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Abstract

We propose a high performance, GPU integrated, hardware ray tracing system. We present and make use of a new
analysis of ray traversal in axis aligned bounding volume hierarchies. This analysis enables compact traversal
hardware through the use of reduced precision arithmetic. We also propose a new cache based technique for
scheduling ray traversal. With the addition of our compact fixed function traversal unit and cache mechanism, we
show that current GPU architectures are well suited for hardware accelerated ray tracing, requiring only small
modifications to provide high performance. By making use of existing GPU resources we are able to keep all
rays and scheduling traffic on chip and out of caches. We used simulations to estimate the performance of our
architecture. Our system achieves an average ray rate of 3.4 billion rays per second while path tracing our test

scenes.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture—
Graphics processors 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing

1 Introduction

We study hardware acceleration of axis aligned bounding
volume hierarchy (BVH) ray tracing and how GPUs can
grow to accommodate it. Recently there has been renewed
interest in hardware ray tracing, particularly in mobile de-
vices. The combination of large displays and low complexity
scenes makes ray tracing an attractive option in the mobile
space, particularly for coherent effects such as shadows and
specular reflections. In contrast we seek ray tracing support
for incoherent effects in large scenes, such as global illumi-
nation in scenes with several million polygons.

Several ray tracing hardware architectures have been pro-
posed centered around treelet scheduling [AK10] and uti-
lizing MIMD ray traversal. Scheduling ray traversal based
on queuing at treelets, small sub-trees of the BVH, has
been shown to be an effective means of obtaining cache
reuse [KSS*13, AK10, NFLMO7]. Ray divergence at queu-
ing operations and the variable length of the queues makes
MIMD ray traversal an attractive option, avoiding SIMD di-
vergence costs. However, highly divergent MIMD execution
seems to be at odds with the wide SIMT architectures most
GPUs employ. Combined with the high arithmetic demand
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of ray traversal, this has led to the use of co-processor or
fully custom designs. We also adopt compact MIMD ray
tracing and treelet scheduling, and combined with GPU in-
tegration we are able to maintain high ray occupancy while
keeping rays and scheduling traffic entirely on chip.

Our system makes use of a new analysis of BVH traversal
in which intersection of a BVH node is a cumulative oper-
ation involving the intersection of all ancestor nodes. This
reformulation enables small area, low power, ray traversal
units through the use of low precision arithmetic. These units
are small enough to be placed within GPU cores, thereby al-
lowing resources to be shared between the SIMT GPU and
the MIMD ray traversal units. As we will show this sharing
is a natural fit despite the difference in execution model.

In common with prior work we use a form of treelet
scheduling to maximize cache reuse. Treelet scheduling
presents two opposing constraints, small treelets are needed
to ensure maximum cache reuse but increase ray queuing
and treelet selection costs. We resolve this difficulty by in-
troducing a cache feedback mechanism. We queue rays at
small treelets but allow the ray to traverse beyond the active
treelet so long as the required node is already in the cache.
This ensures that high cache reuse is obtained when treelets
are scheduled and, as our simulations show, maintains low
queuing frequency.
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Our simulations show that, together with simple BVH
compression, this system provides an average ray rate of 3.4
billion rays per second (113 million rays per frame at 30 Hz)
when integrated to a single current generation GPU.

2 Background

Algorithms for ray tracing can be roughly divided into two
camps, packet and non-packet techniques. Packet techniques
perform well for ray sets which are known to be coher-
ent [ORMO8, BW09, BWW™*12, AL09, GPSS07]. On both
CPU and GPU platforms these techniques make good use
of SIMD processing because coherent rays exhibit low lane
divergence. However, packet techniques are at a disadvan-
tage when tracing incoherent rays, such as global illumina-
tion rays. As we are primarily interested in incoherent ef-
fects, we turn our attention to non-packet techniques.

Recently software techniques for ray tracing on both
CPUs and GPUs appear to have reached a common per-
formance limitation [WWB™* 14, AL09]. After a few hun-
dred million rays per second both CPUs and GPUs ap-
pear to reach saturation, less for incoherent rays. As shown
in [ALO9] this is due to saturating core performance, likely
floating point performance, not external memory bandwidth.
To reach higher performance we and other researchers turn
to hardware solutions.

Early ray tracing hardware research [SWS02, WSSO05,
RGDO09] employed similar algorithms and scheduling as
software techniques. Yet they showed benefits could be ob-
tained from intersection and traversal pipelining, small ded-
icated caches, separating phases of ray tracing into separate
hardware units, balancing the ratio of each type of unit, and
mitigating packet divergence in a variety of interesting ways.
However, bandwidth consumption remained a critical issue.

External memory bandwidth received a systematic treat-
ment in [AK10]. Here memory bandwidth due to scene data
is shown to be primarily due to the order of execution of rays.
The scheduling concepts from [NFLMO7] are leveraged to
dynamically sort rays into spatially coherent sets as they are
traced. These sets are defined by traversal into memory con-
tiguous subtrees of the BVH, termed treelets. This is shown
to reduce scene traffic by as much as 90%, however, auxil-
iary traffic due to ray queuing is introduced.

Real time ray tracing requires substantial floating point
throughput. In these effects many rays must be cast per pixel
in order to achieve acceptably low noise. With display reso-
lutions at or above 2M pixels and 50-100 rays/pixel needed
for low noise, we can expect to need on the order of 150
million rays per frame. At 30 Hz and 40 steps/ray this is
an impressive floating point demand, requiring the rough
equivalent of 4.5 TFlops of software performance just for
ray traversal. As this is nearly the size of the largest GPU
currently available it seems reasonable to consider fully cus-
tom architectures to support ray tracing. The most recent ray
tracing hardware proposals do just this.
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Figure 1: Traversal point update: € = 2ulp(tg,,) is shown in
blue. On the left the traversal point is distant from the far-
plane of the box making € large, causing a false hit. On the
right we have applied a traversal point update. € is now much
smaller allowing us to detect a miss.

[KSS*13], and [SKKBO09], propose programmable ren-
dering architectures based on ray tracing. In contrast to
current GPUs, these employ a MIMD design which aids
in handling incoherent rays. [KSS*13] adopts treelet based
scheduling and eliminates auxiliary off chip traffic by keep-
ing all ray state in an L2 cache re-purposed as a programmer
controlled scratchpad.

