpolator it does not interpolate two key
frames but is able to blend any number of shapes. The number of coordinates in
the keyValue shall be an integer multiple of the number of key-frames in the
key field. That integer multiple defines how many coordinates will be contained
in thevalue changed eventout slot.

NormalMorpher {
eventIn MFFloat set_weights
exposedField MFVec3f keyValue []
eventOut MFVec3f value_changed

}

The NormalMorpher node blends among a set of normal vector sets specified by the
keyValue field. The output vector,value changed, shall be a set of normalized
vectors.

Changes in Java3D

The changes necessary to fit the existing Java3D MorphNode into our concept
follow directly from the state-of-the-art section. In addition to what the Java3D
API defines up to now we need ways to

1. specify the attributes which are actually interpolated,

2. supply sets of fixed attributes, and

3. supply other interpolators for specified attributes.

Furthermore, Java in general needs more accurate timing mechanisms to support
synchronized playback of geometric animations.

7.3. IMPLEMENTATION IN GRAPHICAL STANDARDS 125

Proposal for X3D

One of the main goals of the X3D proposal is to build the new technologies based
on a small, lightweight core. Since the VRML-97 specification is considered to be
large and complex to implement the base set will not include all elements of the
predecessor. We propose to include theCoordinateMorpher instead of the
CoordinateInterpolator into the core X3D specification. TheCoordinateMorpher
is a more general approach to shape animation and can substitute the Interpolators
without any lose in functionality or performance.

7.3.3 Optimization issues

The general concept and implementation of a Morph Node is rather simple. How-
ever, a naive approach results in a complexity of O(nma), where n is the number
of base shapes, m is the number vertices per base shape, and a this the number of
attributes to be interpolated. That is, deciding which attributes really need to be
interpolated is quite crucial. Especially normals are difficult to treat, since a sim-
ple linear interpolation does not yield correct results. We discuss ways to handle
normals in the upcoming subsection.

Generally, base shapes might not differ in all the attributes for all vertices, and
the system should exploit this fact as much as possible.

How to interpolate normals?

As said before, linear interpolation of normals might not be correct. First note
that normals are not necessarily normalized after linear interpolation, which could
cause shading to fail. Thus, we need to normalize the vectors after interpolation.
But still, the result of linear interpolation seems to be not what one would ex-
pect. Instead we should use SLERP/quaternion interpolation. Unfortunately, even
a quaternion based, correct direction interpolation of normals does not lead to the
normals a linearly interpolated geometry actually has. For these diverse reasons
we see the following for different ways to treat normals:

1. use only one set of normals (e.g. the normals of B0, or a set of mean normals
amongB0, . . . , Bn−1)

2. interpolate normals linearly and normalize

3. interpolate in quaternion space

4. compute new normals after geometry interpolation

While option one seems unacceptable at first sight it produces surprisingly good re-
sults. See also Figure 7.6, which compares an animation of swimming dolphin with
correct normals (recalculate in each frame) with no normal interpolation (the corre-
sponding movies can be downloaded from http://www.igd.fhg.de/ alexa/morphnode/).

126 CHAPTER 7. APPLICATIONS IN ANIMATION

Fixed

Normals

Interpolated

Normals

Generated

Normals

Figure 7.6: Comparison of normal strategies: The upper row shows different states
of a dolphin animation with a fixed set of normals (i.e. the normals are the same
in all three images). The middle row shows the same states with linearly interpo-
lated and normalized normals. The normals in the lower row generated form the
geometry for each frame.

fixed interpolated generated

dolphin 1000 vertices 5.6 sec 6.8 sec 9.8 sec
pig-horse 14269 vertices192.8 sec 245.7 sec 407.3 sec

Table 7.2: Times needed to render 1000 frames of an animation with different
normalcalculation strategies.

Of course, recalculation of normals might be necessary in a number of cases.
We mainly considered linear interpolation and recalculation. Quaternion interpo-
lation does not produce the correct normals of the interpolated shape yet is still
more expensive than linear interpolation. A comparison of the remaining three
approaches is given in table 1 below. Note that timings are heavily influenced by
several other tasks the animation engine has to accomplish.

A more elaborated approach could compute geometry and normals asynchronously,
i.e. updating normals only every f-th update of geometry. This would generate only
slightly incorrect normals (which are acceptable, as was demonstrated before) and
yet provide a high frame rate with respect to geometry.

Don’t touch equal attributes

In many animations only parts of the attribute change. If we take a look at the facial
animation example again we easily see that

• color - even though it is set - does not change at all for different base shapes

7.3. IMPLEMENTATION IN GRAPHICAL STANDARDS 127

• vertex coordinates for several regions do not change or do not change much

• thus also the normals in theses regions do not change (much)

We have illustrated this for the facial animation example in Figure 7.7 (see also the
corresponding animation at http://www.igd.fhg.de/ alexa/morphnode/). Here, we
use theColorManipulator node of the Avalon system [Behr 1999] to color
code vertices depending on their velocity. Standard gray vertices mean fixed ver-
tices, red vertices are moving. Note that only small number of vertices is turning
red during the animation. Generally speaking, a subset of vertex attributes might

Figure 7.7: Color coding of moving vertices. Grey depicts static vertices, red color
reflectshigh velocity.

be exactly or almost the same for all base shapes. The system should first iterate
over all attributes for base shapes and identify similar attributes. This would result
in information regarding which vertices and which attributes actually need to be
interpolated.

