
Stream Surface Generation for Fluid Flow
Solutions on Curvilinear Grids

Allen Van Gelder

Computer Science Department
University of California, Santa Cruz, USAavg@cs.ucsc.edu

Abstract. A stream surfacein a steady-state three-dimensional fluid flow vector
field is a surface across which there is no flow. Stream surfaces can be useful for
visualization because the amount of data presented in one visualization can be
confined to a manageable quantity in a physically meaningful way.
This paper describes a method for generation of stream surfaces, given a three-
dimensional vector field defined on a curvilinear grid. The method can be char-
acterized assemi-global; that is, it tries to find a surface that satisfies constraints
over a region, expressed as integrals (actually sums, due to discreteness), rather
than locally propagating the solution of a differential equation.
The solution is formulated as a series of quadratic minimization problems inn

variables, wheren is the cross-wind resolution of the grid. An efficient solution
method is developed that exploits the fact that the matrix of each quadratic form is
tridiagonal and symmetric. Significant numerical issues are addressed, including
degeneracies in the tridiagonal matrix and degeneracies in the grid, both of which
are typical for the applications envisioned.

1 Introduction

Fluid flows include both gases and liquids, and are important in the design of many ma-
chines. Because of their complexity in the neighborhood of solid objects (even greatly
simplified objects), almost all fluid flows are computed numerically on a grid or grids
of some kind. The solutions involve both scalar and vector quantities, and can run to
gigabytes of data. Significant simulations usually require super-computers.

Visualization of fluid flows is one of the most challenging visualization problems.
Among the reasons for this are the fact that the grids on which the solutions have been
computed are shaped to fit the boundaries of important solid objects. Some examples are
aircraft fuselages, propellers, turbine blades, ship hulls, internal combustion cylinders,
and ocean floors.

A second aspect that makes the visualization task challenging is that three-dimen-
sional vector fields contain an overwhelming amount of information. One of our pri-
mary motivations for producing stream surfaces is to reduce the amount of information
to a manageable, yet informative, quantity.

A third visualization challenge arises in many engineering applications because the
flow needs to be studied in the close neighborhood of so-calledno-slip boundaries:
that is, boundaries of solid objects where the flow velocity is constrained to be zero

http://www.eg.org
http://diglib.eg.org

[KHL99]. So another motivation for stream surfaces is to produce a surfacenear the
no-slip boundary such that the flow along this surface provides the needed insights.

In this paper we concentrate oncurvilinear grids, whose regularity makes them
attractive for computation. A curvilinear grid can be thought of as a continuous defor-
mation of a rectangular parallelepiped, withcells that are warped cubes. Each vertex
is identified by a triple index(i; j; k) and edges connect vertices that differ by one in
exactly one index.

Methods to generate stream surfaces can be broadly grouped into two categories,lo-
cal andglobal. Thelocal methods generate stream lines from various points (usually on
an upwind boundary face of the grid) by solving the differential equation implied by the
vector field of the flow. Then somehow these stream lines need to be connected to make
a surface. Substantial difficulties have been reported, including numerical inaccuracies
that grow as the stream lines are propagated downwind.

Globalmethods attempt to overcome some of the drawbacks of local methods. The
general idea of global methods is to choose points on the surface that are connected up
as surface patches in such a way that the normal vectors of the patches are orthogonal
to the flow field; error is measured as the degree of nonorthogonality. By applying the
error same criterion at every patch, it is hoped to avoid large errors downwind due to
accumulated inaccuracies from upwind. However, global methods have their own com-
putation difficulties, and the hoped-for accuracy might not be achieved. In this paper
we describe a limited approach, point out some of the problems that arose, and explain
how we addressed those problems.

Fluid flows satisfy several conservation properties, one of the most important being
conservation of mass: In a steady-state flow the net mass flowing across a closed surface
is zero. There is no clear-cut way to exploit this property by locally propagating stream
lines. However, it can be exploited in several ways with global methods, providing
another motivation for a global approach.

The flow field can be transformed into parameter space (also called computational
space) while preserving the mass-conservation property, provided that the vector field
representsmomentum(which is velocity weighted by density). Therefore a stream sur-
face in the geometrically regular computational space can be mapped directly into phys-
ical space and it will remain a stream surface.