Ray tracing on mobile processors has received recent in-
terest [LSL*13a, KKW* 13, SKBD12]. Most of these oper-
ate as a co-processor to a GPU, using the GPU for pro-
grammable shading and ray generation. Each of these im-
plements a MIMD ray tracing architecture and optimizes for
low bandwidth. Most recently work has been done to lower
the performance cost of co-processor design [SLL*13].

Our system adopts MIMD ray traversal, treelet schedul-
ing, and GPU shading without requiring co-processor de-
sign. We are able to avoid co-processor design through ag-
gressive sharing of internal resources and our compact ray
traversal hardware.

3 Reduced Precision Computing

Our architecture exploits reduced precision to significantly
reduce power and area. It is centered around a new anal-
ysis of BVH traversal which enables using reduced preci-
sion arithmetic in hierarchy traversal. Reduced precision en-
ables power efficient, small area traversal units by greatly
shrinking the needed ALUs, particularly the multipliers.
These multipliers are a major sink of power and area,
which scale quadratically with argument precision. For in-
stance just the multipliers used for traversal in the above
example load (4.5B RPS, 40 steps/ray, 12 mul/step) re-
quire ~27W [KDK*11]. However, with reduced precision
we need only ~1W.

Reduced precision also reduces memory access energy by
conserving bandwidth. We store BVH nodes with reduced
precision by quantizing them, which enables compression.
This reduces bandwidth both directly and by amplifying the
effect of caches.

3.1 Reduced Precision BVH Traversal

In our formulation of BVH traversal each ray-box intersec-
tion leverages the result of intersection with ancestor boxes.
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Key to our analysis is the recognition that typically relatively
little refinement in box edge length is achieved at each level
of a BVH hierarchy.

We use Smits’ test for ray-box intersection, which com-
putes the interval of the line within the box [Smi98]. If this
interval, [tnear,tFqr], is inverted then the line does not in-
tersect the box, otherwise it does. A study of the numerical
robustness of the test shows that to declare a miss the in-
terval must not only be inverted but #y,,- must exceed tg,,
by € = 2ulp(trar) [1ze13]. This gives us a conservative miss
test which we can safely use with arbitrarily reduced preci-
sion operations.

Alone this conservative test is of little help to us. For a
distant box € may dominate the effective size of the box,
resulting in a false hit. Moving the ray origin closer to the
box’s near-plane reduces €, returning the box to its natu-
ral size where we might detect a miss (See Fig. 1). To en-
sure that false hits due to € are limited we must have € < [,
where [ is the box’s edge length. For a ray which misses
INear > tFar > €, S0 we need a point on the ray such that
tNear < 1. Our task is to design a fast BVH traversal algo-
rithm, using only low precision arithmetic, which provides
this sufficiently close point, which we call the traversal point.

Simply moving the traversal point to the near-plane of the
box would suffice. Unfortunately this requires several mul-
tiplies which are precisely the operations we want to reduce
the precision of. So we must find the minimum precision
with which we can update the traversal point and maintain
the required bound. We must also be able to apply the up-
date repeatedly, at each step in the hierarchy, and maintain
the bound.

Computing with #y., with reduced precision gives
tNear = Y(Y(B — P) - invDY), where 7y is the representation er-
ror due to reduced precision, P is the traversal point, and B
is the near-plane coordinate of the box. We do not want the
point to drift off the line so we should update the point with
high precision. Fortunately ty,,, is a low precision number
so without loss of accuracy P’ = P +ty,,D can be imple-
mented with a high-by-low precision multiply. This updates
the traversal point by a factor f = (1 —y°) of the true near-
plane, leaving a new non-zero fyeq;-

If the box has unconstrained size then, since the new
INear 1S NON-Zero, we can construct a box which violates the
bound. To maintain the bound we must limit the ratio of the
parent to child box dimensions. Let the limit be S, the max-
imum change in scale between parent and child. Applying
the maximum scale change at each level allows us to deter-
mine the cumulative effect of truncation as we traverse the
tree. When the ray is created we require that its origin be in
or on the world box. Then at the first level the distance from
the ray origin to child box is C, the maximum parent-child
distance given the maximum scale change S. Updating the
traversal point leaves a gap, accounted for in the next level
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by adding it to that level’s maximum parent-child distance,
and so on down the hierarchy. This gives:

INear,1 =fC INear2 :f(fC+C/S)

Since the box length shrinks by S every step it is convenient
to normalize to the box length at each level. This gives:

tNear,l = fC INear2 = f(fSC + C)

L
INear,L. = fC Z(Sf)l
i=0

When lim tyeqrz < 1 then tyeqr S I for all boxes and any
L— o0 ?

number of levels, which is achieved for f(C+S) = 1. So we
see that the precision we must update the traversal point with
depends on how much smaller than its parent a child box can
be. For example if we allow a child to be at most 32x smaller
on an edge than its parent, then we require y > 0.996 which
is provided with just 8 mantissa bits.

While we have reduced the necessary precision substan-
tially the required size may have only been reduced by 6x
due to the high-by-low precision multiply used in point up-
date. As we will show in our results it is actually accept-
able to use only a single bit of precision when updating
the traversal point! This is possible because most internal
nodes only reduce child edge lengths around 2x and usually
in just one direction. Also, if the ray takes an unnecessary
step due to a distant traversal point, it will abort the path af-
ter a few steps, when the point approaches the incorrectly
hit box. This is guaranteed because the child box being ap-
proached is within the incorrectly taken ancestor. Once the
traversal point is close enough to determine that the ances-
tor should not have been hit, it will also be close enough to
detect a miss for all child boxes.

Using single bit updates removes all multiplies from
traversal point update replacing them with exponent adjust-
ments, small integer adds. Because this is very small com-
pared to even 8 bit updates we use single bit updates in all
our simulations.

So far in the analysis we have been concerned with the
size of multiplies, but at this point addition deserves some
attention. Floating point adds and subtracts are large due to
their need for alignment circuitry. In our case the subtracts
all generate inputs to low precision multiplies. This allows
us to reduce the precision of the subtracts such that the max-
imum shift is reduced, thereby greatly reducing the size of
the alignment circuit. The adds in P’ = P+ 4D could accu-
mulate error over many steps so this solution does not apply
here. Using 3 single precision adders in our traversal unit
requires approximately the area of a single precision multi-
plier [LSL* 13a]. With 4 traversal units in a single GPU core
this comes to less than 6% of preexisting ALU area. It is pos-
sible to significantly reduce the precision of the final adds as
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well, but the analysis is more involved and beyond the scope
of this paper.