A simple trick to exploit this information is to re-sort the vertices in each shape
in a such a way that differing vertices appear first in the list/array. The loop nec-

128 CHAPTER 7. APPLICATIONS IN ANIMATION

essary for interpolation would only iterate over the first vertices not touching the
fixed vertices.

Know what weights do to vertices

We can extend the concept of the last subsection to individual base shapes: some
vertices might not change for a subset of base shapes. If the weights for the base
shapes of this subset are all zero we do not need to recalculate these vertices. The
basic problem is how to exploit the fact that some base shapes only need to inter-
polate a very small subset of vertices.

We propose the following solution. We reorder the vertices so that the follow-
ing conditions describe the sequence of vertices:

1. None of the follwing cases.

2. B1 6= B0 = B2 = B3 = . . .

3. B2 6= B0 = B1 = B3 = . . .

4. and so on.

When looping over vertices we can include or exclude sets of vertices depending
on the weight value of the respective base shape. For instance can we dismiss
operations in block 2 if the weight corresponding toB1 is set to zero.

7.4. CONCLUSIONS 129

7.4 Conclusions

We present an approach for representing animation sequences based on the princi-
pal components of key frame geometries. The principal component representation
allows for an easy and adaptive lossy compression of animation sequences with
factors up to 1% accepting loss in animation accuracy. It would be interesting to
quantify that loss relative to the compression ratio. However, measures of geo-
metric deformation seem to be topic of current research and not yet applicable.
Moreover, standard compression techniques were not exploited at all in this cal-
culation. Additional compression can be achieved by compressing the base shape
matrices. Again, the principal component analysis reorganizes the base shapes so
that bases with higher index will contain more zeros. This could be exploited with
an additional entropy encoding.

The order of base objects naturally supports progressive transmission of the
animation base shapes. At the same time, the inherent hierarchy could be used for
LOD techniques. This could go hand in hand with a progressive mesh. The impor-
tance ordering of base shapes additionally eases mesh simplification since only the
geometric features of a few meshes have to be taken into account for simplification.
In first experiments we have found that standard simplification techniques can be
extended to handle more than one mesh.

The animation itself is represented by small vectors if the number of necessary
base shapes is small. Note that the number of necessary base shapes is bounded
by the number of key frames. While the number of base shapes in our examples
is much less than the number of key frames, it might be useful to break very long
animation sequences into pieces. It would be interesting to exchange only parts of
a base while streaming an animation.

Having small vectors representing the animation allows for streaming over vir-
tually every network in real time. The decoupling of animation and geometry en-
ables managing and changing animations, e.g. exchanging the animated object
according to the client’s display capabilities. Mapping existing animations to a
new object offers new ways of authoring.

We also analyzed how to incorporate the necessary operations to play back
animations defined as linear combinations of a small set of base shapes in state-of-
the-art 3d graphics systems such as Java3D and VRML-97. Current shape blending
methods based on interpolation nodes always perform an interpolation between the
complete geometry of two base shapes and recalculate all object attributes such as
normals and color anew. As a consequence, these systems lack performance when
morphing is applied in real-time applications.

We propose a new morph node with enhanced flexibility and performance, sup-
porting morphing between several objects and giving enhanced control over the
morphing process. Most important, morphing calculations between attributes lead-
ing to no additional visual effect can be avoided in this way. For a number of test
objects time we could prove a performance enhancement of upto 100%. There-
fore, we recommend the consideration of our morph node in the ongoing X3D and

130 CHAPTER 7. APPLICATIONS IN ANIMATION

MPEG4 specification processes.

Chapter 8

Conclusions

In this work, mesh morphing techniques were analyzed, extended, and used to
build linear spaces of three-dimensional shapes. The shape space has proven to be a
useful concept to describe a shape in terms of other shapes. This notion is, indeed,
intuitive for modeling (as shown for facial animations) and representing abstract
data. The approach is particular strong for animated sequences of shapes. Such
sequences were automatically converted into a representation in a linear space,
allowing for efficient progressive streaming and storing of geometric animations.

However, we believe that representing shapes as compounds of other shapes is
a universal concept with many more applications than we can even think of at this
point.

8.1 Summary of contributions

To review, the primary contributions of this work as described in this dissertation
are:

Mesh morphing Several contributions to the field of mesh morphing have been
made, which are describe in the following.

Feature alignment A mesh morphing technique for topological spheres is
introduced, which allows for particular easy feature specification. Fea-
tures are specified as vertex-vertex correspondence. In contrast to other
works, no minimum user interaction is necessary (such as in dissection-
type methods) while allowing to specify as many features as wanted.

Mesh merging A new algorithm for generating one mesh from two input
meshes (mesh overlay) is presented, generalizing the overlay problem
to arbitrarily shaped objects. In contrast to other approaches, the algo-
rithm is asymptotically optimal.

