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Abstract

In this paper, we introduce a new approach for retrieval and classification of 3D models that directly performs in the Computer-
Aided Design (CAD) format without any conversion to other representations like point clouds or meshes, thus avoiding any loss
of information. Among the various CAD formats, we consider the widely used STEP extension, which represents a standard
for product manufacturing information. This particular format represents a 3D model as a set of primitive elements such as
surfaces and vertices linked together. In our approach, we exploit the linked structure of STEP files to create a graph in which
the nodes are the primitive elements and the arcs are the connections between them. We then use Graph Neural Networks
(GNN ) to solve the problem of model classification. Finally, we created two datasets of 3D models in native CAD format,
respectively, by collecting data from the Traceparts model library and from the Configurators software modeling company. We
used these datasets to test and compare our approach with respect to state-of-the-art methods that consider other 3D formats.
Our code is available at https://github.com/divanoLetto/3D_STEP_Classification

CCS Concepts

* Computing methodologies — Shape modeling; * Information systems — Information retrieval;

1. Introduction

3D model designers spend a large amount of their time search-
ing for the right information during the product design process and
most of their design could be created by modifying an already ex-
isting Computer Aided Design (CAD) model. For this reason, the
retrieval and reuse of CAD models play a very important role in
the domain of CAD model management. However, huge reposito-
ries of CAD models need a priori categorization on engineering
data or require significant organization making design reuse a hard
task. As a matter of fact, traditionally, 3D CAD model classification
and retrieval were achieved by a time-consuming and troublesome
human manual process of labeling that is prone to errors. These
problems are even more frequent if the models are generated by
product development activities and they are so specified by difter-
ent labeling and tags that would require a difficult process of data
harmonization. Furthermore, due to the intrinsic complexity of 3D
CAD model definition, no rigid and general rules can be applied
in model classification. In fact, depending on product origin, the
features and parameters of the models may vary significantly. An
automatic classification and retrieval approach is then needed to
overcome these difficulties.

In most of the previous works, the 3D model classification prob-
lem was approached using machine learning techniques. However,
in those methods, 3D data were usually taken from sensors that can
scan real objects. 3D data from sensors is typically represented in
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various formats such as depth images, point clouds, meshes, or grid
of voxels, whereas 3D CAD data created with modeling software
is typically stored in one of the CAD formats. The main state-of-
the-art methods that work on 3D models are based on models taken
from sensors without considering the possibilities of directly us-
ing data in CAD formats. In general, the information contained in
a CAD model is greater than that of the same model expressed in
other 3D formats, as it allows access to all the information stored
during model creation. For example, a model with a cylindrical
shape can be represented in the CAD format by the equations de-
scribing the surface of the cylinder, while in other 3D formats it
is represented by a collection of many primitive elements such as
point clouds, grid of voxels or triangular meshes. Therefore, the
conversion from one CAD format to other 3D formats is achiev-
able simply by sampling respective elements in the model, while
the opposite is not always possible due to the loss of information.

In this paper, we focus on models represented in a native CAD
format, and we propose a deep learning approach to automatically
classity 3D CAD models. In particular, among the various CAD
formats, we consider the widely used STEP extension, which rep-
resents a standard for product manufacturing information. This for-
mat represents a 3D model as a set of primitive elements such
as surfaces and vertices linked together. In our approach, we ex-
ploit the linked structure of STEP files to create a graph in which
the nodes are the primitive elements and the arcs are the connec-
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tions between them. We then use Graph Neural Networks (GNNs)
to solve the problem of model classification and retrieval. To the
best of our knowledge, no past research does exist that tries to ex-
ploit the STEP format for this purpose. Furthermore, as there are
no large datasets of native 3D CAD models, we built two STEP
datasets by finding models from the Traceparts online library [Gro],
and by collecting models from the Configurators [Srl] software
modeling company. Finally, we tested our approach with the col-
lected datasets, and compared it with classic state-of-the-art meth-
ods based on 3D data.

The main contributions of this paper are summarized as follows:

e We proposed a new retrieval approach that considers data di-
rectly in a CAD format by transforming STEP files into graphs,
and propose the use of GNNs for graph classification and re-
trieval;

e We constructed two datasets of native CAD models whole ele-
ments were collected from the Traceparts open CAD library and
from the Configurators [Srl] software company, and organized
them into classes;

e We tested our approach and compared it with state-of-the-art
methods that work on general 3D models.

The remainder of the paper is organized as follows: in Section 2,
we summarize methods that address the problem of retrieval and
classification of 3D data in general and CAD models in particu-
lar. In Section 3, we present our proposed approach; in particular,
in Section 3.1, we discuss the characteristics of the STEP format
and how to convert 3D models to graphs, while in Section 3.2,
we describe the proposed GNN for comparing and classifying the
obtained graphs. In Section 4, we describe the collected datasets
and the experiments carried on them to validate our approach. Fi-
nally, in Section 5, conclusions and future research directions are
reported.

2. Related work

There are not much works in the literature that performed 3D model
retrieval or classification by directly operating on CAD models. In
the following, we first summarize general methods that worked on
3D data dividing them according to the fact they are based on ex-
tracting low-level hand-crafted features, or they directly learn from
point clouds, voxel grids, or model views. Subsequently, we focus
on methods specifically designed for CAD models starting from
general solutions, then focusing on graph-based methods and ap-
proaches that directly work on the STEP format.

2.1. Feature-based approaches

A general approach to handling 3D models is to extract some en-
gineered features to summarize the content of the models in vec-
tors (feature-based techniques) or consider the models as polygon
meshes and obtain different transformation invariants to measure
the similarity among 3D models (shape-based techniques). In both
the approaches, the descriptors obtained are then compared or used
as input for supervised machine learning techniques to solve the
problem of classification and retrieval.

In [Ip05], several shape descriptors (e.g., Zernike descrip-
tor [NK04]) Multi-resolution Reeb graph descriptor [HSKKO01] and

spectral properties) were extracted to represent a model as n nu-
merical attributes, then a nearest neighbor classifier or a Support
Vector Machine was applied. In [IR05], for each model a shape dis-
tribution vector [RTBD02] was computed by sampling points and
creating a histogram from theirs properties. The histograms were
then compared with curve matching techniques (e.g., Minkowski
Ly distance). In [CDT*03] and [QFL*14], the LFD (Light Field
Descriptor) [CDT*03] view-based features were used, assuming
that two 3D models belonging to the same class look similar from
all viewing angles. Using LFD, features were extracted further (us-
ing the Zernike moments and the Fourier descriptor) after 2D im-
ages were generated from 3D models through light field projection.
The vectors obtained were finally passed to a deep neural network
to solve the classification problem. In [LWM*20], the CAD model
files were converted to a frequency domain representation and then
the corresponding spectrograms were compared.