Now that we have a small traversal point update procedure
we can usefully deploy a conservative, reduced precision,
ray-box intersection test. When we move the traversal point
we must also update the active depth range [fnin, fmax] of the
ray. This requires subtracting ty,,, from each value. Because
tNeqr has only one set bit this add is also small.

An important benefit of using low precision multiplies is
that the divides can also be made low precision. In our ar-
chitecture divides are replaced with 5 bit lookup tables, re-
ducing their area and latency expenditure and removing the
need to share divide resources between traversal units.

All together we are able to adjust traversal points and in-
tersect boxes with only exponent adjustments (8 bit adds),
adds, and low precision multiplies (we use 5 bits in our sim-
ulations). This reduces the area and power spent on ALU
resources for traversal by as much as 23x, making possi-
ble the inclusion of very high throughput fixed function ray
traversal units without a large increase in ALU area or power
consumption. What remains is to ensure that the other on
chip resources needed for traversal, such as ray storage and
scheduling needs, do not amount to an infeasible area.

3.2 Fixed Function Traversal Unit

Our fixed function traversal unit is fully pipelined, imple-
ments single bit ray origin updates, and uses 5-bit precision
for ray-box tests. A single traversal unit performs two ray-
box intersections in parallel, allowing one ray-node traver-
sal per clock. Each box intersection subunit implements the
pseudocode in Figure 2. The final add for traversal point up-
date (line 7) is repeated at full precision once the near box
has been identified. Like [KSS™13] we use a single bit record
for the traversal stack. The precise organization of the unit
does not impact our analysis. As long as the unit’s latency
is less than L1 hit latency and throughput of one ray-node
intersection per clock is achieved then any organization is
acceptable.

Each unit contains a small register file and shares a node
cache with the other units in its core. Both are sized to hide
the latency of a cache hit, rather than a cache miss. Cache hit
latencies vary widely between current GPU architectures in-
dicating that wide variation, and therefore some selection,
of cache hit latency is possible. We assume a hit latency
between 50 and 100 cycles, requiring 50-100 active rays in
each traversal unit at any time. These rays are traversed until
they hit, terminate, or cache-miss, then are re-queued in the
GPU register file.

The register file and node cache reduce pressure on the
GPUs SIMD register file and L1 while remaining small due
to the relatively low latency they need to hide. We provide
a separate mechanism to hide cache misses which we will
discuss in Section 5.2.

Reduced Precision Ray-AABBox Test

BoxTest Precision
: //BoxNear + Box Near Coordinates

1

2: //BoxFar < Box Far Coordinates

3: invDir < Inv(Dir) 5-bit LUT

4: T + (BoxNear — Point) * invDir 1-bit Sub, 1bit Mul

5: Tclose +— Max(T.x,T.y,T.z) 1 set bit

6: Offset < Dir * Tclose 8-bit int add (exp. adjust)
7: NewPoint <— NewPoint -+ Offset 5-bit add

8: tMin <— tMin — Tclose Sub with 1 set bit

9: tMax < tMax — Tclose Sub with 1 set bit

5-bit Sub, 5-bit Mul
5-bit Sub, 5-bit Mul

10: TNear < (BoxNear — NewPoint) * invDir

11: TFar < (BoxFar — NewPoint) * invDir

12: Near < Max(TNear.x,TNear.y, TNear.z,tMin)
13: Far < Min(TFarx,TFar.y,TFar.z,tMax)

14: if Near > Far+2ULP(Far) then

15: return MISS

16: return {NewPoint, tMin, tMax, Near+Tclose}

Far has 5-bit mantissa

Add with 1 set bit

Figure 2: The reduced precision Ray-AABBox test with new
operations in bold. The precision necessary for each opera-
tion is listed to the right. Lines 4-7 update the traversal point
with a 1-bit estimate of the distance to the box. Lines 8-
9 update the ray’s active region. Lines 10-13 compute the
standard ray-box test but with 5-bit precision. On a hit the
new traversal point, active T-range, and distance to the box
are returned. The distance to the box is given from the in-
put traversal point, not the new traversal point. This allows
determining which of the two boxes in a BVH node is the
near box. The adds in line 7 should be full precision adds
to prevent the traversal point from accumulating error. How-
ever they can be performed at low precision for the purpose
of determining hit or miss, if they are repeated at full preci-
sion once the near box has been found. Doing so reduces the
number of full precision adders by half.

3.3 Node Compression

To aid in reducing bandwidth we use a compressed BVH
node format very similar to [MahO5]. We store short indexes
into a local coordinate frame rather than global coordinates
yielding considerable storage and potential bandwidth sav-
ings. The major difference with [MahO5] is that we do not
use the parent box edge length directly to quantize child
boxes. Rather we use the least power of two not less than the
parent edge length (the AlignU p of the edge length). This
change quantizes a box which may be larger than the parent
box but permits implementation using only shift (or expo-
nent adds) and add. A secondary benefit of quantization is
that it provides an enforcement of the maximum reduction
in child edge length desired when using reduced precision
traversal.

Boxes are quantized to b-bits in each axis. They are de-
fined as Cy = Py + Sly and C; = Py + S(I; + 1) for each
axis, where Cy, is the child box’s low/high point, P is the
parent box coordinate, S is the parent box scale given by
S = AlignU p(P| — Py) /2" which is itself a power of two, I
is the b-bit index of the child point and b is the number of
bits used for indexing.

Using the AlignU p of the box width for scaling does not
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always permit all 2% indexes to be valid child indexes since
some may be outside the box. However it removes the need
for divides or multiplies when traversing the tree, which are
the major sources of error in the algorithm as well as the only
expensive operations. We further require non-zero length for
all box edges when using this encoding, because parent edge
lengths can not be directly recovered during upward traversal
through such a box.

Nodes using this format are not randomly accessible and
decompression order must form a continuous path through
the tree. To enable quickly resuming queued rays each
treelet’s uncompressed bounding box is stored in a separate
table and is used to re-initialize treelets when they are sched-
uled.