Local control In image morphing one can easily specify which region trans-
forms when in the morph, e.g., first the nose, then the eyes and then

131

132 CHAPTER 8. CONCLUSIONS

the rest of a face. We present similar techniques for mesh morphing.
In particular Laplacian coordinates were introduce, representing mesh
geometry in a differential way. This description is also useful for free-
form deformation.

Vertex path A method to generate intuitive and well behaving vertex paths
in morphing is introduced. The paradigm employed is that the object
is transformed rigidly as much as possible to avoid unnecessary de-
formations. This is achieved by dissecting the shape into a simplicial
complex and defining optimal simplex morph. With this approach also
the interior of a shape is treated and not only the boundary.

Visualization of multiparameter data Morph spaces are shown to be a useful
way to generate glyphs and icons in the visualization of multiparamter data.
Additionally, the paradigm allows for a flexible and intuitive generation of
the visualization.

Geometric animations Spaces of meshes are shown to be a particularly elegant
and effective way to generate, store, and communicate geometric animations.
The resulting compression is progressive and the achieved compression ra-
tios progress over previous work. A preprocessing step first decouples rigid
motion from the animation specification, thus, making the inherently linear
process more effective.

8.2 Future research directions

This work has many ways to be extended or completed, partly because the idea of
shape space has no limits in its application. The following subjects seem particular
valuable or interesting:

Topology in mesh morphing Mesh morphing still suffers from differences in topol-
ogy of the input. While some algorithms handle explicit topology changes,
none can automatically deal with this problem. This is of paramount im-
portance because of the nature of real world meshes (e.g., originating from
range scanners): They contain some holes and tunnels, which may or may
not be part of the model being represented. From a geometry point of view
these small errors have negligible impact, however, mesh morphing algo-
rithms will surely fail on this type of input.

It seems that this problem originates from the erroneous mesh. This is only
partly true: At least two applications suffer from the topology problem in
general.

1. Imagine a torus to be morphed into a large statue holding a small ring
so that the statue has the same topology as the torus. The topologically
correct mapping connects the tunnels in both models independent of
their different geometric importance.

8.2. FUTURE RESEARCH DIRECTIONS 133

2. Imagine the statue to be morphed into another statue without the ring
(i.e. a topological sphere). Why should the user be concerned with a
very small feature?

Ideally, the user should be able to freely specify correspondence without any
topological restrictions.

However, it might be that meshes are not suited for this application in gen-
eral. We are currently analyzing how to use point set representations [Pfister
et al. 2000; Malgouyres & Lenoir 2000] of shapes for morphing. The point
set accurately describes the boundary of the sphere, however might be de-
formed into a point set representing a shape with a different topology.

Affinely independent representation For interpolation problems of all sorts in-
trinsic geometry representations seem useful. Ideally, the representation of
geometry should be independent to affine transformations. We have pre-
sented Laplacian Coordinates, which are independent of translation and lin-
ear in the original coordinates. Linearity is important to ease numerical com-
putations.

The basic idea of affinely independent coordinates is to represent each vertex
as an affine sum of its neighbors. This representation is linear in the original
coordinates and, by definition, insensitive to affine transforms. However, ev-
ery subset (neighbors or a larger neighborhood) of vertices might be affinely
dependent inR3 so that vertices cannot be represented as an affine combina-
tion in this subset.

It is interesting to characterize shapes that allow such an affine independent
representation, i.e. where each sufficiently large subset of vertices is a base
of R3. This representation has numerous applications in shape recognition,
free-form deformation, or morphing.

Handling of attributes Even if coordinates are morphed in a pleasing way, it is
not clear what to do with attributes such as normals. For example, if normals
describe a crease in one model but the corresponding edge in the other model
is smooth, when has the crease to disappear?

It seems worthwhile to give a precise answer to all these detail questions.
Morphing, in the end, is a very esthetic subject and failure in the details
leads to displeasing results.

Robust implementation Morphable meshes resulting from the merging process
contain a lot of sliver triangles, which make them particularly prone to fail
in further processing. Also small topological failures in the input cause most
morphing algorithms to fail.

What is needed is a freely available, robust implementation of mesh morph-
ing techniques. It seems that to date none of the publicized mesh morphing

134 CHAPTER 8. CONCLUSIONS

techniques are implemented in public domain code. This would allow to ex-
periment and improve the code using state-of-the-art geometric computation
techniques such as arbitrary precision predicates.

Affine independence of shapesThe approach presented here constructs spaces of
meshes with one consistent topology, where the base meshes are described
by vertex vector. Compound shapes are just linear combinations of the vertex
vectors. For many applications it is necessary to have an affinely indepen-
dent basis. This can be computed on the basis of the vertex vectors in our
approach. However, the affine independence of vertex vectors does not guar-
antee the affine independence of shapes. Imagine a square with one interior
vertex connected to the boundary vertices. Wherever the interior vertex is
located the shape is the same. Yet, two different vertex configurations are
affinely independent.