We shall demonstrate that, although this transformation into computational space
may have a geometric singularity that causes the velocity to become undefined at cer-
tain points in computational space, thecomputational space momentumremains well-
defined and finite. Such geometric singularities arise in practice when the longitudinal
lines of a hemisphere converge to a single point at the pole. Such grid shapes are needed
to fit around the nose of an aircraft fuselage and similarly shaped objects.

The paper is organized as follows. The problem we address is specified in Section 2.
The methodology we developed is reported in Section 3. Experimental results are re-
ported in Section 4. Related work is discussed briefly in Section 5, and conclusions
are discussed in Section 6. Many details that we are forced to omit here due to space
limitations, some additional images, and animations can be accessed on the Internet at
ftp://ftp.cse.ucsc.edu/pub/avg/Scivi .

2 The Problem

The data given consists of a three-dimensional array of grid points,p(i; j; k), also called
grid vertices, and momentum vectorsm(i; j; k), where0 � i < m and0 � j < n and
0 � k < K. Each grid point has componentsp = (x; y; z). Each momentum vector has
componentsm = (u; v; w), andm(i; j; k) denotes the flow atp(i; j; k). Also part of the
data are scalar fields for density,�(i; j; k), and stagnation energy,E(i; j; k), butE will
not play a direct role in this paper. Notice that(u; v; w) denote momentum, not velocity,
for this paper; the relationship is(u; v; w) = �(_x; _y; _z), where(_x; _y; _z) is velocity.

We assume that the flow is generally in the direction of@p=@x, in accordance with
the convention of fluid mechanics. We also assume that the surfacep(i; j; 0) is (at least
in part) a no-slip boundary, wherem is zero. The latter assumption is not required, but
no-slip boundaries present important difficulties, so we include it in the problem.

The upwind face of the grid is comprised of the verticesp(0; j; k). The problem we
study is to find a stream surface in the flow whose intersection with this upwind face
is specified. That is, suppose a one-dimensional family of “heights” is given as (0; j).
Associate a pointp(0; j; (0; j)) with each given “height” by interpolation among the
given pointsp(0; j; k). Then we look for the stream surface that passes through the
pointsp(0; j; (0; j)). For this paper, trilinear interpolation is used generally, so that if
k is the integer such thatk � (0; j) < k + 1, then the intersection point computed by
linear interpolation along the edge betweenp(0; j; k) andp(0; j; k + 1).

Grids arise frequently in which the points neari = 0 approximate a spherical or
ellipsoidal cap. In this case, for a fixedk, the pointsp(0; j; k) are all in the same location
for varying j, as shown in Figure 1. Grid cells adjacent toi = 0 become wedges.
A stream surface can be continuous in this region only if the “heights” (0; j) are
all equal. This is one motivation for specifying the intersection of the desired stream
surface with the upwind face.

Actually, we expect to want a series of stream surfaces that are near the no-slip
surface and nonintersecting. They should be varying “distances” from the no-slip sur-
face. By adjusting the “heights” at the upwind face, surfaces at various distances can
be generated. If the surfaces do not intersect at the upwind face, they will not intersect
anywhere, in theory (or mass would be destroyed).

3 Methodology

The general approach we followed was to define the conditions that the dot product of
the surface normal with the flow vector field should be zero, or close to zero. When
the problem is viewed this way, it can be transformed into computational space. This
section first describes the transformation into computational space, and how certain
degeneracies are handled. Then it gives the constraints to be satisfied by the stream
surface. Finally, it describes the methods we implemented to satisfy those constraints.

3.1 Transformation into Computational Space

Suppose a rectilinear region in parameter space(r; s; q), is considered, where0 � r �
m�1, 0 � s � n�1, 0 � q � K�1 are continuous parameters. Trilinear transforma-

tions can be defined in each unit cube with integer boundaries for each of the quantities,
x; y; z, u; v; w, as well as� andE. Consider a fixed triple of integers(i; j; k), such that
the cell is the regioni � r � i+ 1, j � s � j + 1, k � q � k + 1.

To make the presentation independent of(i; j; k) we define a local coordinate sys-
tem(�; �;
) for each cell, where the local coordinates vary from 0 to 1.