‘We use 5 bits for coordinate indexes and 16 bit relative in-
dexing for child and parent pointers. This gives a node size
of 12 bytes. We note that this is close to the node size used
in [KKW™13] but to the best of our knowledge the details of
their format are not published. When compared with a typi-
cal BVH node size of 64 bytes this gives a 5.3x storage sav-
ings. This reduction amplifies the effect of the small caches
used in GPUs and results in significant bandwidth savings.

4 GPU Integration

A guiding principle of our architecture is to seek silicon
reuse whenever possible. In a co-processor design with a
shared memory system we suspect that external bandwidth
will prevent both rasterization and ray tracing from operat-
ing concurrently at full capacity. This turns our attention to
the otherwise idle resources present in a GPU and leads to
our integrated approach.

Prior work has shown that it is important to main-
tain scheduling data and as many rays as possible on
chip [KSS*13, AK10, LSL*13a]. This presents a challenge
since GPUs typically have low amounts of addressable on
chip storage. Fortunately high latency GPUs provide sub-
stantial storage with high bandwidth in the form of the reg-
ister file. Further because of the high number of threads on
GPUs and the need to reconfigure register allocations for dif-
ferent programs, the register file is not tightly coupled to the
pipeline [AMD13b,AMD13a]. Instead the GPU operates the
register file as a scratchpad with restricted addressing. The
recent addition of indexable register file instructions demon-
strates this flexibility [AMD13b]. In our system we reuse the
register file for ray storage. Storage of rays accounts for the
largest on chip storage need in our system as well as in recent
prior work [KSS*13].

We also need to store queue scheduling data on chip.
GPUs again present us with reusable resources in the form
of shared local memory. Shared memory is a relatively low
latency, high bandwidth, random access memory, with re-
mote logic capabilities [AMD13b, AMD13a]. By extending
the logic capability we can reuse this memory for scheduling
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Figure 3: GPU block diagram with our modifications high-
lighted in green. Only 1 core and 2 memory channels shown.

and take advantage of the high bandwidth interfaces already
in place.

Our system uses the programmable GPU cores for shad-
ing, intersection, and ray generation, in common with prior
work. However, because we are already integrating into a
GPU we do not need to incur SOC overheads to accom-
plish this. Since rays are already stored in the GPU’s reg-
ister file we need only ensure that the ray is addressable by
software and aligned properly for SIMT use. This likely re-
quires changes to the register index decoding logic but we
expect that this change will seem minor when compared to
the complexity of a co-processor design.

Altogether integration with the GPU has provided us with
a large ray capacity, scheduling management space, light
weight access to shading resources, access to data cache,
and a bandwidth optimized memory controller, all with a
minimum of additional area. Combined with our compact
traversal unit and node decompressor this forms the primary
elements of our architecture.

4.1 Example Integration Platform

While we believe that our architecture would be suitable for
integration to a range GPUs, it will aid the analysis to se-
lect a concrete example system. We choose to use a hypo-
thetical GPU similar to AMD’s Hawaii (R9-290X) as the
example platform for this paper. Hawaii’s architecture pro-
vides several features which we use to simplify integration.
Register file access width is convenient for our ray format
and shared local memory is implemented with dedicated
scratchpads. This alleviates concerns about sharing mem-
ory bandwidth between scene data and scheduling. Addi-
tionally a global scratchpad is available which we use to
obtain a global view of traversal scheduling. A more de-
tailed description of Hawaii’s architecture can be found
in [Mic13, AMD13b, AMD13a]. As a guide to our system
we summarize the most important features and how we use
them below (also see Fig. 3).
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e Hawaii is organized into 44 cores, each with 4 16-wide
SIMT units. It executes instructions with a logical width
of 64 SIMT threads and has an ALU latency of 4 clocks
for most single precision floating point instructions. We
use the programmable cores for ray-polygon intersection
and shading.

e The register file (RF) is composed of a large number of
independent, high bandwidth, indexable memories. Taken
as a whole, the register file provides 11MB of storage,
allows 176 different simultaneous accesses (4 segments
per core) and provides a peak bandwidth of 33TB/s. We
utilize this for storage of queued rays and to pass data
between pipeline stages.

e Each core contains a 64KB local scratchpad (LDS) shared
by the 4 SIMT units in the core. This scratchpad contains
32 banks, has remote atomic capability on each bank, and
can load or store 4 bytes on each bank every clock. In
our system the LDS provides queue head pointers for the
core’s local region of the register file and filters treelet
selection messages (QF). We also use it to store polygon
data during intersection and shading.

e All the cores on Hawaii share a single global scratchpad,
the GDS, which is also 64KB and has 32 banks. The GDS
contains a more sophisticated remote logic unit than the
LDS, which we extend to provide global traversal treelet
selection (TS).

e Each core has a 16KB L1 data cache. Each cache can
serve 4 16-byte loads per clock. With our compressed
BVH format each L1 can provide upto 4 nodes per clock
to traversal units within the core. Also a IMB L2 data
cache is shared by all cores. In our system both cache con-
trollers are modified to add a hit-only load type.

e Over all the cores is a kernel dispatch complex (the
launcher). We extend this complex to include the ability
to queue rays for traversal, intersection and shading (PS).

e In our system we introduce a register transpose unit (RT)
to each core’s register file. Our traversal units store a sin-
gle ray into a single SIMD register, placing a different
component into each lane. This allows the entire ray to
be retrieved in one register fetch, enabling high perfor-
mance MIMD access to the GPU’s SIMD register file. The
transpose unit allows efficient conversion of rays to SIMD
layout, needed before software can reasonably operate on
them.

e Finally we add 4 traversal units (TU) to each core. Each
unit is accompanied by a small register file holding just
enough rays to hide cache hit latency. The 4 units in a
core share a small node cache.

With this example platform we have a peak throughput of
176 billion traversal steps per second. Keeping in mind that
on GPUs all vector instructions consume FPU issue slots,
the traversal units provide the equivalent of 4.4 TFLOPs ad-
ditional performance, yet occupy only 4-8% of current ALU
die area.

5 Scheduling

Our system employs two global schedulers. The first is a
high level scheduler which balances the ray tracing pipeline
by managing when rays and programmable kernels launch.
The second scheduler focuses on cache utilization during
traverse and, like prior work, manages queues of rays which
are traversing the BVH. Both schedulers work entirely from
on chip storage.