It would be interesting to code geometry in such a way that different affine
independent geometry descriptors imply affine independent shapes. It seems
the problem of absolute coordinates lies in the possible redundancy: If re-
dundant information is stored a degree of freedom is added in the representa-
tion, which could lead to independent description of dependent shapes. This
implies that topology should be exploited when defining geometry. However,
the question how to do this is open.

Shape registration Eigenfaces are an early example of using a linear space for
recognition of objects. We would like to see spaces of meshes to be used
for recognition. Together with the above mentioned affinely independent
description of geometry they represent a good candidate space which is easy
to search.

Feature-oriented SVD The SVD used to compute the basis for a shape space so
far takes into account only geometry. Sometimes, however, small geomet-
rical features are of special importance and should get an extra weight. An
example could be a human figure standing on the floor: The contact of hu-
man and floor is of special importance because the human protruding the
floor or floating are recognized easily by a human observer.

An idea could be to deform the geometric space so that regions of particular
interest get enlarged. Then a regular SVD could be used. In the example
above, the space around the wall would be enlarged, so that differences in
this area get larger.

References

ALEXA , M. 1999. Merging polyhedral shapes with scattered features. InPro-
ceedings of the International Conference on Shape Modeling and Applica-
tions (SMI-99), B. Werner, Ed. IEEE Computer Society, Los Alamitos, CA,
202–210.

ALEXA , M. 2000. Merging polyhedral shapes with scattered features.The Vi-
sual Computer 16,1, 26–37. ISSN 0178-2789.

ALEXA , M. 2001a. Local control for mesh morphing. InProceedings of the
International Conference on Shape Modeling and Applications (SMI-01),
B. Werner, Ed. IEEE Computer Society, Los Alamitos, CA, 209–215.

ALEXA , M. 2001b. Mesh morphing star.Eurographics 2001 State of The Art
Reports, 1–20. ISSN 1017-4656.

ALEXA , M. 2002a. Differential coordinates for mesh morphing and deforma-
tion. The Visual Computer 18. to be published.

ALEXA , M. 2002b. Recent advances in mesh morphing.Computer Graphics
Forum 21,2. to be published.

ALEXA , M., BEHR, J., AND M ÜLLER, W. 2000. The morph node.Web3D -
VRML 2000 Proceedings, 29–34. ISBN 1-58113-211-5.

ALEXA , M., BERNER, U., HELLENSCHMIDT, M., AND RIEGER, T. 2001.
An animation system for user interface agents. InWSCG 2001 Conference
Proceedings, V. Skala, Ed.

ALEXA , M., COHEN-OR, D., AND LEVIN , D. 2000. As-rigid-as-possible
shape interpolation.Proceedings of SIGGRAPH 2000, 157–164. ISBN 1-
58113-208-5.

ALEXA , M. AND M ÜLLER, W. 1998a. The morphing space. GRIS-98-2, Tech-
nische Universiẗat Darmstadt.

ALEXA , M. AND M ÜLLER, W. 1998b. Visualization by metamorphosis.Visu-
alization ’98 Late Breaking Hot Topics.

ALEXA , M. AND M ÜLLER, W. 1999a. The morphing space.Seventh Interna-
tional Conference in Central Europe on Computer Graphics and Visualiza-
tion (Winter School on Computer Graphics). ISBN 80-7082-490-5. Held in
University of West Bohemia, Plzen, Czech Republic, 10-14 February 1999.

135

136 REFERENCES

ALEXA , M. AND M ÜLLER, W. 1999b. Visualization by examples: Mapping
data to visual representations using few correspondences.Joint EURO-
GRAPHICS - IEEE TCVG Symposium on Visualization.

ALEXA , M. AND M ÜLLER, W. 2000. Representing animations by principal
components.Computer Graphics Forum 19,3 (August), 411–418. ISSN
1067-7055.

ARAD, N. AND REISFELD, D. 1994. Image warping using few anchor points
and radial functions.Computer Graphics Forum 14,1 (January), 35–46.

ARONOV, B., SEIDEL, R., AND SOUVAINE , D. 1993. On compatible triangu-
lations of simple polygons.Computational Geometry: Theory and Applica-
tions 3, 27–35.

BAO, H. AND PENG, Q. 1998. Interactive 3d morphing.Computer Graphics
Forum 17,3, 23–30. ISSN 1067-7055.

BEDDOW, J. 1990. Shape coding of multidimensional data on a microcomputer
display. InProceedings of Visualization 90. 238–246.

BEHR, J. 1999. AVALON - A VR/AR system using VRML as application de-
scription language. http://www.zgdv.de/
avalon.

BERTIN, J. 1983.Semiology of Graphics. The University of Wisconsin Press.

BLANZ , V. AND VETTER, T. 1999. A morphable model for the synthesis of 3d
faces.Proceedings of SIGGRAPH 99, 187–194. ISBN 0-20148-560-5. Held
in Los Angeles, California.

BOYER, R. AND SAVAGEAU , D. 1985.Places Rated Almanac. Rand McNally.

BRENT, R. P. 1973.Algorithms for Minimization without Derivatives. Prentice-
Hall, Englewood Cliffs, N.J.

