
Comparative Visualization of Instabilities in
Crash-Worthiness Simulations

Ove Sommer and Thomas Ertl

University of Stuttgart, IfI, Visualization and Interactive Systems Group�
sommer, ertl � @informatik.uni-stuttgart.de
http://wwwvis.informatik.uni-stuttgart.de

Abstract. Since crash-worthiness simulations get more and more important as
part of the car development process in order to reduce the cost of development,
enhance the product quality, and minimize the time-to-market, the reliability of
the simulation results plays a decisive role concerning their significance. Recently
the simulation departments of several automotive companies started investigating
the quantity and reason for deviations during a number of simulation runs on the
same input model.
In this case study we discuss different measurements for instability and present
a texture-based visualization method which allows the engineers to efficiently
explore the simulation results by interactively hiding finite element structures
with nearly constant crash performance. Furthermore, we describe those parts of
our prototype which use a CORBA layer for providing the same view on a set
of simulation results and allowing the visual comparison by using the marker
functionality.

1 Introduction

In recent years simulation has become more and more important for the development
of new cars. It supports the testing with hardware-prototypes by delivering simulation
results which are close to test results. This makes the reduction of hardware-prototype
tests possible and therefore allows the development at a lower price. Furthermore, the
shorter cycle of simulation allows the evaluation of more iterations of variants, and thus
better or safer car body parts which improves the product quality.

In the field of crash simulation the continuously increasing CPU power of high-end
simulation servers and the parallelization of the simulation software leads to

– models of finer mesh resolutions. Finer models map the crash-worthiness of a car
body more exactly.

– extensive tracking of more model parameters. The chance to correlate the tem-
poral behavior of different simulation variables by using state-of-the-art visualiza-
tion techniques allows the engineers to come to a deeper understanding.

– more simulations runs. The more iterations can be computed the more improve-
ments can be done to the structure of car body parts.

Recently the stability of the simulation process is investigated in order to ensure
the reliability of simulation results. For this purpose one and the same model will be
simulated several times and the results are compared to each other.

http://www.eg.org
http://diglib.eg.org

In this case study we describe the statistical methods that are used to compare the
simulation output and to evaluate the achievable stability. We will discuss two cate-
gories of comparison functions. We present a visualization method which allows the
engineers to detect regions of instability even in complex models. And finally, the di-
rect visual comparison of multiple simulation runs using marker functionality together
with a CORBA connection layer will be presented.

2 Stability calculation

Today a finite element mesh of a whole car body model consists of about 500.000
elements and nodes. For crash-worthiness simulations the first 120 milliseconds of an
impact are computed and the coordinates are stored in 60 time steps (states) together
with tracked variables like velocities, forces or strains, which takes about 50 hours
on 6 CPUs of a modern simulation server. 2000 simulation iterations are calculated
before the next state is appended to the result file. During simulation several kinds
of ramifications will cause differing results. They originate as well from the limited
precision of the numerical process as from the structure of the finite element mesh.
For example, if one shell element A is pressed against another element B which has a
normal that lies in the plane of A then the simulator has to determine the direction in
which A will slide on B. Those ramifications are called the instability of a simulation
process.

In order to evaluate the effects of the replacement of any car body part by a variant
it is absolutely necessary to be able to reduce the impact of instabilities caused by the
design of the meshed car body model. At the time the engineers try to spot those regions
which are responsible for unstable crash dynamics. Multiple runs for the same model
with the same boundary conditions are computed. The simulation results are compared
against each other by using appropriate evaluation functions.

The set of evaluation functions can be split in different classes: if they use the output
data directly or proceed on a previously computed measure, if they represent a local or
a global criterion, and if they use one- or multi-dimensional data. In the following three
examples of geometric comparison functions are illustrated.

2.1 Global measurement functions

The function V �������	��

���������	��

������������

� measures the displacement of the mesh node� in the � ’th state from its original position in the initial state for one simulation run
 . This is done per component or Euclidean. The length of the displacement vector is
compared over all simulation runs � .

SC(p,t,1)

p(t=0)

V(p,t,1)

(0,0,0) p(t,2)

g(p,t)
p(t,3)

p(t,1)

Fig. 1. The outline shows the position of node �
in the initial state (�����! #"%$) and after � time
steps of three different simulation runs. The solid
lines mark the displacement function V �&��'(�)'+*,$, the
dashed lines the scatter function SC �&��'-��'+*,$.

The scatter function SC �.�����	��

� expresses the distance of node � to the centroid/10 ��������� which is calculated as /20 �.�������3�54687 69): 4 �����	��

� , where � is the number of
runs. Here, the projection to one main axis could also be investigated to focus on differ-
ences in the specified dimension.