Notation: Partial derivatives with respect to�, �, and
 are denoted by subscripting:
p� = @p=@�, etc. Vectors are considered to be column vectors; the superscriptT de-
notestranspose, converting a column vector into a row vector. A matrix is sometimes
denoted by a row of column vectors or a column of row vectors. The usual 3D cross
product (vector product) is denoted by “�” and the usual dot product (inner product) is
denoted by “�”.

Let T be the 3-vector of trilinear transformations that maps(0; 0; 0) into p(i; j; k),
(1; 0; 0) into p(i + 1; j; k), (0; 1; 0) into p(i; j + 1; k), (0; 0; 1) into p(i; j; k + 1), etc.
We writep(�; �;
) = T (�; �;
) within this cell. The Jacobian matrix ofT is

J = [p� p� p
] (1)

wherep is regarded as a column vector. LetkJk denote the determinant ofJ , which
we assume is nonnegative. BothJ andkJk vary with (�; �;
), but this dependence is
suppressed in the notation.

For trilinear transformations, recall that the partial derivatives that appear in Eq. 1
are simple vector differences at the cell corners. For example,

p�(0; 0; 0) = p�(1; 0; 0) = p(i+ 1; j; k)� p(i; j; k) (2)

and so on. Elsewhere in the cellp� is a bilinear function of� and
.
We want to define computational-space analogs of the basic quantities given in

the data: momentum, density and energy. With some abuse of notation we indicate
computational-space quantities with the same symbols and their physical-space coun-
terparts, and use the parameters(�; �;
) or (x; y; z) to distinguish which is intended.
Details of the derivations are omitted due to lack of space.

It is known, at least in the folklore of CFD, thatcomputational-space densityis
given by

�(�; �;
) = kJk �(x; y; z): (3)

However, the following expression forcomputational-space momentumhas not ap-
peared elsewhere to the best of our knowledge. It relies on the relationship between
cross-products and the inverse of a 3x3 matrix, which is not “well advertised.”

m(�; �;
) =

2
64
(p� � p
)

T

(p
 � p�)
T

(p� � p�)
T

3
75m(x; y; z) (4)

A very important property of this definition is that the mass-conservation law holds
in computational space, as well as in physical space. If we define a stream surface in

computational space to be a surface whose normal vector is everywhere orthogonal to
m(�; �;
), then the mapping of this surface into physical space is also a stream surface,
since no mass crosses either surface.

We also have an expression for the determinant in terms of the triple scalar product
of the columns of the matrix:

kJk = (p� � p�) � p
 (5)

As mentioned in connection with Eq. 1, for trilinear transformations, Eqs. 4 and 5 can
be evaluated at cell corners with simple vector differences, cross products, and dot prod-
ucts.

3.2 Degeneracies in the Jacobian Matrix

It is normal for the Jacobian matrix to have singularities in common modeling situa-
tions. A typical case is when the grid face fori = 0 collapses into a line (or polygonal
line) as edges shrink to 0 length in thej direction. The effect is like the end of a cylinder
being pinched down to a single point. Therefore, it is quite useful to have a represen-
tation in computational space that does not depend on the transformation being 1–1,
that is, does not depend on the Jacobian matrix having an inverse. Equations 3 and 4
described such a representation.

3.3 The General Scheme

We construct stream surfaces in computational space on the assumption that they should
not intersect theq = 0 face of the grid. The stream surface will be defined as a set
of quadrilateral patches in(r; s; q) space (called(i; j; k) space at integers), where the
vertices of the quadrilaterals have integer values forr ands, and the values ofq can be
thought of as a height field, (r; s), over theq = 0 plane. The edges of these patches run
from (i; j; (i; j)) to (i+1; j; (i+1; j)) or from(i; j; (i; j)) to (i; j+1; (i; j+1)).
See Figure 2.

Clearly this scheme is not sufficiently general to generate any well-defined stream
surface. However, we are primarily interested in the case thatq = 0, or k = 0, is the
location of a no-slip surface. The region near such a surface is called theboundary layer
and flows within the boundary layer are often the most important for design purposes,
because they determine the impact of the environment on the machine being designed.
This representation should be adequate when the flow is “somewhat parallel” to the
no-slip surface.