5.1 Pipeline Scheduler

The primary purpose of the pipeline scheduler is to main-
tain high ray occupancy by managing the pipeline be-
tween traversal, intersection, and shading. Recent GPUs
have thread launchers within reach of managing software
pipelines on chip [Mic13, Mij12] and we extend this capa-
bility to include management of queues and traversal units.

This scheduler is queue based, operating similarly to that
described in [LKA13]. However, to avoid off chip traffic, all
queues are maintained on chip in the register file. Each queue
is formed as a dynamically sized linked list of rays with one
or two rays in each register (see Table 1). Because the reg-
ister file is a limited resource and some operations require
allocating from it, such as ray generation during shading, it
is possible to reach deadlock conditions. We avoid this by
compacting rays when rays queue for shading (see Table 1)
and maintaining a small reservation sufficient for shading to
make progress. Unused register space in excess of this reser-
vation, and any other reservations which have been setup, are
eagerly filled with new first generation rays. This ensures
progress and high ray occupancy without needing off chip
storage or complex logic.

For maximum efficiency during traversal a single ray is
stored in a single SIMD register. However, SIMT software
can not reasonably operate on data presented in this format.
The register transpose units are used by the scheduler to mar-
shal rays between these layouts. Having rays in MIMD for-
mat, one ray to a register, removes the difficulty of divergent
queue destinations, such as occurs after intersection. Regis-
ter transpose units ease this queuing operation as well.

Because the launcher is a chip global resource it may, on
occasion, move data between cores. While this should in
general be minimized, it is possible with at least L2 band-
width. Other communication paths may also be available
with differing characteristics, such as through the global
scratchpad.

To ensure access to intersection threads promptly we re-
serve 8 waves on each core for intersection. This is is suffi-
cient to mask the latency of the ALU pipeline for the opera-
tions we need [AMD13a]. This is not sufficient to hide main
memory latency however, so the scheduler must prefetch
polygon data into the local scratchpad. Based on measure-
ments from the scenes we tested we expect to use less than
a quarter of the total local scratchpad capacity for polygons.
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. . . . Flags " . . .
Traversal | Diry | Diry | Dir; | UV | ResultPtr | UserValue (incl. Tinked list ptr) TMin Tyvax | stack | X ‘ Y | Z | Origx | Origy ‘ Orig;
s . . . Flags .
Shading | Diry | Diry | Dir; | UV | ResultPtr | UserValue (incl. linked list ptr) Length Space for another shading ray

Table 1: Ray format used during traversal and shading. Each column represents a 4 byte lane of a single 16 lane GPU register.
The Flags entry contains bits denoting color or shadow ray (1-bit), output operation (3-bits), depth in the current treelet (5-bits),
additional destination bits (5-bits), and a register index used as a linked list pointer (18-bits, sufficient to address every register

on the chip).

We also expect to need roughly 10% of the ray capacity pro-
cessing intersections concurrently at any time. In total we
reserve 20% of the ray capacity for intersections which pro-
vides buffering space.

This arrangement yields the benefits of queue based
shader scheduling, yet generates no overhead traffic since
all structures remain entirely on chip. Use of the register
transpose units simplifies divergent queuing and provides a
lightweight path between SIMD and MIMD hardware units.

5.2 Traversal Scheduler

To minimize traversal traffic we use a variant of treelet
scheduling with small treelets. Queue traffic can be larger
than scene traffic when using small treelets [AK10] which
stresses the need to keep all rays and scheduling traffic on
chip. As mentioned previously, ray queues are formed as
linked lists in the register file and during traversal are man-
aged by the traversal units within each core. We use the
global and local scratchpads for the remaining queue data:
global treelet occupancies and queue head pointers (regis-
ter indexes) respectively. This keeps all scheduling traffic on
chip and away from off chip data paths, such as cache.

Unlike the launcher the traversal units are not global so
each core must be capable of holding a ray queue for each
treelet. Each core’s traversal queues are held in the portion
of the register file within the traversal unit’s host core. This
admits a simple queuing operation, when a ray queues it can
simply be assigned to a different queue within the same core.
While this is simple and fast it may require unnecessarily
high L2 output bandwidth due to multiple cores fetching the
same lines from L2 to L1. One mitigating factor is that a
crossbar is used in the L1-L2 interface. In general crossbars
can be used for efficient broadcast. This can be used to load
scheduled treelets into the L1s of the cores needing to tra-
verse them, handling the obvious major source of duplicated
line loading. We revisit this issue in Section 9.

Our traversal units make use of a new load type, hit-only.
On a hit, loads with this type are processed exactly as an or-
dinary load. On a miss no data is retrieved, the cache signals
that the data is not available, and the load is aborted. This
type allows the traveral units to use the cache for deferrable
speculative loads without risking cache pollution. We want
small treelets to improve our certainty that a cache line will
see reuse. We also want rays to travel as far as possible be-
fore re-queuing. The hit-only load type gives us this flexibil-
ity, knowing that rays cannot evict the treelet we scheduled
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nor generate unexpected off chip traffic. This load type is
used for all node fetches issued from the traversal units.

Because the traversal units can not generate off chip traf-
fic, the scheduler must load treelets into cache. In our system
this is done by the logic unit attached to the global scratch-
pad, where treelet occupancies are collected and binned.
Once a treelet is selected from the max bin its nodes and root
box are loaded into the cache. On completion of the loads the
treelet selection is broadcast to all cores which begin traver-
sal of the associated ray queues. We extend the logic unit of
the local scratchpads to receive and filter treelet selection
messages. By examining the head pointer of the selected
queue the unit may quickly and asynchronously determine
if the core needs to process the queue. Because the traver-
sal units begin traversal of the treelet nearly simultaneously
off chip bandwidth is not impacted by the number of cores
which consume the treelet.

As mentioned treelets are binned at the global scratch-
pad. The global scratchpad contains an array of the total
number of rays queued to each treelet, or occupancy, and
a list of treelets partially sorted by occupancy. When a ray is
queued the traversal unit sends an occupancy increment mes-
sage, via the existing remote atomic pathway, to the global
scratchpad. The scratchpad performs a saturating increment
on the treelet’s occupancy. If the occupancy crosses a bin-
ning threshold then the treelet’s position in the sorted list is
updated, an exchange of two elements. To aid in locating
the treelet in the sorted list another array holds the position
of each treelet in the sorted list. The partial sorting allows
most occupancy updates to terminate after the atomic add.
This reduces list update frequency, reducing contention dur-
ing occupancy updates. This partial sorting effectively bins
treelets by occupancy without requiring statically allocated
bins. In our experiments treelets typically have 100 or fewer
rays queued to them, though some have many more. We use
1 byte for queue occupancy. In total the global scratchpad
must hold 5 bytes for each treelet, 1 byte for occupancy and
two 2 byte indexes, along with pointers to the start of each
bin within the list.