2.2. Learning-based methods

Voxels: In [MS15], trying to overcome the feature-based methods,
authors developed a new approach by considering the models as 3D
grids and processing them through a supervised network that uses
3D convolutions (3D Convolutional Neural Network, CNN). This
machine learning end-to-end approach allows the neural network
to learn which are the most significant features instead of defin-
ing them manually. More recently, in [GCD*21] authors sampled
from the CAD models a grid 323 and extracted in the same way a
descriptor. In [ZLLG18], authors proposed LightNet, a volumetric
CNN architecture with a small number of training parameters, to
address the real-time 3D object recognition problem by leveraging
multitask learning.

Point-clouds: Point clouds are becoming popular approaches for
representing 3D objects. This representation allows feeding point
clouds to deep networks directly since it does not need any transfor-
mation of the input data, such as voxelization or projection so that
any loss of information is avoided. The difficulty lays on the fact
that point cloud data is spatially irregular and permutation invariant,
which is essentially different from rasterized data as grid of voxels
or pixels. In [QRS*16] and [QYSG17], Qi et al. directly used point
cloud data, represented by three coordinates to feed a network able
to perform feature transformations and aggregate data points by
max pooling. In [NWSL20], authors utilized the PointNet++ model
to segment each 3D model into a set of shapes and extracted their
features. The K-means method was then utilized to construct from
each different shape a node of a 3D shape knowledge graph. Then,
a graph embedding was performed based on the 3D shape knowl-
edge graph and an entities’ retrieval method was used to handle the
3D model retrieval problem. In [KRLV17], authors used a kd-tree
to represent point clouds. The network performed the operations
using a CNNs adapted to the use of data structures as an input.

Model views: In the Multi View CNN (MVCNN) work [SHM*15],
exploiting the success of CNNSs, authors utilized images taken from
12 or 80 multiple 2D views around a 3D model, aggregated them by
a view-pooling layer, and passed the result of the aggregation to a
CNN pre-trained on ImageNet to generate a compact shape descrip-
tor. In this way, the problem of 3D model classification was rede-
fined as a view recognition problem. In [SKT*17], and in [SPT18],

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



L. Mandelli & S. Berretti / CAD 3D Model classification by Graph Neural Networks: A new approach based on STEP format 141

Plzne ID
Toroidal ID Edge Number

Plane 8 spline Knot ID Bound iD (Ref)
Toroidal Edge Loops -
Surface 9 P

Surfaces with

B Spline knots
Surfaces
Other
(] Surfaces

Faces
Surface Type
Surface Type

Cylindrical
Surface -

Cylindrical ID

Edge Loop ID
o>
Bound ID

Loops Number
Gge Loop Type
(Ref)

@ =
O

@ B_Spline
curve with
knots

Vertices ID (Ref) B spline ID
Edges - -

cle D
curves.

Cartesian ID

| Cartesian
1 Point

Vertices 1D
R ~
Vertices
N
Qim/ Cantesian 1D (Ref)

Figure 1: Entity relationship diagram that shows some of the entities defined in the STEP standard.

a special view of the 3D model, the PANORAMA representation,
was obtained and then passed to a CNN to classify the models. In
the RotationNet approach [KAM*16], multiple 2D views of an ob-
ject were used as input and the network jointly estimated their pose
and the object category.

2.3. CAD model retrieval

Many works considered the problem of retrieval of CAD models
with a sketch-based approach: a 2D sketch is given as an input
query and a feature vector is extracted from it using image de-
scriptors. The vector is then used to measure the similarity with
the feature vectors extracted from the 3D models stored in the
database. These sketch-based methods need therefore to project the
3D model into a 2D-view with the best angle and select an im-
age descriptor capable of matching the view and the hand-drawn
sketch. Following this idea, Hou et al. [SKO7], [SK06] proposed a
sketch-based retrieval method using three views of a 3D model and
combining image descriptors such as spherical harmonics, Fourier
transform and Zernike moments. In [QQGB22], authors proposed
an approach based on sketches and unsupervised learning that ex-
tracted geometric information and structural semantic information
from the views and the sketch.

Other CAD retrieval methods directly used the 3D structure
of the data without resorting to a 2D matching problem. Bai et
al. [BGT*10] proposed an approach for partial retrieval of 3D CAD
models with the aim of permitting design reuse. The multi-mode
partial retrieval was achieved by performing multi-mode match-
ing and similarity assessment between the query and the design
reusable subparts in the library. Osada et al. [OFO08] proposed
local 2D visual features integrated with the bag-of-features ap-
proach for CAD model retrieval using the data made available in
the SHREC’08 CAD model retrieval track. The SHREC’17 track
in [HTT*17] had the goal of studying and evaluating the perfor-
mance of 3D object retrieval algorithms using RGB-D data. This
was inspired from the practical need to pair an object acquired
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from a consumer-grade depth camera to CAD models available
in public datasets on the Internet. To support the study, the Ob-
jectNN dataset was proposed with segmented and annotated RGB-
D objects from the SceneNN [HPN:2016] and CAD models from
ShapeNet [CFG*].

2.3.1. Graph-based analysis

Several methods used a graph-based approach to analyze CAD
models by transforming them into graphs starting from their bound-
ary representation (B-rep).