However, there are important exceptions where the representation as a height field
is not adequate. These occur, for example, where the flow becomes generally toward
the no-slip surface (anattachmentflow) or generally away from the no-slip surface
(a separationflow). Normally, theu component of computational-space momentum is
negative somewhere near such regions. Our basic method of generating a stream surface
breaks down in such regions, and some alternative is needed, as discussed in Section 3.6.

In general terms, our goal is to choose a height field (i; j) for 0 � i < m and
0 � j < n such that the mass under this height field is a specified amount, and the flux

(flow normal to the surface defined by the height field) is as close to zero as possible,
in some sense. In addition, the upwind edge of the surface, (0; j) must satisfy some
further shape constraint to make the solution unique; the shape constraint we have used
is that (0; j) must be constant.

The method that we have implemented extends the surface in strips. Each new strip
runs acrossj for the next higher value ofi. Thus the first strip defines values for (1; j)
and once they are defined, the second strip defines values for (2; j), and so on (see
Figure 2).

Without going into detail on the mathematics, thei-th strip is generated as follows
(values of (i� 1; j) have already been decided):

1. Choose provisional values for (i; j); for example, (i; j) = (i � 1; j) to start
with.

2. In each quadrilateral patch running fromi�1 to i and fromj�1 to j, compute the
coefficients of a bilinear model ofm(�; �).

3. In each quadrilateral patch as above, express the normal vector throughout the
patch, treating (i; j � 1) and (i; j) as variables.

4. In each quadrilateral patch as above, compute the integral of the squared flux, still
treating (i; j�1) and (i; j) as variables, but using the bilinear model ofm(�; �).
The flux is the dot product of the momentum and the normal vector. The integral
can be found in closed form and is a quadratic expression in the variables (i; j�1)
and (i; j).

5. The sum of all such quadratic expressions over the whole strip is the squared flux to
be minimized. Definexj to be then-vector of values of((i; j)� (i� 1; j)), for
0 � j < n, that minimizes the quadratic form. Thexj ’s can be found by solving
the linear system that represents the gradient of the quadratic form. Becausexj is
only involved in constraints withxj�1 andxj+1, the matrix of the linear system is
tridiagonal. Because the linear system is the gradient of a quadratic form the matrix
is symmetric.

000
100

200 300

360
260

160
060

001
061

002
062

361
261

161

101

201
301

302

202

102

162

262

362

r

q
s

Fig. 1.To fit a curvilinear grid over a spherical
cap, thei = 0 grid face collapses to the heavy
line. Indexes are shown asijk. For this exam-
ple j varies from0 to 12. The no-slip bound-
ary is atk = 0.

Fig. 2.Patches that make up the stream surface
in computational space are shown above the
q = 0 plane, with the newest strip on the right.

6. Use the solutionxj to compute new provisional values (i; j) = (i � 1; j) +
xj . Compute an updated bilinear model ofm(�; �). Repeat the process until the
squared flux is no longer decreasing or the solution stabilizes within a specified
tolerance.

After all all the strips have been generated according to the above outline, compute the
total mass under the surface and compare it with the amount that was required. Adjust
the height of the upwind edge up or down until the required total mass is under the
surface, within a specified tolerance.

Thus the procedure involves nested iterations. The inner iteration reduces the squared
flux, and the outer iteration adjusts the overall surface height. The only saving grace is
that the tridiagonal system can be solved very efficiently, in time that is linear inn. A
routine matrix inversion would be ordern3.

3.4 Details of the Quadratic Form

This section sketches the development of the quadratic form that is minimized. The
basis is the analysis of one patch, i.e., one quadrilateral, whose vertices are at(i �
1; j+1; (i�1; j+1)), (i�1; j; (i�1; j)), (i; j+1; (i; j+1)), and(i; j; (i; j)).
Switching to the local coordinate system, the surface is modeled as the bilinear function
 (�; �). The squared flux for this patch is:

F 2
j =

Z 1

0

Z 1

0

(�u(�; �) � � v(�; �) � + w(�; �))2 d� d� (6)

The integral has a closed form, in which the heights (i; j + 1) and (i; j) appear
quadratically. Letxj = ((i; j)� (i� 1; j). The quadratic form to be minimized is

F 2 =

n�2X
j=0

F 2
j (7)

which is nonnegative definite, so a minimum must exist.
The program contains an option to scale the squared flux inversely by the squared

momentum; intuitively this makes the sine of the angle between the momentum and the
surface patch the error, rather than the flux itself.