BRODLIE, K. W. 1993. A classification scheme for scientific visualisation. In
Animation and Scientific Visualisation: tools and applications, R. A. Earn-
shaw and D. Watson, Eds. Academic Press, 125–140.

BUJA, A., MCDONALD , J. A., MICHALAK , J., AND STUETZLE, W. 1991.
Interactive data visualization using focusing and linking.Visualization ’91,
156–163.

CHAZELLE , B. 1990. Triangulating a simple polygon in linear time.Proceed-
ings of the 31st Annual Symposium on Foundations of Computer Science,
220–230.

CHAZELLE , B. AND PALIOS, L. 1989. Triangulating a non-convex polytope.
In Proceedings of the 5th Annual Symposium on Computational Geometry
(SCG ’89), K. Mehlhorn, Ed. ACM Press, Saarbrücken, FRG, 393.

CHENG, H., EDELSBRUNNER, H., AND FU, P. 1998. Shape space from defor-
mation.Pacific Graphics ’98. Held in Singapore.

REFERENCES 137

CHERNOFF, H. 1973. The use of faces to represent points in k-dimensional
space graphically.Journal of the American Statistical Association 68, 361–
368.

CLEVELAND , W. S. 1985.The Elements of Graphing Data. Wadsworth. ISBN
0-534-03730-5.

COHEN, S., ELBER, G., AND BAR-YEHUDA, R. 1997. Matching of freeform
curves.Computer-aided Design 29,5, 369–378.

COHEN-OR, D. AND CARMEL , E. 1998. Warp-guided object-space morphing.
The Visual Computer 13,9-10, 465–478. ISSN 0178-2789.

COHEN-OR, D., SOLOMOVICI , A., AND LEVIN , D. 1998. Three-dimensional
distance field metamorphosis.ACM Transactions on Graphics 17,2 (April),
116–141. ISSN 0730-0301.

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND SCHWARZKOPF, O.
1997.Computational Geometry – Algorithms and Applications. Springer-
Verlag, Berlin Heidelberg.

DECARLO, D. AND GALLIER , J. 1996. Topological evolution of surfaces.
Graphics Interface ’96, 194–203. ISBN 0-9695338-5-3.

DEERING, M. AND SOWIZRAL , H. 1997.Java3D Specification, Version 1.0.
Sun Microsystems, 2550 Garcia Avenue, Mountain View, CA 94043, USA.

DÖRNER, R., LUCKAS, V., AND SPIERLING, U. 1997. Ubiquitous animation
- an element-based concept to make 3d animations commonplace. InViusal
Procedings SIGGRAPH ’97. ACM Press.

DYN , N. 1989. Interpolation and approximation by radial and related functions.
In Approximation Theory VI. Vol. 1. Academic Press, 211–234.

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND

STUETZLE, W. 1995. Multiresolution analysis of arbitrary meshes.Pro-
ceedings of SIGGRAPH 95, 173–182. ISBN 0-201-84776-0. Held in Los
Angeles, California.

ECKSTEIN, I., SURAZHSKY, V., AND GOTSMAN, C. 2001. Texture mapping
with hard constraints.Computer Graphics Forum 20,3, 95–104. ISSN 1067-
7055.

EDELSBRUNNER, H. 1999. Deformable smooth surface design.Discrete and
Computational Geometry 21,1 (Jan.), 87–115.

EKMAN , P. AND FRIESEN, W. V. 1978.Facial Action Coding System (Investi-
gator’s Guide). Consulting Psychologists Press, Inc., Palo Alto, California,
USA.

FINKE , U. AND HINRICHS, A. 1995. Overlaying simply connected planar sub-
divisions in linear time. InProceedings of the 11th Annual Symposium on
Computational Geometry. ACM Press, New York, NY, USA, 119–126.

138 REFERENCES

FLOATER, M. S. 1997. Parametrization and smooth approximation of surface
triangulations.Computer Aided Geometric Design 14,3, 231–250. ISSN
0167-8396.

FLOATER, M. S. 2001. Convex combination maps.Algorithms for Approxima-
tion IV.

FLOATER, M. S. 2002. One-to-one piecewise linear mappings over triangula-
tions.Math. Comp. to appear.

FLOATER, M. S. AND GOTSMAN, C. 1999. How to morph tilings injectively.
Journal of Computational and Applied Mathematics 101, 117–129.

FREITAG, L., JONES, M., AND PLASSMANN, P. 1999. A parallel algorithm
for mesh smoothing.SIAM Journal on Scientific Computing 20,6 (Nov.),
2023–2040.

FUJIMURA, K. AND MAKAROV, M. 1998. Folder-free image warping.Graph-
ical Models and Image Processing 60,2 (March), 100–111.

GARLAND , M. AND HECKBERT, P. S. 1997. Surface simplification using
quadric error metrics.Proceedings of SIGGRAPH 97, 209–216. ISBN 0-
89791-896-7. Held in Los Angeles, California.

GOLUB, G. H. AND VAN LOAN, C. F. 1989.Matrix Computations, Second
ed. Johns Hopkins Series in the Mathematical Sciences, vol. 3. The Johns
Hopkins University Press, Baltimore, MD, USA. Second edition.