Tao et al. [THZ11] proposed a CAD model retrieval approach
by using the Lagrange multiplier method to solve attribute adja-
cency graph matching. 3D CAD models were first transformed
to attribute adjacency graph using B-rep information in 3D CAD
models. Then, the vertex compatibility matrix and edge compat-
ibility matrix between the attribute adjacency graph of the target
and searched model were calculated, and the measurement of the
two models similarity was created from the compatibility matrices.
Last, after relaxing objective function as equality constraints, the
Lagrange multiplier method was used to solve it. Tao [Tao15] trans-
formed CAD models into face adjacency graphs (FAGs) by consid-
ering only their faces and the edges between them, then applied
a graduated assignment algorithm for CAD model retrieval. Tao
et al. [THM*13] proposed a CAD model retrieval method based
on local surface region decomposition on FAGs. First, according
to the salient geometric features of the mechanical part, the sur-
face boundary of a solid model was divided into local convex, con-
cave and planar regions. Then, region codes were given that de-
scribe the surface regions and their links in the CAD model. Fi-
nally, the model retrieval was realized based on the similarity mea-
surement between two models’ region codes. Following a similar
approach, in [MWCW19] Ma et al. transformed the CAD models
into graphs taking into account the faces and the edges between
them. The type of the faces and of the edges, and their concavity
were also embedded as attributes of nodes and edges, respectively.
Then, a two-stage retrieval method was proposed using the TF-IMF
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(Term Frequency-Inverse Model Frequency) vector method and the
ACO (Ant Colony Optimization) between the attribute adjacency
graphs. In [LZFQ11], Li ez al. proposed a design reusability assess-
ment method to support retrieval and reuse of CAD models. First,
model knowledge was extracted to construct Feature dependency
Directed Acyclic Graph (FDAG). Then, these models were pro-
gressively simplified based on the design-knowledge-based FDAG.
These simplified shapes were finally compared with 3D queries
given as inputs, to retrieve CAD models by measuring the general
shape similarity. El-Mehalawi et al. [EAO3a], [EAO3b] represented
CAD components using attributed graphs in which the nodes cor-
respond to the surfaces of the component and the links correspond
to the edges of the component. Their graph was based on the STEP
physical file of the component. Then, an approach was proposed
for retrieving similar designs in a database of mechanical compo-
nents by abstracting the graphs into some geometric entities and
using them to match the similar graphs. You et al. [YT10] pre-
sented a retrieval architecture that can be utilized to acquire similar
mechanical artifacts based on the local feature correspondence. In
this work, an attributed graph was created from a B-rep structure
by considering the faces and the edge between them. Local fea-
ture correspondence was evaluated by identifying the size of the
common subgraph from the graph descriptor. This work applied
an Independent Maximal Cliques (IMC) detection, and a simulated
annealing algorithm to solve the graph-matching problem. Giannini
et al. [GLM17] transformed CAD models into graphs by adding a
node for each face and an edge between two faces if they are ad-
jacent or they satisfy some geometric criteria, such as planar with
concordant normals. Then, the authors adopted a solution based on
the simulated annealing process to detect a maximum clique and
solve the graph matching problem. Ding et al. [Dinl4] proposed
a novel graph representation of 3D CAD models called Hierarchi-
cal Graph (HG). The model descriptors were divided into shape
feature descriptors and topology relationship descriptors that can
be extracted from the HG. Then, a 3D model retrieval method was
proposed based on Genetic Algorithms (GA) and ACO, which were
employed to detect the common sub-graph in the corresponding hi-
erarchical graphs of different models.

Compared to the methods mentioned above, we proposed a new
approach for the generation of graphs and for the analysis of CAD
models. Our strategy for graphs generation is not limited to con-
sidering only faces and edges of the B-rep, but also includes every
structural element contained in STEP files such as vertices or edge
loops. Furthermore, to the best of our knowledge, we are the first
to apply a GNN method to the analysis and classification of graphs
extracted from CAD models in STEP format.

3. The proposed approach

Our approach consists of two steps: first, we transformed the STEP
files into graphs as described in Section 3.1, then we designed a
GNN for the classification and retrieval tasks in Section 3.2.

3.1. From STEP to graph

Here, we first illustrate the main characteristics of the STEP format,
then we propose a solution to pass from the STEP format to a graph
representation.

3.1.1. STEP format

The Standard for the Exchange of Product model data (STEP for-
mat) is a widely used ISO standard for data exchange that can rep-
resent 3D objects in CAD and related information. In this format,
a CAD model is expressed by its topological components such as
faces, edges or vertices and the connections between them. This
collection of connected surface elements, which define the bound-
ary between interior and exterior points is called boundary repre-
sentation (B-rep).

A generic STEP-file expresses its topological components by a
list of instances of standard entities that are stored in the file as
lines, as shown in Code 1. Every instance has its own unique id
and it is characterized by a series of attributes passed as arguments
that can be numeric values, string values or references to other in-
stances. The values of the attributes differentiate between instances
of the same entity: two instances of the entity Point vary for the
numeric values of the coordinates x, y, and z passed as arguments.

IS0-10303-21;

HEADER;

FILE_DESCRIPTION (

/* description %/ (’A minimal AP214 example with a single part’),
/+ implementation_level */ '2;1');

FILE_NAME (

/* name x/ ’'demo’,

/* time_stamp %/ ’2003-12-27T11:57:53',

/+ author */ (’'Lothar Klein’),

/* organization %/ (’LKSoft’),

r_version */ ' ',

stem %/ ’IDA-STEP’,

/* preproce

/% originatir

/* authorization */ ' ');

FILE_SCHEMA ((’AUTOMOTIVE_DESIGN { 1 0 10303 214 2 1 1}"));

ENDSEC;

DATA;

#10=ORGANIZATION (' 00001, ’LKSoft’,’company’);

#11=PRODUCT_DEFINITION_CONTEXT (' part definition’, #12,’
manufacturing’);

#12=APPLICATION_CONTEXT (' mechanical design’);

#13=APPLICATION_PROTOCOL_DEFINITION(’’,’automotive_design’
,2003,#12) ;

#14=PRODUCT_DEFINITION('0’,$,#15,#11);

#15=PRODUCT_DEFINITION_FORMATION (’1’,$,#16);

#16=PRODUCT (" A0001’,’Test Part 1’,’’, (#18));
#17=PRODUCT_RELATED_PRODUCT_CATEGORY ('’ part’,$, (#16));
#18=PRODUCT_CONTEXT ("', #12,"");

#19=APPLIED_ORGANIZATION_ASSIGNMENT (#10, #20, (#16));
#20=ORGANIZATION_ROLE (' id owner’);

ENDSEC;

END-IS0-10303-21;

Code 1: Example of a STEP file.

The entities that are considered in the format are geometric prim-
itives such as points, complex geometric surfaces such as splines,
and semantic properties of the model such as name, security level
and domain. An entity relationship diagram that shows some of the
entities defined in the STEP standard is shown in Figure 1.