We define a series of terms leading to a tridiagonal linear system whose solution
minimizesF 2. Momentum terms always refer to computational-space momentum and
are values at the center of the patch (which are also averages over the patch). Subscripts
of � and� denote partial derivatives (of the appropriate bilinear function). We introduce
local symbolsg,G, h, q,Q, r,R, s, S in the equations below; their purpose is to obtain
expressions foraj , bj , andcj .

gj = (�u+ v)=2 + (u� + v�)=12 Gj = (�u� v)=2� (u� + v�)=12
qj = �u+ (u� � v�)=2 Qj = �v + (u� � v�)=2
rj = u+ (u� + v�)=2 Rj = v + (u� + v�)=2

aj = g2j + (q2j +Q2
j)=12 +G2

j�1 + (r2j�1 +R2
j�1)=12 (8)

bj = Gjgj + (rjqj +RjQj)=12 (9)

hj = v((i� 1; j + 1)� (i� 1; j))� w

sj = �v�((i� 1; j + 1)� (i� 1; j)) + w�

Sj = �v�((i� 1; j + 1)� (i� 1; j)) + w�

cj = hjgj + hj�1Gj�1 + (sjqj + SjQj) + sj�1rj�1 + Sj�1Rj�1)=12 (10)

Any terms containing subscripts outside the range 0 throughn� 1 are considered 0.
A linear system is defined using Eqs. 8–10. The vectorc hascj as its components.

Finally, we define the matrixA whose entries are 0, except for three diagonals:

Ajj = aj Aj;j+1 = Aj+1;j = bj : (11)

The linear system to be solved isAx = c.

3.5 Solving the Tridiagonal System

The results of this section are obtained with standard methods of linear algebra and
vector calculus, which may be found in many college texts on the subject. LetA =
LLT be the Cholsky factorization ofA. That is,L is lower triangular. ThenL has the
form Ljj = dj , Lj+1;j = ej , and all other entries are 0. With the convention that
e
�1 = 0, thedj andej are defined by the recurrence relations:

d2j = aj � e2j�1 (12)

ej = bj=dj (13)

Some care is required to avoid numerical problems. Equations 8 and 10 allow us
to infer special properties of linear system. The key is to interpret them in terms of
inner products of certain combinations of the vectors:(gj ; qj ; Qj), (Gjrj ; Rj), and
(hj ; sj ; Sj), 0 � j < n. It can be shown that the right-hand side of Eq. 12 must be
nonnegative, so if a negative value is obtained, it is due to numerical inaccuracies and
may be replaced by 0. Also, it can be shown that ifdj = 0 in Eq. 13, thenbj must also
be0, and the equations of rows0 throughj separate from (have no variables in common
with) those in rowsj + 1 throughn � 1. This independence can be implemented by
settingej to 0, rather than using Eq. 13. Similarly, if anyaj = 0, then Eqs. 8 and 9
imply thatbj�1 andbj are0, and a similar separation occurs.

To solveAx = c, we compute the intermediate resultf = L�1c, followed byx =
(LT)�1f . The procedure uses a forward recurrence equation, followed by a backward
recurrence equation. As usual,f

�1 andxn are considered to be 0.

fj = (cj � ej�1fj�1)=dj (14)

xj = (fj � ejxj+1)=dj (15)

Again, due to separations mentioned above, wheneverdj = 0, thenfj andxj can be
set to 0, rather than using the recurrence equations. This rule delivers a valid solution
of Ax = c, although the solution is not unique becauseA is singular.

3.6 Additional Numerical Issues

If thew component of the computational-space momentum dominates theu component,
then the inner iteration described in Section 3.3 does not converge, for essentially the
same reasons that a nonadaptive Runge-Kutta procedure does not converge when the
derivative is too large. Because it is common for cells to be very thin in thek direction
near a no-slip boundary, even a vector that is nearly parallel to the no-slip surface in
physical space can become nearly orthogonal to the no-slip surface in computational
space. We address this problem in two ways.