GOTSMAN, C. AND SURAZHSKY, V. 2001. Guaranteed intersection-free poly-
gon morphing.Computers & Graphics 25,1 (February), 67–75. ISSN 0097-
8493.

GREGORY, A., STATE, A., L IN , M., MANOCHA, D., AND L IVINGSTON, M.
1998. Feature-based surface decomposition for correspondence and mor-
phing between polyhedra.Computer Animation ’98. Held in Philadelphia,
Pennsylvania, USA.

GREGORY, A., STATE, A., L IN , M. C., MANOCHA, D., AND L IVINGSTON,
M. A. 1999. Interactive surface decomposition for polyhedral morphing.
The Visual Computer 15,9, 453–470. ISSN 0178-2789.

GUMHOLD , S. 2000. Personal communication on embedding meshes.

HOPPE, H. 1996. Progressive meshes.Proceedings of SIGGRAPH 96, 99–108.
ISBN 0-201-94800-1. Held in New Orleans, Louisiana.

HORMANN, K. AND GREINER, G. 2000. Mips: an efficient global parametriza-
tion method. InCurve and Surface Design: Saint-Malo 1999, P. S. P.-J. Lau-
rent and L. L. Schumaker, Eds. Vanderbilt University Press, 153–162.

HORMANN, K., GREINER, G., AND CAMPAGNA , S. 1999. Hierarchical
parametrization of triangulated surfaces. InVision, Modeling and Visual-
ization ’99, B. Girod, H. Niemann, and H.-P. Seidel, Eds. infix, 219–226.

REFERENCES 139

HUBELI , A. AND GROSS, M. 2001. Multiresolution feature extraction for un-
structured meshes. InIEEE Visualization 2001. 287–294. ISBN 0-7803-
7200-x.

ISO JTC124. 1997. VRML-97. ISO/IEC 14772-1.

ISO JTC/WG11. 1997. MPEG 4. ISO/IEC 14496-1, ISO/IEC 14496-2.

KANAI , T. AND SUZUKI , H. 2000. Approximate shortest path on a polyhedral
surface based on selective refinement of the discrete graph and its applica-
tions.Proc. Geometric Modeling and Processing 2000, 241–250.

KANAI , T., SUZUKI , H., AND K IMURA , F. 1997. 3d geometric metamorphosis
based on harmonic map.Pacific Graphics ’97. Held in Seoul, Korea.

KANAI , T., SUZUKI , H., AND K IMURA , F. 1998. Three-dimensional geometric
metamorphosis based on harmonic maps.The Visual Computer 14,4, 166–
176. ISSN 0178-2789.

KANAI , T., SUZUKI , H., AND K IMURA , F. 2000. Metamorphosis of arbi-
trary triangular meshes.IEEE Computer Graphics & Applications 20,2
(March/April), 62–75. ISSN 0272-1716.

KARNI , Z. AND GOTSMAN, C. 2000. Spectral compression of mesh geometry.
Proceedings of SIGGRAPH 2000, 279–286. ISBN 1-58113-208-5.

KARYPIS, G. AND KUMAR , V. 1998. Multilevelk-way hypergraph partition-
ing. Tech. Rep. 98–036, Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455.

KENT, J., PARENT, R., AND CARLSON, W. E. 1991. Establishing correspon-
dences by topological merging: A new approach to 3-d shape transforma-
tion. Graphics Interface ’91, 271–278.

KENT, J. R., CARLSON, W. E.,AND PARENT, R. E. 1992. Shape transforma-
tion for polyhedral objects.Computer Graphics (Proceedings of SIGGRAPH
92) 26,2 (July), 47–54. ISBN 0-201-51585-7. Held in Chicago, Illinois.

K IRBY, M. AND SIROVICH, L. 1990. Application of the karjunen-loeve proce-
dure for the characterization of human faces.IEEE Transactions on Pattern
Analysis and Machine Intelligence 12,1, 103–108.

K IRKPATRICK, S., GELLATT, C. D., AND VECCHI, M. P. 1983. Simulated
annealing.Science 220,671.

KLEIN , R. 1998. Multiresolution representations for surfaces meshes based on
the vertex decimation method.Computers & Graphics 22,1 (February), 13–
26. ISSN 0097-8493.

KOBBELT, L. 2000. sqrt(3) subdivision.Proceedings of SIGGRAPH 2000, 103–
112. ISBN 1-58113-208-5.

KOBBELT, L., CAMPAGNA , S., AND SEIDEL, H.-P. 1998. A general frame-
work for mesh decimation.Graphics Interface ’98, 43–50. ISBN 0-
9695338-6-1.

140 REFERENCES

LAZARUS, F. AND VERROUST, A. 1997. Metamorphosis of cylinder-like ob-
jects.The Journal of Visualization and Computer Animation 8,3, 131–146.
ISSN 1049-8907.

LAZARUS, F. AND VERROUST, A. 1998. Three-dimensional metamorphosis: a
survey.The Visual Computer 14,8-9, 373–389. ISSN 0178-2789.