Compared with other formats for the representation of 3D ob-
jects, using the STEP format has the following advantages:

e It contains more information than just the geometry of the ob-
jects, such as the domain to which they belong to and semantic
information;

e It allows defining a complex surface through a few nodes, reduc-
ing the redundancy of information. For example, a cylindrical
surface is defined just by its radius, its height and a spatial point
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for the center of the base. On the contrary, to represent such a
surface in a point cloud or grid format it would be necessary to
sample the space in a large number of elements;

o Compared to formats that represent an object with multiple 2D
views, the STEP format allows considering information on inter-
nal elements or, in general, parts of the object not visible from
the outside;

e In real business contexts, CAD models are often created by as-
sembling smaller components in order to facilitate reusability.
From the structure of the STEP file, it is possible to derive its
hierarchical structure and use it as additional information.

The presence of geometric implicit surfaces, the semantic infor-
mation and the hierarchical structure of the CAD files therefore
offer greater information than classic formats such as mesh, point
cloud or voxels.

3.1.2. Graph conversion

From each STEP file, we aim to obtain a graph. This is achieved
by parsing the file line by line and each entity instance which is
present in each line is coded as a node. Each instance is then char-
acterized by a series of attributes passed as an argument, which can
be numeric, strings or references to other instances. The references
between instances are encoded as arcs in the graph, numerical val-
ues and strings as the attributes of the nodes. An example of the
conversion between a STEP file and a graph is shown in Figure 2.

Figure 2: Example of conversion from the geometric information
of a STEP file to a graph structure.

From the STEP file, it is also possible to derive whether the 3D
model is made starting from a sub-component structure. Gener-
ally, during a CAD modeling phase, the overall model is created
by assembling smaller components previously made. For example,
a bicycle model can consist of two wheel components and a frame
component, which can be composed by even more primitive com-
ponents. In this way, a single component can be easily reused sev-
eral times in the same model or in different models without having
to create it every time from scratch. The hierarchical structure of
the STEP files allows us to decompose a model encoded as a graph
into several smaller sub-graphs, as it is shown in Figure 3.

Each sub-graph represents a component of the overall model.
The breakdown into components provides two advantages:

e We can use the additional information of the hierarchical struc-
ture of the models;

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

N\ >/

e-o
¢ 90 [N )
e o
e -
@0 \ -0
¢ o \ J o6 6-0
)

Figure 3: Example of the decomposition into components of a CAD
file and its related sub-graphs.

e Comparing the various sub-graphs with each other is much faster
than comparing two overall graphs.

3.2. Graph classification and retrieval

After creating graphs from 3D CAD models in STEP format, we
want to classify them using an end-to-end graph neural network.
The classification network can then be used for the retrieval task by
extracting feature vectors from intermediate layers of the network
and comparing them using various metrics.

For this task, we hypothesized that similar models can be defined
by a finite set of possible combinations of primitives and therefore
of different graphs. For example, in the design phase, a sphere can
be realized by a single sphere or by two half-spheres depending on
the modeling process. However, it will hardly be realized by infi-
nite representations of unique combinations of primitive elements.
Hence, the number of possible graphs describing a geometry will
be limited.

For simplicity, in this study that fist explores the potentiality of
considering STEP files as graph input data, we did not consider the
attributes of the nodes but only their typology. Each node is then
represented by a vector of dimension |P| that indicates the one-
hot coding of the node type, where P is the set of possible entities
defined in the STEP standard. To restrict even more the size of the
vector, we considered P’ C P representing all the entities contained
in the STEP models of the considered dataset.

Graph Neural Network: GNNs are a class of deep learning
methods designed to perform inference on data described by graphs
in order to provide an easy way to do node-level, edge-level, and
graph-level prediction tasks.

Graph Convolutional Networks: GCNs are a type of GNNs
based on an efficient variant of CNN that operates directly on
graphs. Let G(V, €) be an undirected graph with V the set of nodes
and &) the set of the edges. Let A the adjacency matrix of G, I
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the identity matrix and A = A +1 the adjacency matrix with self-
connections. Formally, the graph convolution can be modeled as:

HY —o(p~ 1A  HOW D), (1)

where D and W) are trainable weight matrices and ¢ denotes an
activation function of the /-th layer. H (1) ¢ RN*D is the matrix of
activations in the layer, where N = [V|.

This method scales linearly in the number of graph edges, and it
is therefore suitable in our case, where graphs can consist of thou-
sands of nodes and arcs. This operation allows us to learn hidden
layer representations that encode both local graph structures and
the node features. The GCN produces a reduced and meaningful
representation of the nodes of a graph.

In order to obtain an overall graph descriptor, the information of
the nodes must be summarized into a single vector that represents
the whole graph. Instead of performing an unweighted average of
node embeddings or a weighted sum, where the weight associated
with a node is determined by its degree, we implemented an at-
tention mechanism to let the model learn weights following the
ideas in [BDB*]. In this way, the nodes that are more important
will receive more weights and the model will learn by itself the
best weights through the backpropagation steps.

Let's U € RVY*P be the nodes representation, where the n-th
row represents the embedding u;, of node n. For a node n the node
attentive mechanism # is calculated as follow:

N
h= Z o(ul ¢)un
n=1
LN 2
c= tanh(NW”g‘1 Un),

where ¢ represents a global context of the graph and it is obtained
by a simple average of node embeddings followed by a nonlinear
transformation C € RP. The function & is the sigmoid function

and W € RP*P is a learnable weight matrix. The attention weight
for each node is calculated by an inner product between ¢ and its
node embedding. In this way, nodes that are more similar to the
global context will receive higher attention weights. The resulted
vector, which represents the information of the whole graph is then
passed to two fully connected layers, reducing the vector size to the
number of classes specified by the classification task. A summary
scheme of the proposed architecture is shown in Figure 4.

4. Experiments

In order to evaluate our proposed approach, we first collected two
datasets of CAD models in STEP format as discussed in Sec-
tion 4.1. Then, we performed classification and retrieval exper-
iments on those datasets, respectively, in Section 4.2 and Sec-
tion 4.3. Classification results are also compared with state-of-the-
art solutions that work on different data format. Evaluations while
varying different parameters and settings for our approach are also
reported,

4.1. Datasets

Large datasets of native CAD models do not exist. While con-
verting the CAD format to other formats such as point clouds,
views, voxels or meshes is possible, the reverse process is not
since CAD models contain more information than that available
in the other formats. Not being possible to use the major 3D
model datasets such as ShapeNet [CFG*] or ModelNet [WSK*15]
for our purposes, we created and used for our tests two CAD
datasets, the TraceParts and the Configurators ones, and made the
first one available at the link https://mega.nz/folder/
YfESgYDA#FNFLcCsg8mOkb602y0o—tA.