With this arrangement treelet selection requires simply
reading the leading element of the list. Overall the list is
maintained as a ring allowing simple maintenance during se-
lection. When selected the occupancy of the leading treelet
is reduced to zero and the pointer to the start of the max bin
is incremented.

Because we use at most the entire global scratchpad for
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treelet data, we can support only a limited number of treelets.
With a 64KB scratchpad we can support 13,107 treelets. The
treelet count sets the number of queue headers stored in the
local scratchpads, requiring under 40% of the scratchpad for
13K queue headers (12-bits are needed to fully address the
core’s registers). This indicates that there is space for both
queue headers and polygon data in the local scratchpads.

With small treelets and centralized scheduling its possi-
ble for queue selection rate to become a performance is-
sue. From simulation we observe that the number of steps
a ray takes once activated is strongly clustered between 8-
15 steps. Given the maximum available ray occupancy and
treelet count we will have 10 rays/treelet in the worst case.
This requires selecting just two queues per clock.

5.3 Scheduling Limits

Our architecture keeps all scheduling data on chip. This al-
lows us to use small treelets which saves bandwidth but also
imposes resource limits which constrain the size of the BVH.
If the queues we select are too large then cache could be-
come oversubscribed, causing some of the treelets to not be
fully resident. Rays in these queues could encounter missing
lines and re-queue to the same treelet, effectively disabling
the queue and lowering the traversal rate. In the extreme if
we use too few treelets then a single treelet may be larger
than the cache preventing traversal from being possible at
all.

For the example platform these considerations limit the
largest practical BVH to 5SM nodes. Beyond this perfor-
mance is expected to fall off. The limitation is on the BVH,
not the polygon count, but the two are closely related. We ex-
pect scenes above 10-20M polygons to result in trees which
are too large for our hardware to handle well. Raising this
limit requires growing the size of the caches to support larger
treelets, or growing the scratchpads and register file to sup-
port more treelets.

The maximum number of queues is limited by hardware
but queue partitioning is a function of BVH build software.
This provides an important performance control for soft-
ware. Using the maximum number of queues possible could
result in loss of performance due to queue restart overheads.
Using too few loses coherence during traversal and inter-
section, costing bandwidth. Further as noted in [AK10] the
shape of the treelet impacts its ray collection rate and there-
fore the anisotropy of the ray distribution among the queues.

6 Polygon Data Format

We employ a packed, indexed primitive format for polygon
data, similar to [SE10]. Each leaf contains a separate vertex
and index buffer. Indexes use a small number of bits, typi-
cally to 3-8 bits, just enough to index the largest leaf and is
constant for the BVH to retain simple software. We observe
vertex to polygon ratios of 1.0 to 1.6 with this format, saving
2-3x on polygon bandwidth, which dominates in our system.

Scene Baseline Compress -T.P. 8-bit 1-bit Overhead
Hairball 52.5 55.6 - 58.1 583 11.1%
Vegetation 58.2 62.8 - 64.6  65.6 12.7%
Powerplant 51.4 61.7 615 652 26.9%

Crown 41.2 439 1560 453  46.0 11.8%

Table 2: Average number of traversal steps per ray needed
in our test scenes with varying configurations. All tests use
the same set of rays. Baseline is the reference software ray
tracer. Compress shows the increase due to BVH quantiza-
tion, which enables compression. -T.P. shows the dramatic
cost of attempting to use reduced precision intersection with-
out the traversal point update step. 8-bit and 1-bit show us-
ing 8 and 1 bits respectively in the traversal point update step
and 5 bit box tests. In the final column we can see that using
1-bit traversal point updates usually results in a reasonable
additional algorithmic cost over full precision. Intersection
counts show similar trends and magnitudes.

7 Simulation

To estimate the performance of our architecture we imple-
mented two simulators. Our functional simulator is a soft-
ware ray tracer which applies reduced precision BVH traver-
sal and BVH compression. This allows us to measure the al-
gorithmic cost of our changes separately and together. The
functional simulator also generates a log containing every
ray traced, the nodes it visits, and which rays it creates dur-
ing shading. This log feeds our traffic simulator, which we
use to estimate off-chip bandwidth and queue performance
metrics.

7.1 Functional Simulator

Our functional simulator is based on the path tracer pack-
aged with Embree [WWB™14]. We extended Embree to sup-
port the BVH constraints required for node compression and
fit it with a reduced precision BVH traversal routine. Node
compression is simulated by enforcing minimum child edge
length constraints and quantization on an existing BVH. We
use the BVH build algorithms contained in Embree to gen-
erate the initial BVH without any modifications. Reduced
precision traversal is implemented by adding traversal point
updates and truncating mantissa bits before and after each
arithmetic operation in traversal.

Table 2 shows the average number of traversal steps and
leaf intersections per ray required for the test scenes in sev-
eral configurations. Reduced precision traversal and BVH
quantization both increase the effective surface area of a
BVH node. This leads to increased traversal and intersec-
tion costs. In all but one test scene this increase is a rea-
sonable 10-15%. The Powerplant scene stands out with a
large increase in cost which we do not yet understand. In
all cases BVH quantization, which enables compression,
impacts costs more than using reduced precision. Because
the cost of BVH quantization is set when the BVH is con-
structed, it seems likely that BVH build algorithms could
produce higher quality trees for this system if they were
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aware of its quantization limits. Also in most cases using
1 bit, rather than the theoretical limit of 8 bits, for origin up-
dates adds only a very small amount of work, as shown in
the table.

Failing to update the traversal point prevents attaining cer-
tainty that a ray does not enter a box. This results in a huge
increase in traversal and intersection operations as shown in
Table 2.

The BVH must be partitioned into treelets for use in the
traffic simulation. We partition the tree using a simple greedy
bottom-up scheme. We select the largest, deepest treelet not
larger than the estimated treelet size, then recur. If after pick-
ing all the treelets we exceed the maximum treelet count we
increase the estimated treelet size and select new treelets.
This procedure does not take into account the geometric
properties of the treelets, which may have a significant im-
pact on performance. As with BVH construction we suspect
that gains could be made through improved treelet selection
algorithms.