LEE, A., DOBKIN , D., SWELDENS, W., AND SCHRÖDER, P. 1999. Multires-
olution mesh morphing.Proceedings of SIGGRAPH 99, 343–350. ISBN 0-
20148-560-5. Held in Los Angeles, California.

LEE, A. W. F., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN ,
D. 1998. Maps: Multiresolution adaptive parameterization of surfaces.Pro-
ceedings of SIGGRAPH 98, 95–104. ISBN 0-89791-999-8. Held in Orlando,
Florida.

LEE, S.-Y., CHWA , K.-Y., SHIN , S. Y., AND WOLBERG, G. 1995. Image
metamorphosis using snakes and free-form deformations.Proceedings of
SIGGRAPH 95, 439–448. ISBN 0-201-84776-0. Held in Los Angeles, Cal-
ifornia.

LENGYEL, J. E. 1999. Compression of time-dependent geometry.1999 ACM
Symposium on Interactive 3D Graphics, 89–96. ISBN 1-58113-082-1.

L ÉVY, B. 2001. Constrained texture mapping for polygonal meshes. InPro-
ceedings of ACM SIGGRAPH 2001. Computer Graphics Proceedings, An-
nual Conference Series. ACM Press / ACM SIGGRAPH, 417–424. ISBN
1-58113-292-1.

L ÉVY, B. AND MALLET, J.-L. 1998. Non-distorted texture mapping for
sheared triangulated meshes.Proceedings of SIGGRAPH 98, 343–352.
ISBN 0-89791-999-8. Held in Orlando, Florida.

L INDSTROM, P. AND TURK, G. 1998. Fast and memory efficient polygonal
simplification.IEEE Visualization ’98, 279–286. ISBN 0-8186-9176-X.

LOOP, C. AND DEROSE, T. 1990. Generalized b-spline surfaces of arbitrary
topology.Computer Graphics (Proceedings of SIGGRAPH 90) 24,4 (Au-
gust), 347–356. ISBN 0-201-50933-4. Held in Dallas, Texas.

MAGNENAT-THALMANN , N., PRIMEAU , E., AND THALMANN , D. 1988. Ab-
stract muscle action procedures for human face animation.The Visual Com-
puter 3,5, 290–297.

MALGOUYRES, R. AND LENOIR, A. 2000. Topology preservation within dig-
ital surfaces.Graphical Models 62,2 (March), 71–84. ISSN 1524-0703.

M ICHIKAWA , T., KANAI , T., FUJITA, M., AND CHIYOKURA , H. 2001. Mul-
tiresolution interpolation meshes. In9th Pacific Conference on Computer
Graphics and Applications. IEEE, 60–69. ISBN 0-7695-1227-5.

MULLER, D. E. AND PREPARATA, F. P. 1978. Finding the intersection of two
convex polyhedra.Theoretical Computer Science 7,2, 217–236.

REFERENCES 141

M ÜLLER, W. AND ALEXA , M. 1998. Using morphing for information visual-
ization.Workshop on New Paradigms in Information Visualization and Ma-
nipulation (NPIV ’98), 76–79.

M ÜLLER, W., ALEXA , M., RIEGER, T., AND BRAUN, N. 2000. Ein flexibles
Pr̈asentationssystem für User-Interface-Agenten.Workshop Digital Story-
telling (DISTEL), 163–175. ISBN 3-8167-5566-6.

NGO, T., CUTRELL, D., DANA , J., DONALD , B., LOEB, L., AND ZHU, S.
2000. Accessible animation and customizable graphics via simplicial con-
figuration modeling.Proceedings of SIGGRAPH 2000, 403–410. ISBN 1-
58113-208-5.

OSTERMANN, J. 1998. Animation of synthetic faces in mpeg-4.Computer An-
imation ’98. Held in Philadelphia, Pennsylvania, USA.

PARKE, F. I. 1979. Computer graphic models for the human face.Proc. COMP-
SAC, The IEEE Computer Society’s Third International Computer Software
and Applications Conference.

PARKE, F. I. 1982. Parameterized models for facial animation.IEEE Computer
Graphics & Applications 2, 61–68.

PFISTER, H., ZWICKER, M., VAN BAAR , J., AND GROSS, M. 2000. Surfels:
Surface elements as rendering primitives.Proceedings of SIGGRAPH 2000,
335–342. ISBN 1-58113-208-5.

PICKETT, R. M. AND GRINSTEIN, G. G. 1988. Iconographics display for visu-
alizing multidimensional data.Proceedings of IEEE Conference on Systems,
Man, and Cybernetics, 514–519.

PINKALL , U. AND POLTHIER, K. 1993. Computing discrete minimal surfaces
and their conjugates.Experimanetal Mathematics 2,1, 15–36.

POLTHIER, K. 2000. Conjugate harmonic maps and minimal surfaces. Tech.
Rep. Preprint No. 446, TU Berlin, SFB 288.

PRAUN, E., SWELDENS, W., AND SCHRÖDER, P. 2001. Consistent mesh
parameterizations.Proceedings of SIGGRAPH 2001, 179–184. ISBN 1-
58113-292-1.