1. If the solution vectorx does not lead to a smaller squared flux than the previous
provisional value, then some fraction ofx between 0 and 1 is searched for thatdoes
reduce the squared flux. If no satisfactory fraction is found, the iteration terminates
with the previous provisional value becoming the final value.

2. If the values of in question are less than 1, where 0 is the location of a no-slip
surface, then we interpolatew(i; j;) = 2 w(i; j; 1), rather than linearly. There
is physical justification for this: Boundary layer theory going back to the classical
work of Blasius shows thatw varies quadratically in the neighborhood of the no-
slip boundary (whileu remains linear). This method of interpolation allows the
interpolated momentum vector to approach tangency with the no-slip surface, as is
required by conservation of mass.

The moral is that linearizing an inherently nonlinear system does not guarantee good
results.

If the u component of the computational-space momentum changes sign between
i�1 andi then there might be an asymptotic surface that passes between(i�1; j; (i�
1; j)) and(i; j; (i; j)). That is, the surface we have propagated toi�1 approaches but
does not cross this asymptotic surface. A rigorous treatment of this situation would
involve an eigenvalue and eigenvector analysis of the linearized 3D vector field in the
neighborhood, which is beyond the scope of this paper. The main idea is to identify the
two eigenvalues whose real parts have the same sign (all three cannot agree on sign or
mass is not conserved). Then the plane that “corresponds to” these two eigenvalues is
the asymptotic plane.

For now we have implemented a stop-gap solution wheneveru is negative. We as-
sume thatu will be positive if we get far enough away from the no-slip boundary. So
if u(i; j; (i; j)) < 0 for some value of that is being considered, we increase (i; j)
until it is positive, or leaves the grid. If it leaves the grid, then we assume thatu is a
positive “free stream” value there, and compute accordingly.

4 Experimental Results

We have implemented programs to convert CFD solutions into computational space
and to generate stream surfaces. We used the NASA/NAS FAST program to produce
images. This section reports some experimental results. Timing results are all based on
an SGI Onyx 2 using one 195 MHz R10000 processor. Solution quality is measured by
the root-mean-square (RMS) sine of the angle between the momentum vector and the
tangent plane of the surface. Figures cited in this section appear in the color plates.

We omit detailed results on a 9x9x9 test dataset with a quadratic vector field, mass-
conservative flow, and no-slip surface. It confirmed that the program converges quickly
on “nice” data.

The first dataset we report on is a simulation of the space shuttle launch vehicle
during ascent. The simulation used 9 zones in its grid, but we analyzed only the third
zone, and further limited that to the part having a no-slip boundary. This comprised an
80x77x48 grid, 295,680 vertices in all. We generated 15 stream surfaces in 799 CPU
seconds. The RMS error varied in a narrow range from 0.286 to 0.304.

Several images are shown in Figure 3. Part (a) shows the no-slip fuselage for refer-
ence. Part (b) shows the third stream surface in a family of 15 in purple. Notice that the
surface needs to begin well in front of the nose in order to be tangent to the flow. The
grid degeneracies in front of the nose did not cause any computational difficulties. Part
(c) shows the stream surface separating from the underneath of the fuselage.

Part (d) is another view. Notice the “ear” that appears where we might expect a
tail fin (but there is no tail fin). This is a region of turbulent flow due to the bulge of
the engine housing. The lowest part of the stream surface (furthest from the fuselage)
is in a region where the computational-space value ofu is negative, and the stop-gap
method mentioned in Section 3.6 came into play. Although the stream surface might be
inaccurate in these regions, it indicates visually that “something is happening,” so other
tools can be used to investigate more closely.

The final dataset we report on is a steady-state delta wing simulation with 15-degree
angle of attack. The entire grid is 67x209x49 but again we limited it to the portion over a
no-slip boundary, the size of which was 47x209x49, or 481,327 vertices. We generated
3 stream surfaces in 2725 CPU seconds. The RMS error varied from 0.320 to 0.336.

Figure 4 shows the third stream surface, counting from the no-slip “fuselage.” Part
(e) shows an overview from the rear and above. Notice where the stream surface sep-
arates from the “wing” surface near the outer edges forming a few channels. Part (f)
shows a closer view of one side. These generally parallel lines of separation and attach-
ment confirm and supplement the observations of “open” separation lines by Kenwright,
Henze, and Levit [KHL99].