The drawback of both, the displacement and the scatter function is, that they are
global measures. For example, during a front-crash simulation an instability at some
finite elements of the engine mount will influence the values of a wide area of adjacent
car body parts and will even force deviations in the rear part of the car. The largest
differences between simulation runs occur in regions of intense deformation as Fig. 2
shows. The deviation of corresponding mesh coordinates becomes less for larger dis-
tances from the center of most buckling.

Fig. 2. The grey-scale (see Appendix for color version) maps the length of difference
vectors of corresponding nodes. After 80 milliseconds the largest deviation can be found
in the left front side (dark regions) and smaller values in the rear. However, using a
global measurement it is hard to spot regions where different crash behavior originates.

In order to spot the origin of instability the engineers need another criterion because
these global measurement functions detect large regions without determining if the de-
formation of a set of finite elements is the reason or the result of instability. A more
adequate measurement is provided by a local criterion.

2.2 Local measurement function

At the Institute for Algorithms and Scientific Computing (SCAI) of the German Na-
tional Research Center for Information Technology (GMD) a local deformation crite-
rion [2] has been developed within the Autobench project, a research project driven
by some of the leading automotive industry companies and financed by the German
Bundesministerium für Bildung und Forschung [1]. This criterion considers the dis-
placement of a node at time step � with regard to its neighborhood nodes in comparison
to the initial state, and thus the deformation of its adjacent finite elements (Fig. 3).

i=6

i=5

i=4

i=1

i=7

i=3

iNum(p) = 8

shellbeam

p

i=2

i=8 d(p,i,t,r)

Fig. 3. ;��.����<=���	��
>� is computed as the Euclidean distance (see Eq. (1)) of node � to its
neighbor node < in state � of the
 ’th simulation run.

The mesh deformation DNM �.�����	��

� around node � having iNum ����� neighbors is
calculated as the averaged sum of all distance differences ;��.����<=���	��

� to their initial
distances ;��.����<=������

� which are the same for each simulation run
 (Fig. 3):

;��.����<=���	��

���
??????
@ACB�DE DF D

GH
�
@ACB�IE IF I

GH ??????KJML 9 � �ON time step index
�N simulation run index
(1)

DNM �������	��

���QPR ST D : 4
UU ;��.����<=���	��

�V�W;��.����<=������

� UU � R N.� iNum �.��� (2)

The deformation DNM �.�����	��
>� is calculated for each node � in each time step � and over
all simulation runs
 . This scalar quantity is only influenced by the local neighborhood
which contrasts to the global measurement functions. Now, the expected value of the
deformation

DNMAV �.�������X�#P�
6T9): 4 DNM �.�����	��

� � �YN # simulation runs (3)

over all � simulation runs is determined and its standard deviation is evaluated as a
measurement for the local instability of the simulation around node � .

2.3 Efficient calculation

Since large data sets consisting of about half a million finite elements and nodes have
to be handled, it is impossible to store all the data in main memory. For an efficient
calculation of DNMAV �.������� we generate a table which represents the neighborhood of
each node. This table holds entries of index pairs. One points to the neighbor node and
the other one to the corresponding field in the node distance array. The table structure
makes sure that the distance of each node pair is computed just once and it provides
quick access to the pre-calculated node distances ;��.����<=���	��

� of the current and the
initial time step.

7

8

6

4
2

5

9

10

3

1 Node Node/Index pair list
1 (2,0) (4,1) (5,2) (7,3)
2 (1,0) (3,4) (7,5) (9,6) (10,7)
3 (2,4) (9,8) (10,9)
4 (1,1) (5,10) (7,11)
5 (1,2) (4,10) (6,12) (7,13) (8,14)
6 (5,12) (7,15) (8,16)
7 (1,3) (2,5) (4,11) (5,13) (6,15) (8,17) (9,18)
8 (5,14) (6,16) (7,17) (9,19)
9 (2,6) (3,8) (7,18) (8,19) (10,20)

10 (2,7) (3,9) (9,20)

Fig. 4. This example outlines the structure of the node/index pair table which contains
a list (row) for each node. The list stores pairs of an adjacent node and an index to an
array where the corresponding node distance is stored.

First of all the node/index pair table (Fig. 4) is initialized evaluating the mesh con-
nectivity which is constant over all states. Then the node distances for the initial state
are computed and stored in an array which is used for all simulation runs. Starting with
the first simulation run the node distances of the current state are calculated and the
difference to the corresponding pre-calculated distance of the initial state is stored in
a second array. Each time the table is traversed from bottom to top and the lists in the
rows are traversed from tail to head as long as the node index of the entry is larger than
the node index of the current row (bold entries in Fig. 4). Now, DNM �.�����	��
>� is the sum
of each referenced value in row � divided by the number of entries in the row. A third
array holds the accumulated sum of DNM �.�����	��
>� in order to get the expected value
DNMAV �.������� at the end of all runs.