PREPARATA, F. P.AND SHAMOS, M. I. 1985.Computational Geometry: An
Introduction. Texts and Monographs in Computer Science. Springer-Verlag,
Berlin, Germany.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY,
B. P. 1992.Numerical Recipes in C: The Art of Scientific Computing (2nd
ed.). Cambridge University Press, Cambridge. ISBN 0-521-43108-5.

RHEINGANS, P. 1992. Color, change, and control for quantitative data display.
In Visualization ’92. 252–259.

142 REFERENCES

RUPRECHT, D. AND MULLER, H. 1995. Image warping with scattered data
interpolation.IEEE Computer Graphics & Applications 15,2 (March), 37–
43.

SCHROEDER, W. J. 1997. A topology modifying progressive decimation algo-
rithm. IEEE Visualization ’97, 205–212. ISBN 0-58113-011-2.

SCHROEDER, W. J., ZARGE, J. A., AND LORENSEN, W. E. 1992. Decima-
tion of triangle meshes.Computer Graphics (Proceedings of SIGGRAPH
92) 26,2 (July), 65–70. ISBN 0-201-51585-7. Held in Chicago, Illinois.

SEDERBERG, T. W., GAO, P., WANG, G., AND MU, H. 1993. 2d shape blend-
ing: An intrinsic solution to the vertex path problem.Proceedings of SIG-
GRAPH 93, 15–18. ISBN 0-201-58889-7. Held in Anaheim, California.

SEDERBERG, T. W. AND GREENWOOD, E. 1992. A physically based approach
to 2d shape blending.Computer Graphics (Proceedings of SIGGRAPH
92) 26,2 (July), 25–34. ISBN 0-201-51585-7. Held in Chicago, Illinois.

SHAPIRA, M. AND RAPPOPORT, A. 1995. Shape blending using the star-
skeleton representation.IEEE Computer Graphics & Applications 15,2
(March), 44–50.

SHAPIRO, A. AND TAL , A. 1998. Polyhedron realization for shape transforma-
tion. The Visual Computer 14,8-9, 429–444. ISSN 0178-2789.

SHOEMAKE, K. AND DUFF, T. 1992. Matrix animation and polar decomposi-
tion. Graphics Interface ’92, 258–264.

SPANIER, E. H. 1966.Algebraic Topology. McGraw-Hill, New York.

SUN, Y. M., WANG, W., AND CHIN , F. Y. L. 1997. Interpolating polyhedral
models using intrinsic shape parameters.The Journal of Visualization and
Computer Animation 8,2 (April-June), 81–96. ISSN 1049-8907.

SURAZHSKY, T. AND ELBER, G. 2001. Matching free form surfaces.Comput-
ers & Graphics 26,1, ??–?? ISSN 0097-8493.

TAL , A. AND ELBER, G. 1999. Image morphing with feature preserving tex-
ture.Computer Graphics Forum 18,3 (September), 339–348. ISSN 1067-
7055.

TAUBIN , G. 1995. A signal processing approach to fair surface design.Pro-
ceedings of SIGGRAPH 95, 351–358. ISBN 0-201-84776-0. Held in Los
Angeles, California.

TUFTE, E. R. 1983.The Visual Display of Quantitative Information. Graphics
Press, Cheshire, Connecticut.

TURK, M. AND PENTLAND , A. 1991. Eigenfaces for recognition.Journal of
Cognitive Neuro Science 3,1, 71–86.

TUTTE, W. T. 1963. How to draw a graph.Proc. London Mathematical Soci-
ety 13, 743–768.

WATERS, K. 1987. A muscle model for animating three-dimensional facial ex-
pression.Computer Graphics (Proceedings of SIGGRAPH 87) 21,4 (July),
17–24. Held in Anaheim, California.

WEB3D CONSORTIUM. 1999a. H-Anim.http://ece.uwaterloo.ca:80/˜h-anim.

WEB3D CONSORTIUM. 1999b. X3D. http://www.web3d.org/x3d.

WOLBERG, G. 1998. Image morphing: a survey.The Visual Computer 14,8-9,
360–372. ISSN 0178-2789.

ZHANG, Y. 1996. A fuzzy approach to digital image warping.IEEE Computer
Graphics & Applications 16,4 (July), 34–41. ISSN 0272-1716.

ZIGELMANN , G., KIMMEL , R., AND K IRYATI , N. 2002. Texture mapping us-
ing surface flattening vie multi-dimensional scaling.IEEE Transactions on
Visualization and Computer Graphics to appear.

ZÖCKLER, M., STALLING , D., AND HEGE, H.-C. 2000. Fast and intuitive
generation of geometric shape transitions.The Visual Computer 16,5, 241–
253. ISSN 0178-2789.

Marc Alexa

leads the project group3D graphics computingwithin GRIS, Technische Uni-
versitt Darmstadt, Germany. He received his MS degree in Computer Science with
honors from TU Darmstadt. His research interests include shape modeling, trans-
formation, and animation as well as conversational user interfaces and information
visualization.

145