TraceParts CAD dataset: The first dataset consists of 6 classes
with 100 CAD models each. The models belong to the STEP 242
application protocol (AP) and were obtained from the free online
TraceParts CAD library [Gro], which stores many STEP models of
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various categories produced by different companies and with dif-
ferent modeling processes. Unfortunately, the components of the
models in the library are not defined, but the models are treated as a
single piece. Therefore, it was not possible to exploit the hierarchi-
cal composition of the CAD models as discussed in Section 3.1.2.

The classes considered belong to the domain of mechanical com-
ponents and are given by, respectively, screws, nuts, hinges, fans,
iron bars, and wheels. Examples of the six classes of the dataset
are shown in Figure 5.

Class0 Class1 Class2 Class3 Class4 ClassS5

© © § 8 |
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Figure 5: Examples of the models contained in the collected Tra-
ceparts CAD dataset.

The Traceparts library collects templates from different compa-
nies. In this way, two visually very similar models that belong to
the same class but that were produced by different companies can
be generated in different ways and therefore have different graph
structures. For example, a sphere can be defined by a company A
starting from a single sphere, while a company B can define it as
the union of two half spheres.

On the other hand, two models belonging to the same class but
visually different, if generated by the same company, can be rep-
resented by graphs with similar topology. In this case, the visual
differences between the models are given by the different attributes
of the nodes in the graphs. For example, two different spheres, one
very large and one very small, will be characterized by the same
graph structure but different radius values in the node that defines
the sphere. In Figure 6, we show some examples of visual similar-
ity compared to graph similarity in the case of models made by the
same company and different companies.

Table 1 shows the characteristics of the graph nodes in each
class. The average number of nodes varies greatly depending on the
class: screws, nuts, and iron bars have hundreds of nodes, whereas
hinges, fans, and wheels have thousands. Some classes are there-
fore represented by a greater number of nodes, corresponding to
more complex graphs. While a screw or iron bar can be represented
with a relatively small graph, a wheel needs 10 times the number
of nodes to be represented with a graph derived from the original
STEP file.

The variance in the number of nodes also varies considerably
across classes. In particular, the classes of screws and iron bars are
characterized by zero variance, despite the fact that models within
them are visually different. This is due to the fact that all models in

© 2022 The Author(s)
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Figure 6: Examples of CAD models in the dataset and their re-
spective generated graphs. 3D models belonging to the same class,
(a)-(b) and (c)-(d), can be represented by graphs with similar struc-
ture even if they are visually different such as (a)-(b) or by graphs
with different structure even if they are visually similar such as (c)-

(d).

those classes are made by a single company and are therefore char-
acterized by a single style of model creation, which corresponds to
a very similar graph structure.

Class Mean # nodes  Variance # nodes
SCrews 773.0 0.0
nuts 981.4 403428.7
hinges 3282.6 2987419.7
fans 3782.2 18587.3
iron bars 130.0 0.0
wheels 9307.2 8803938.1

Table 1: Properties of the models in the classes of the proposed
Traceparts CAD dataset.

Configurators CAD dataset: The second dataset was created
from the models made available thanks to the software modeling
company Configurators [Srl]. It is made up of 8 classes of 50 ele-
ments each, belonging to the STEP 214 AP. Examples of models
for each class are shown in Figure 7. In Table 2, we show the char-
acteristics of the graphs for each class.

Co C1 C2 C3 C4 Cs Cé Cc7
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Figure 7: Examples of the models contained in the collected Con-
figurators CAD dataset.

This dataset contains models taken from a real-world working
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Class Mean # nodes Variance # nodes

0 11244.0 3112635.5
1 10300.4 1799380.8
2 13027.9 15810147.7
3 18241.6 12651546.6
4 14707.9 14708304.2
5 15748.2 23589269.2
6 6784.2 10737704.7
7 958.9 34371.9

Table 2: Properties of models for the classes of the Configurators
CAD dataset.

application in which each class represents a different component
of a single construct. On average, these 3D CAD models are more
complex than those included in the TraceParts CAD dataset and
the classes are more similar to each other. For example, classes 0
and 1 vary only by the position, vertical or lateral, of a hole on
the structure. This allows us to test our proposed method in a more
challenging and real world application scenario that can also stress
more the differences with other existing solutions in the literature.

4.2. GCN-based CAD model classification

After transforming the STEP models into graph data, the informa-
tion contained in the nodes is summarized into vectors. The total
number of different types of STEP entities contained in the datasets
models is 80, therefore each node is represented by a vector of
dimension 80 obtained through the one-hot encoding of its entity

type.

We implemented the GCN network described in Section 3.2 us-
ing the PyTorch and PyTorch Geometric libraries, which provide
the graph convolution and the fully connected modules. The code is
available at the link https://github.com/divanoLetto/
3D_STEP_Classification. We then tested the network on
the two graph datasets. The network has been trained for 50 epochs
for the first dataset and 100 epochs for the second one with an ini-
tial learning rate (/r) equal to 0.0005 and a scheduler mechanism
that decays the /r by a gamma value equal to 0.1, when the current
loss value is greater than the average of the last 6 epochs.

Each dataset was divided into a train set and a test set with a
90/10 split; furthermore, 10% of the train set models were taken
to build a validation set. We therefore get, for the first dataset, 486
models for the train set, 60 models for the test set and 54 models for
the validation set. For the second dataset we obtained 324 models
for the train set, 40 models for the test set, and 36 models for the
validation set. We set the GCN with 3 convolutional layers with
dimensions of 64, 32 and 32, followed by the attention mechanism
and two fully connected layers with size 32 and 6 or 8, equal to the
number of classes for the first and second datasets, respectively.

This configuration was decided after a set of tests performed on
the first dataset as shown in Table 3; in these test, the network per-
formance was compared while varying the size of the first FC layer
(i.e., the bottleneck layer). By increasing the size of the bottleneck,
we were able to increase the expressive power of the network to
100% accuracy.

GCN bottleneck size  Accuracy Loss Precision
8 91.66% 0.84 0.93

16 100.0%  0.55 1.00

32 100.0%  0.51 1.00

Table 3: Study on the effect of varying the size of the GCN bottle-
neck layer when testing on the first dataset.

Regarding the attention mechanism, we studied how it helps
to obtain a general graph representation from its nodes embed-
ding. We compared our network with an attention mechanism with
two other networks that merge nodes information through an un-
weighted average of node values and a weighted sum, where the
weight associated with a node is determined by its degree. Results
reported in Table 4 indicate that the attention mechanism allows
us to significantly increase the accuracy of the model compared to
other non-learning-based methods.