7.2 Traffic Simulator

The traffic simulator is focused on the critical components of
our system’s performance: DRAM traffic, number of traver-
sal steps per ray activation, and queue selection rate. We sim-
ulate a single level of cache, the register file, queue manage-
ment, traversal traffic, intersection traffic, and a limited form
of shading.

Our simulator is not sophisticated enough to run GPU
shader instructions so shading is limited to creation of sec-
ondary rays. This causes us to omit traffic generated during
shading, such as texturing. Also it will be necessary to re-
serve additional registers for use in shading kernels, further
reducing ray capacity. Both of these concerns will lower the
performance estimate of the system somewhat. However we
do not expect shading to generate large quantities of traffic
for uses other than texturing. Advanced lighting techniques
are expected to cast rays in our system, rather than consume
complex data structures via software as is often the case in
rasterization [CNS*11].

To obtain a sufficiently tractable simulator we do not at-
tempt cycle accurate simulation. Instead we make conser-
vative simplifications aimed at preserving performance fea-
tures relevant to our measurement goals. For instance rather
than attempt to simulate the very complex GPU memory
controller we use a zero latency DRAM but perform all
DRAM fetches ~500 clocks prior to use of the data. This
pessimizes cache hit rates, and therefore may overestimate
off chip traffic, since potentially useful data is evicted from
cache earlier than it would actually have been. Simultane-
ously the newly loaded data will not be used for longer than
the real memory system latency.

In our experiments we explored several different cache
types, including direct mapped and LRU set associative. A
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Constant RPF (133M rays/frame) Constant FPS (30Hz)
Scene BW(GB/s) Traffic (GB) TU Util. || MRPS  Traffic (GB)
Hairball 208 73 94.0% 3711 73
Vegetation 275 16.6 76.5% 2248 9.4
Powerplant 119 4.5 91.6% 3580 4.1
Crown 229 8.9 73.5% 3964 7.7

Table 3: Test scene performance with constant rays-per-
frame, followed by constant FPS. Each frame is 1920x1080
an uses a maximum bounce-depth of 4. In each case we vary
the sampling rate to ensure that either 133M rays are traced
or 30Hz is achieved. In the final two columns we show ray
rate and off-chip traffic when rendering at 30Hz. Average
traversal unit utilization (TU Util.) is also shown. The Pow-
erplant and Hairball scenes are limited by traversal perfor-
mance, rather than bandwidth.

LRU set associative cache with a small number of ways
greatly outperforms a direct mapped cache. Because rays are
not allowed to bring data into the caches during traversal a
conflict miss causes rays to queue. A single conflict miss
containing a parent node can impact all the rays of the queue,
dramatically shortening the average number of steps per ray
activation. The improved ability to avoid conflict misses af-
forded by a set associative cache is therefore quite impor-
tant. In our simulations we use a 1MB, 4-way set associative
cache with LRU replacement, and a 64-byte cache line.

Although our simulator does not attempt to provide de-
tailed timings, an approximate timeline can be constructed
from simulator output. This is possible because as we have
argued the system’s performance is limited by two key met-
rics, the number of simultaneous traversal queues and the
number of traversal steps the average ray takes once acti-
vated, in addition to the off chip bandwidth demand. The
simulator provides this information which we use to deter-
mine the time the processor will need to resolve the traversal
steps in a dispatch of queues. This timeline then allows us
to determine the instantaneous bandwidth demand to a reso-
lution of a few microseconds, several times longer than the
DRAM latency. If the bandwidth demand exceeds the avail-
able platform bandwidth then we further lengthen the simu-
lation interval to account for bandwidth availability. We use
these timelines to determine peak bandwidth demand and
frame times in the next section.

8 Results

We compare our results with STRaTA [KSS*13], a recent
desktop-scale hardware ray tracing system. STRaTA is an
architecture similar in spirit to ours, using on chip memory
to manage treelet based traversal. In light of this similar-
ity reduced precision and compression introduces surprising
performance advantages. By reducing the precision of BVH
nodes we are able to compress and save 5x on node band-
width. This also allows our cache to hold 5x more nodes,
which can be expected to reduce bandwidth around 2x. Us-
ing the GPU register file allows us to hold more rays on
chip at once, allowing more reuse and reducing bandwidth
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Crown (4.9M triangles) Hairball (2.9M triangles)

[

Vegetation (1.1M triangles)

Powerplant (12.8M triangles)

Figure 4: Our test scenes as rendered in our system at 30 FPS. Table 3 shows the ray rate achieved and bandwidth needed.

by ~1.5-2x. Our cache modification permits using much
smaller treelets. According to our simulations this provides
an additional 1.2-1.5x bandwidth reduction. Using indexed
primitives and reduced precision indexing allows 2-3x band-
width savings during intersection at the cost of additional
polygon setup arithmetic. Increased ray occupancy and de-
creased scheduling granularity also increases the number of
rays simultaneously intersecting a leaf. This amortizes poly-
gon setup costs and reduces bandwidth another 1.5-2x dur-
ing intersection. From these rough estimates we should ex-
pect performance improvements on the order of 6x for inter-
section dominated scenes and 22x for traversal dominant.

For direct comparison we reproduce two test scenes
from [KSS*13], the hairball and vegetation scenes. We use
the original configuration of one point light, an image size
of 1024x1024, one sample per pixel, and a maximum ray-
bounce depth of 5. Limiting our frame rates to 25Hz and
20Hz (the maximum achieved rates in [KSS*13]), we con-
sume an average of 11.9GB/s and 12.8GB/s respectively.
This amounts to a reduction in bandwidth of 21x for the hair-
ball and 20x for the vegetation scenes.

The comparative test scenes represent relatively low ray
rates of at most 210M rays/second. As our system has a
peak ray rate closer to 4B rays/second we present additional
results each with a workload of 133M rays/frame, the best
we could achieve during peak operation at 30Hz though we
do not expect to reach this maximum. To make the scenes
more interesting we use infinite length ambient occlusion
(hemisphere) lighting for the vegetation and hairball scenes.
The crown scene uses a hemispherical light map for lighting.
Powerplant uses hemisphere lighting as well as an area light,
simulating a solar disk. In each case the number of samples
per pixel is adjusted until the the total number of rays per
frame is as close to 133M as possible.