5 Related Work

Lack of space prevents an extensive review of the literature; please see cited works for
additional bibliography [Ken93,vW93,KM96]. Hultquist described the construction of
stream surfaces by patching togetherstream ribbons, which in turn are produced by
generating stream lines [Hul92].

Three-dimensional stream functions, also known asClebsch potentials, are scalar
functions whose isosurfaces are stream surfacesClebsch potentials[Lam32]. They
have been studied computationally by Kenwright and Mallinson [KM92], by Ken-
wright [Ken93], by van Wijk [vW93], by Knight and Mallinson [KM96], by Fenget
al. [FWJ98], and others. The method of Knight and Mallinson is global, but it applies
to tetrahedral grids and solenoidal (curl-free) flows. The method of van Wijk is also
global, but (as reported) it is limited to incompressible flows, is apparently implemented
only for regular grids, and only handles certain flow topologies. This method propagates

stream lines backward through the velocity field, so it is unclear how it would handle
no-slip surfaces, where the velocity is 0.

In general, the methods reported in the literature do not address the special problems
in CFD flow data that our program tries to address, such as no-slip surfaces, grids with
degeneracies, and somewhat noisy data that results from numerical PDE solutions. They
often have restrictions that prevent them from operating on the data at all, so a detailed
comparison is not practical.

6 Conclusion

We have presented a new method for generating stream surfaces. It is a “semi-global”
method in the sense that it simultaneously solves constraints over a large region of
space, rather than working in one local region at a time, yet there is an element of
downstream propagation. Its efficiency depends on a fast procedure for solving tridiag-
onal linear systems. The implementation so far has limited flexibility. Work in progress
addresses situations in whichu is negative, and will be the subject of a future report.
Future work should also deal with multiple no-slip surfaces.

Stream surfaces are best used in combination with other cues for visualization. In
this paper they were usually supplemented with arrows at various points in the surface.
The surface gives shape information and the arrows give direction within the surface
and magnitude information.

Acknowledgments This work was supported in part by NASA-Ames grant NAG2-
1239 and NSF grantCCR-9503829. The datasets are from the NASA/NAS group at
Ames, except the test. We thank the Zentrum f¨ur Angewandte Informatik K¨oln within
the Regionales Rechenzentrum (Regional Computing Center) of the University of Col-
ogne for making their extensive computer resources available during the author’s visit.

References

[FWJ98] D. Feng, C. Wenli, and S. Jiaoying. Stream surface construction using mass conserva-
tive interpolation.J. Computer Science and Technology, 13 (suppl.issue):45–53, 1998.

[Hul92] J. P. M. Hultquist. Constructing stream surfaces in steady 3D vector fields. InProceed-
ings of Visualization ’92, pages 171–178, Boston, MA, October 1992. IEEE.

[Ken93] D. N. Kenwright. Dual Stream Function Methods for Generating Three-Dimensional
Streamlines. PhD thesis, Department of Mechanical Engineering, University of Auk-
land, New Zealand, August 1993.

[KHL99] D. N. Kenwright, C. Henze, and C. Levit. Feature extraction of separation and attach-
ment lines.IEEE Trans. Visualization and Computer Graphics, 5(2):135–144, 1999.

[KM92] D. N. Kenwright and G. D. Mallinson. A 3-D streamline tracking algorithm using dual
stream functions. InVisualization ’92, pages 62–68. IEEE, October 1992.

[KM96] D. Knight and G. D. Mallinson. Visualizing unstructured flow data using dual stream
functions.IEEE Trans. Visualization and Computer Graphics, 2(4):355–363, 1996.

[Lam32] Horace Lamb.Hydrodynamics. Dover, 6th edition, 1932.
[vW93] J. J. van Wijk. Implicit stream surfaces. InVisualization ’93, pages 245–252, San Jose,

CA, 1993. IEEE Comput. Soc. Press.

(a) (b)

(c) (d)

Fig. 3. Stream surface for simulation of the space shuttle launch vehicle, zone 3 of a nine-zone
grid; see text for discussion.

(e) (f)

Fig. 4. Stream surface (smooth-shaded) in steady-state delta wing simulation, showing lines of
separation and attachment near the outer edges. (e) Overview. (f) Closeup.