Network module Accuracy Loss Precision Recall

Unweighted average 93.33%  0.68 0942  0.933
Degree weighted sum 93.33%  0.64 0952  0.933
Attention 100.0%  0.51 1.000  1.000

Table 4: Study on the attention mechanism on the first dataset to
obtain an overall representation of the graph starting from the em-
bedding of its nodes compared to: the use of a unweighted average;
a weighted sum based on the degree of the nodes.

We compared our method with other existing approaches that
operate in the domain of 3D but using different formats for the
data. We considered the following methods:

e PointNet++: we sampled from each of our CAD models a point
cloud in order to train the PointNet++ network [QYSG17] that
represents a standard in 3D model classification. As the number
of sampling points, we considered 1024, 2500 and 10,000 points,
but we did not find any significant variation. The network was
trained for 50 epochs with a learning rate equal to 0.001.

e MVCNN: 12 2D views for each model were generated through
a mobile camera that rotates around the model. Each image is
resized to 224 x 224, passed through the convolutional layers and
then aggregated at a viewpooling layer with the representations
of the other images of the same model. The Multi View CNN
(MVCNN) [SHM*15] network was trained for 30 epochs with a
learning rate equal to 5¢7>. The same setting was used for the
Single View CNN (SVCNN) variant that considers each image
as a separate input data.

Figure 8 highlights the different types of inputs for the different
approaches.

Results of the comparison of those methods with our approach
for the classification task are shown in Table 5 for the Traceparts
dataset and in Table 6 for the Configurators dataset. Regarding the
first dataset, our GCN achieved an accuracy score of 100% outper-
forming the PointNet and PointNet++ networks trained on the same
data, slightly beating the Single-View CNN (SVCNN) variant, and
achieving the same perfect accuracy score as the MVCNN method.

© 2022 The Author(s)
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Figure 8: Summary of the different input types of the tested ap-
proaches for a single CAD model.

Method Accuracy
PointNet 28.7%
PointNet++ 31.6%
SVCNN 99%
MVCNN 100%
GCN (ours) 100 %

Table 5: Comparison on the Tracepart dataset of our approach
based on STEP data to others state-of-the-art methods that works
on different data formats.

In the second dataset, our approach confirmed its validity achiev-
ing the value of 97.5% of accuracy, therefore exceeding the results
of the MVCNN method. This is due to the fact that, unlike the 2D
view method, the graph-based approach is able to exploit informa-
tion that is not visible externally and is not affected if two models
belonging to different classes are visually similar, as for example,
happens for the classes 0 and 1 or for the classes 3, 4 and 5.

Method Accuracy
PointNet 18.7%
PointNet++ 28.5%
SVCNN 91.4%
MVCNN 93.3%
GCN (ours) 97.5%

Table 6: Comparison on the Configurators dataset of our approach
based on STEP data to others state-of-the-art methods that works
on different data formats.

The GCN training accuracy and loss for both the datasets are
shown in Figures 9 and 10, respectively.

4.3. GCN-based CAD model retrieval

The GCN network trained for the classification task was then used
for the retrieval problem. A layer is chosen from the network, and
a vector of features containing the model’s salient features is ex-
tracted for each element of the dataset. The vectors extracted from
the test set are then compared with those extracted from the train
set through various metrics such as cosine distance, Euclidean dis-
tance or histogram intersection. We expect that models of the same
class be represented by similar feature vectors. Then, by comparing
the feature vectors, we should obtain a smaller distance if they be-
long to the same class and a greater one if they belong to different
classes. We then use these distances to solve the retrieval task.

© 2022 The Author(s)
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Figure 9: GCN training accuracy and loss obtained on the Tra-
ceparts CAD dataset.

Figure 10: GCN training accuracy and loss obtained on the Con-
figurators CAD dataset.

As a distances between extracted features, we compared the Eu-
clidean distance, the cosine distance and the histogram intersection.
The mean average precision (mAP) obtained for the first dataset
through the metrics with the final softmax layer as output layer is
shown in Table 7. The cosine distance resulted in the best score, so
we used that distance in the experiments.

Metric mAP
Euclidean distance 0.976
Cosine distance 0.989
Histogram intersection  0.976

Table 7: Comparison between different metrics when matching fea-
ture vectors extracted from the last FC layer of the GCN model for
the first dataset.

We also studied which layer produces a more representative fea-
ture vector, as shown in Table 8. The last layer, i.e., the softmax
layer, performed the best mAP score equal to 0.989.

Based on the above tests, we fixed the cosine metric and the soft-
max layer as the output layer and generated the precision-recall
curve shown in Figure 11. Our method obtained excellent values
of mAP, and only for class 2, characterized by the greater variance
in the number of nodes of the graphs, it did not reach the perfect
score.

4.4. Limitations

The large amount of information which is present in the CAD files
involves some redundancy and therefore a large amount of memory
is needed to store the dataset models as graphs. To avoid having to
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Output layer mAP
Attention layer 0.872
First FC layer without ReLu  0.902
First FC layer with ReLu 0.919
Second FC layer 0.948
Softmax layer 0.989

Table 8: Comparison of mAP values with the cosine metric and
different output layers for the generation of feature vectors for the
first dataset.
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Figure 11: Precision-recall curve for the retrieval of CAD models
with features vectors extracted from the softmax layer and cosine
distance as metric for comparing feature vectors of the first dataset.

convert the models to graphs at each run, we used the networkx
python library [swa] to save the graph data as a .graphml file. As
shown in Table 9, the size of the storage files increases almost lin-
early as the sum of nodes and arcs increases.

#nodes # arcs space

1K 1K 200 KB
3K 35K 600 KB
9K 10K 2,3 MB
15K 17K 3,5 MB
20K 25K 4,1 MB
30K 35K 7,0 MB
35K 40K 8,3 MB
40K 43K 11,0 MB

Table 9: Increase in size of graph storage .graphml files as the
number of nodes and arcs increases.

This implies that for complex models corresponding to large
graphs, heavy files are generated. In contrast to other formats such
as point clouds, voxel grids and multiple 2D scans, in which the
number of elements can be fixed as well as the size of the files, in
the graph approach, it is not possible to regulate the size of the in-
put data, therefore large graphs can be difficult to manage for GPU
computation and RAM memory storage.