Table 3 shows average off chip bandwidth demand for
our test scenes at 133M rays per frame. Each frame is ren-
dered at 1920x1080 and uses a maximum bounce-depth of 4.
The Powerplant and Hairball scenes are primarily limited by
traversal unit performance while the remaining are primarily
limited by available bandwidth.

To confirm that we are obtaining benefits from small
treelets we simulated with larger treelets as well. For this we
used a treelet size of 768 nodes, the same number of nodes as
in [AK10]. Using large treelets increased traffic in the Crown
scene to 11.0GB, an increase of 1.2x.

Comparison with [LSL*13b] is difficult because of the
difference in power and resources available to desktop vs
mobile processors. To make a grossly inappropriate compar-
ison we compare efficiency in MRays/GB of off chip traf-
fic while rendering diffuse interreflection rays. We repro-
duced the hardest (lowest efficiency) scene from [LSL*13b],
Sebenik, in our system and rendered it at 1920x1080. Com-
paring measures we are 75x more efficient. However, this
merely highlights the difficulty in comparison because after
BVH compression the entire BVH easily fits into our cache
while a large fraction of the polygons fit into LDS plus re-
maining cache space. This allows many rays to be generated,
trace and retire without generating off chip traffic, and so is
not a measure of our system’s typical efficiency.

Computing efficiency for their hardest scene (Sebenik -
80K triangles) and ours (Vegetation - 1.1M triangles) gives
23.5 MRays/GB and 8.0MRays/GB respectively. This puts
our system behind by a more modest 3x. Considering the
order of magnitude difference in scene size and complex-
ity (interior architecture vs. dense foliage) we take this to
indicate that the two architectures likely have comparable
efficiency if implemented at similar scale.

9 Potential Future Work
9.1 Improved Simulation and Ray Migration

In our system the L1-L2 interface may present a bottleneck
due to duplicate line loads. Our ongoing research includes
simulation of the L1-L2 interface and explicitly handles ray
migration between cores. Ray migration can have a strong
impact on traffic crossing the L1-L2 interface. While this re-
search is still ongoing we note that in the two extremes rays
may be migrated through the L2 at every queuing, or never
migrate, and that these extremes are what prior architectures
have proposed [AK10,KSS*13,LSL*13a].

9.2 Scheduling Algorithms

Our system aggressively extracts coherence from the on chip
ray set. Incoherent rays are halted on chip while coherent
rays are processed and retire. In all our experiments the sys-
tem loses coherency while bandwidth demand increases un-
til the system settles into a relatively steady state with low-
ered bandwidth efficiency. This effect is noted in [AK10] as
a reason to consider batching rays rather than continuously
streaming them. However, our system operates inefficiently

(© The Eurographics Association 2014.



S. Keely / Reduced Precision for Hardware Ray Tracing in GPUs 39

when ray occupancy is low, making frequent batching un-
desirable. Initial experiments show that the coherence of the
average queue increases when a fraction of selections pick
medium or low occupancy queues. We observe that select-
ing these sub-optimal queues increases variation in ray dis-
tribution, allowing rays to move out of incoherent positions
and making space for new, coherent rays. We suspect that
improved queue selection algorithms may have a significant
effect on overall traversal efficiency and/or queue selection
hardware requirements.

Improved scheduling algorithms may also be able to im-
prove our system’s primary bottleneck, polygon intersec-
tion bandwidth. Using our simple polygon format we cur-
rently observe 1-1.5 vertices per polygon. However, the
same scenes have vertex amortization rates near 0.5 vertices
per polygon when using a single index and vertex buffer. A
scheduler capable of intersecting several neighboring leaves
simultaneously might achieve higher vertex amortization,
potentially realizing reduced intersection bandwidth. By us-
ing index and vertex buffers which span several leaves and
intersecting those leaves simultaneously, off chip bandwidth
for vertex loads might be shared without increasing the arith-
metic cost of individual ray-leaf intersections.

Scaling to larger scenes may also benefit from im-
proved scheduling. In our system the number of treelets
is limited by on chip storage for each treelet’s associated
queue header. Using the system on large scenes causes
the treelet size to grow, which reduces traversal efficiency.
In prior systems scheduling algorithms have been used to
handle scenes larger than hardware resources would al-
low [NFLC12,PKGH97, WDSO05]. Such algorithms may be
applicable to hardware accelerated ray tracers as well, en-
abling graceful scaling to large scenes.

9.3 Intersection Hardware

A notable difference between ours and prior work is that
we perform intersections in software. While for the scenes
tested here software appears to maintain pace, intersection
often requires most of the programmable resources to do so,
leaving little room for shading. It has become clear that at
the ray rates projected fixed function intersection hardware
is a practical necessity. Our continuing research in this area
adopts hardware intersection to good effect.

9.4 Ray Approximation

Our system requires all rays which contribute to a local radi-
ance integral to be cast simultaneously. This presents the op-
portunity to acquire dynamic ray bandwidth data. Ray band-
width data is useful for approximating rays and we suspect
ray approximation to lead to reduced bandwidth demand
by reducing incoherent intersection tests. In particular when
computing global illumination, many rays may be approx-
imated without objectionable artifacts, often on the basis
of estimated ray bandwidth [LALD12, EHDR11, MWR12].
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Identifying approximation algorithms potentially suitable
for real time application is the first step in defining hardware
capable of supporting a useful range of approximations.

10 Conclusions

Our analysis of BVH traversal enables compact low preci-
sion traversal units, which we believe will enhance any BVH
capable hardware ray tracing system. We show that BVH
compression and polygon format play significant roles in re-
ducing bandwidth consumption and can be simple enough
for compact implementation in hardware. Our simulations
show that major resources within current GPU architec-
tures are compatible with fixed function MIMD ray traver-
sal. This opens the way for integrating ray tracing capability
within GPUs, eliminating area and performance costs of co-
processor designs. Finally, we show that cache miss signals
can be used alleviate the tension between small treelets and
queuing costs, obtaining certainty of reuse while maintain-
ing low queuing frequency.

With the near term arrival of hardware accelerated ray
tracing in mobile platforms, we believe that wide spread
adoption of real time ray tracing is now inevitable. Our work
represents an area and power efficient approach to scaling
ray tracing capability into higher power platforms, where
very high, incoherent, ray rates are needed for ray tracing
to be a practical option.
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