5. Conclusions

In this paper, we have introduced a new approach to solve the re-
trieval and classification problems of 3D CAD data that operates
directly in native format without the need to convert the models to
other extensions. We exploited the linked structure of STEP files,
which represents a standard format in the CAD domain to create a
graph in which the nodes are the primitive geometric elements and
the arcs are the connections between them. The graphs created are
then evaluated through convolutional graph neural networks.

Since there is no dataset containing a sufficient number of 3D
models in a native CAD format, we created two datasets by down-
loading data from the Traceparts model library and by collecting
3D models from a real-world software modeling company and di-
viding them into classes. We have used these datasets to validate
our approach and compare it with state-of-the-art methods that con-
sider other 3D formats such as PointNet++ for the point clouds
and MVCNN for the models expressed as multiple 2D views. The
obtained results demonstrate the validity of our method for both
the classification task, where we obtained 100% and 97.5% ac-
curacy for the relative datasets, and for the retrieval task, where
we achieved results close to 100% of mAP for the first dataset.
Our approach resulted in an equivalent or better performance with
MVCNN, greatly exceeding the performance of PointNet++ on the
same data expressed in the respective formats.

This preliminary work has introduced a new approach for the
analysis of CAD models, but its full potential is still to be discov-
ered. In fact, the collected datasets did not allow us to exploit the in-
formation on the hierarchy of the components of the models and in
the classification task the information of the nodes was represented
only by their geometric type without considering the related pa-
rameters. Theoretically, using the hierarchy of components would
allow us to improve the classification of complex objects, while in-
troducing the parameters of the nodes would make it possible to
distinguish even very similar objects. In future work, it will be crit-
ical to exploit these two characteristics in order to conduct experi-
ments on larger datasets, allowing us to maximize the potential of
classification and retrieval tasks of CAD files.

Acknowledgment

We thank the Configurators s.r.l. company for providing us with the
CAD models included in the second dataset.

References

[BDB*] BAI, YUNSHENG, DING, HAO, BIAN, SONG, et al. “SimGNN: A
Neural Network Approach to Fast Graph Similarity Computation”. () 6.

[BGT*10] BAIL JING, GAO, SHUMING, TANG, WEIHUA, et al. “Design
reuse oriented partial retrieval of CAD models”. Computer Aided Design
42.12 (2010), 1069-1084. pOI: https://doi.org/10.1016/7.
cad.2010.07.002 3.

[CDT*03] CHEN, DING-YUN, TIAN, XIAO-PEI, et al. “On Visual Simi-
larity Based 3D Model Retrieval”. (2003) 2.

[CFG*] CHANG, ANGEL X., FUNKHOUSER, THOMAS, GUIBAS,
LEONIDAS, et al. “ShapeNet: An Information-Rich 3D Model Repos-
itory”. (). Technical Report arXiv:1512.03012 Stanford University -
Princeton University - Toyota Technological Institute at Chicago 2015 3,
6.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.


https://doi.org/https://doi.org/10.1016/j.cad.2010.07.002
https://doi.org/https://doi.org/10.1016/j.cad.2010.07.002

L. Mandelli & S. Berretti / CAD 3D Model classification by Graph Neural Networks: A new approach based on STEP format 149

[Din14] DING, Bo. “3D CAD Model Representation and Retrieval based
on Hierarchical Graph”. Journal of Software 9 (Oct. 2014). DOIL: 10 .
4304/3sw.9.10.2499-2506 4.

[EAO3a] EL-MEHALAWI, MOHAMED and ALLEN MILLER, R. “A
database system of mechanical components based on geometric and
topological similarity. Part I: representation”. Computer Aided Design
35.1 (2003), 83-94. DOL: https://doi.org/10.1016/S0010~
4485 (01)00177-4 4.

[EAO3b] EL-MEHALAWI, MOHAMED and ALLEN MILLER, R. “A
database system of mechanical components based on geometric and
topological similarity. Part II: indexing, retrieval, matching, and simi-
larity assessment”. Computer Aided Design 35.1 (2003), 95-105. DOTI:
https://doi.org/10.1016/5S0010-4485(01)00178-6 4.

[GCD*21] GUMELI, CAN, DAI, et al. “ROCA: Robust CAD Model Re-
trieval and Alignment from a Single Image”. (2021) 2.

[GLM17] GIANNINI, FRANCA, LUPINETTI, KATIA, and MONTI, MA-
RINA. “Identification of Similar and Complementary Subparts in B-Rep
Mechanical Models”. Journal of Computing and Information Science in
Engineering 17.4 (May 2017). DOI1: 10.1115/1.4036120 4.

[Gro] GROUP, TRACE. Traceparts online library, Product Content Every-
where. Online available: https://www.traceparts.com/it. 2, 6.

[HSKKO1] HILAGA, M., SHINAGAWA, Y., KOHMURA, T., and KUNII,
T. L. “Topology matching for fully automatic similarity estimation of
3D shapes”. In SSIGGRAPH (2001), 203-212 2.

[HTT*17] HuA, BINH-SON, TRUONG, QUANG-TRUNG, TRAN, MINH-
KHol, et al. “RGB-D to CAD Retrieval with ObjectNN Dataset”. Euro-
graphics Workshop on 3D Object Retrieval. The Eurographics Associa-
tion, 2017. DOI: 10.2312/3dor.20171048 3.

[Ip05] Ip, CHEUK YIU. “Automatic Classification of CAD Models”.
(2005) 2.

[IRO5] Ip, CHEUK YIU and REGLI, WILLIAM C. “Content-Based Clas-
sification of CAD Models with Supervised Learning”. Computer Aided
Design and Applications (2005) 2.

[KAM*16] KANEZAKI, ASAKO, MATSUSHITA, YASUYUKI, et al. “Rota-
tionNet: Joint Object Categorization and Pose Estimation Using Multi-
views from Unsupervised Viewpoints”. (2016) 3.

[KRLV17] KLOKOV, ROMAN, LEMPITSKY, and VICTOR. “Escape from
Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Mod-
els”. (2017) 2.

[LWM*20] L1, WENJIN, MAC, et al. “Computer aided design (CAD)
model search and retrieval using frequency domain file conversion”.
(2020) 2.

[LZFQ11] Li1, MIN, ZHANG, Y.F., FUH, J.Y.H., and Q1U, Z.M. “Design
reusability assessment for effective CAD model retrieval and reuse”.
International Journal of Computer Applications in Technology 40.1-2
(2011),3-12. DOI1: 10.1504/IJCAT.2011.038546 4.

[MS15] MATURANA, D. and SCHERER, S. “VoxNet: A 3D Convolutional
Neural Network for real-time object recognition”. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (2015). DOI:
10.1109/IR0S.2015.7353481 2.

[MWCWI19] MA, WEIFANG, WANG, PEIYAN, CAI, DONGFENG, and
WANG, DAHAN. “Research on 3D CAD Model Retrieval Algorithm
Based on Global and Local Similarity”. IEEE Int. Conf. on Ubiquitous
Computing & Communications (IUCC) and Data Science and Computa-
tional Intelligence (DSCI) and Smart Computing, Networking and Ser-
vices (SmartCNS). 2019, 349-355. por: 10 . 1109/ IUCC/DSCI/
SmartCNS.2019.00085 3.

[NKO4] NoOVOTNI, M. and KLEIN, R. “Shape retrieval using 3D zernike
descriptors”. (2004). DOI: 36 (11) : 10474A51062 2.

[NWSL20] NIE, W., WANG, Y., SONG, D., and L1, W. “3D Model Re-
trieval Based on a 3D Shape Knowledge Graph”. (2020). DOIL: 10 .
1109/ACCESS.2020.3013595 2.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

[OFO08] OsADA, KUNIO, FURUYA, TAKAHIKO, and OHBUCHI, RYU-
TAROU. “SHREC—08 entry: Local 2D visual features for CAD Model
retrieval”. IEEE Int. Conf. on Shape Modeling and Applications.
2008, 237-238. DOI1: 10.1109/SMI.2008.4547985 3.

[QFL*14] QIN, Fw., L1, et al. “A deep learning ap-
proach to the classification of 3D CAD models”. (2014).
https://doi.org/10.1631/jzus.C1300185 2.

[QQGB22] QIN, FEIWEI, QI, SHI, GAO, SHUMING, and BAI, JING. “3D
CAD model retrieval based on sketch and unsupervised variational au-
toencoder”. (2022) 3.

[QRS*16] QI, R., CHARLES, SU, et al. “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation”. (2016) 2.

[QYSG17] Qi1, CHARLES RUIZHONGTALI, Y1, LI, SU, HAO, and GUIBAS,
LEONIDAS J. “PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space”. Advances in Neural Information Process-
ing Systems. Ed. by GUYON, 1., LUXBURG, U. VON, BENGIO, S., et al.
Vol. 30. Curran Associates, Inc., 2017 2, 8.

[RTBDO02] R., OSADA, T., FUNKHOUSER, B., CHAZELLE, and D.,
DOBKIN. “Shape distributions”. ACM Transactions on Graphics
(2002) 2.

[SHM*15] Su, HANG, MAIJI, et al. “Multi-view Convolutional Neural
Networks for 3D Shape Recognition”. (2015) 2, 8.

[SKO06] S., Hou and K, RAMANI. “Sketch-based 3D engineering part
class browsing and retrieval SBM”. (2006) 3.

[SKO7] S., HOU and K, RAMANI. “Classifier combination for sketch-
based 3D part retrieval Comput. Graph”. (2007) 3.

[SKT*17] SFIKAS, KONSTANTINOS, THEOHARIS, et al. “Exploiting the
PANORAMA Representation for Convolutional Neural Network Classi-
fication and Retrieval”. (2017). DOI1: 10.2312/3dor.20171045 2.

[SPT18] SFIKAS, KONSTANTINOS, PRATIKAKIS, IOANNIS, and THEO-
HARIS, THEOHARIS. “Ensemble of PANORAMA-based convolutional
neural networks for 3D model classification and retrieval”. (2018) 2.

[Srl] SRL, CONFIGURATORI. Configuratori. website:
https://www.configuratori.com/ 2, 7.
[swa] <SWART@LANL.GOV>, ARIC HAGBERG <HAG-

BERG@LANL.GOV> DAN SCHULT <DSCHULT@ COLGATE.EDU>
PIETER SWART. “NetworkX Python Library”. 0.
https://github.com/networkx/networkx 10.

[Taol5] TAO, SONG-QIAO. “CAD Model Retrieval Based on Graduated
Assignment Algorithm”. 3D Research 6.21 (2015) 3.

[THM*13] TAO, SONGQIAO, HUANG, ZHENGDONG, MA, LUIJIE, et al.
“Partial retrieval of CAD models based on local surface region de-
composition”. Computer Aided Design 45.11 (2013), 1239-1252. pDOI:
https://doi.org/10.1016/j.cad.2013.05.008 3.

[THZ11] TAO, SONG-QIAO, HUANG, ZHENG-DONG, and ZHENG, TAN-
GUANG. “3D CAD model retrieval based on attributed adjacency graph
matching”. Computer Integrated Manufacturing System 17.04 (2011), 0-
03.

[WSK*15] WU, Z., SONG, S., KHOSLA, A., et al. “3D shapenets: A deep
representation for volumetric shapes”. IEEE Conference on Computer
Vision and Pattern Recognition (2015), 1912-1920 6.

[YT10] You, CHUN-FONG and TSAI, YI-LUNG. “3D solid model re-
trieval for engineering reuse based on local feature correspondence”.
The International Journal of Advanced Manufacturing Technology 46
(2010), 649-661 4.

[ZLLG18] ZHI, SHUAIFENG, LIU, YONGXIANG, LI, XIANG, and GUO,
YULAN. “Toward real-time 3D object recognition: A lightweight volu-
metric CNN framework using multitask learning”. (2018) 2.


https://doi.org/10.4304/jsw.9.10.2499-2506
https://doi.org/10.4304/jsw.9.10.2499-2506
https://doi.org/https://doi.org/10.1016/S0010-4485(01)00177-4
https://doi.org/https://doi.org/10.1016/S0010-4485(01)00177-4
https://doi.org/https://doi.org/10.1016/S0010-4485(01)00178-6
https://doi.org/10.1115/1.4036120
https://doi.org/10.2312/3dor.20171048
https://doi.org/10.1504/IJCAT.2011.038546
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00085
https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00085
https://doi.org/36(11):1047–1062
https://doi.org/10.1109/ACCESS.2020.3013595
https://doi.org/10.1109/ACCESS.2020.3013595
https://doi.org/10.1109/SMI.2008.4547985
https://doi.org/10.2312/3dor.20171045
https://doi.org/https://doi.org/10.1016/j.cad.2013.05.008