After all states of one simulation run have been processed the DNM �������	��

� is tem-
porarily written to disk. After we have generated this file for each simulation run and
divided the values in the third array by the number of simulation runs, the values are
read back in and the standard deviation of the local deformation can be computed and
stored to disk as a measure for instability. Later on the instability can be mapped onto
the geometry of one simulation run using the technique described in the next section.

Furthermore, the span between the minimum and maximum deformation is of in-
terest. Hence, for each state � and each node � the extreme values of DNM �.�����	��

� are
stored together with the index
 so that the most different simulation runs can be deter-
mined later on.

3 Visualization using index texture maps

The advantage of mapping scalar data as colors directly onto geometry is that the data
is visualized where it appears and thus the causal relationship between geometry and
mapped data is more comprehensible. In the field of CAE flat shading can be used for
element-based data visualization. As the data is node-based in the majority of cases
Gouraud shading will not lead to meaningful images because the colors are assigned to
vertices and interpolated in RGB color space inside the polygon during rasterization.
Instead the visualization could be enhanced by adding geometry and assigning appro-
priate colors to the subdividing vertices, but that will increase the load of the graphics
pipeline.

The best way to visualize node-based data is the utilization of a one-dimensional
texture which is defined as color band. Each vertex is combined with a texture coor-
dinate. During rasterization the texture coordinate is evaluated at every pixel and then
the color is looked up in the texture. Hence, high deviation of mapped values inside the
same polygon will result in color-bands without the need of additional geometry [12].

In complex models with many occluding parts in the scene it is difficult to spot
regions with critical values. This problem can be solved by using a four channel texture
map. The additional alpha channel provides the opportunity to restrict the data mapping
or the geometry rendering depending on the texture environment setting in the context
of OpenGL [11]. If GL DECAL is used, the resulting color is composed as Z\[�] J �� P �_^ J�`+a ��Zcb 9=d=e3f ^ J�`ga Z J�`+a while the transparency is not modified by the texture
(^V[�] J �h^Vb 9)d=e). Provided we set the ^ component of each texel either to �ji � or P i � , the
data visualization is only visible for those values, where the corresponding texel has an^ component of P i � . Otherwise the geometry is rendered in the original color.

If we switch the texture environment to GL REPLACE and enable the alpha test
the geometry rendering is controlled by the mapped values. In [10] boolean textures
were already used to clip geometry during the rasterization stage. We use this clipping
functionality of the texture subsystem in correlation with the values simulated at the
geometry. While the texture defines the outgoing color, the relation of the texel’s ^
component to the alpha test reference value decides, if the fragment is rendered or
not. Thus, this technique can be used to restrict the geometry rendering to interesting
data value ranges as already associated with, for example, the visualization of potential
flanges [4]. The alpha test has to be enabled to avoid z-buffer pollution; otherwise the
invisible geometry could hide other geometry which lies behind the transparent parts
and therefore will fail the z-buffer test.

For visual data exploration and analysis the interactive modification of the map-
ping has turned out as very useful. It allows the engineers to interactively restrict the
color mapping or the geometry rendering to the regions of interesting values. In order
to provide high interactivity the texture map does not contain RGB ^ quadruples but
indices. These indices are used to reference the color and transparency of the texel in a
hardware-supported texture color lookup table. The contents of this table represents a
transfer function which can be modified in a color editor dialog.

For the investigation of instability this technique allows an interactive search for
regions where different crash behavior originates. First the standard deviation of the
element deformation as described in section 2.3 is loaded from disk and mapped to the
indices of the texture color lookup table. By switching to the GL REPLACE/alpha test
mode and adjusting the alpha transfer function the engineer can hide all geometry that
behaves constant or shows only a small standard deviation across all simulation runs.
Then the user can zoom into a remaining area, lock the camera to the geometry, and
analyze the reason for the instable performance in several simulation runs activating the
time animation. A semi-transparent rendering instead of hiding that geometry with low
deviation may help to orientate oneself in a complex model (Fig. 5).

The described visualization methods have been integrated into crashViewer, a pro-
totype for pre- and post-processing functionality [8, 9] in the area of crash-worthiness
simulations using the PAM-CRASH code [5]. The application has been developed in co-

Fig. 5. To detect regions of primary instability it turned out to be very useful if the transfer func-
tion of the alpha channel is set lower than the alpha test reference value for values of small
deviation. For a better orientation the user can interactively fade in the neighborhood as shown in
the right image. (see also color plate in Appendix)

operation with the BMW Group and is in productive use. It uses OpenGL Optimizer [7],
a tool set for large model visualization which is based on Cosmo3D [6], a scene graph
layer on top of OpenGL.

4 Comparing geometry using synchronized viewers

If the most differing simulation runs have been determined the engineer could get an
impression of the real deformation deviation only if it is possible to visually compare
both finite element meshes in detail. A CORBA connection layer which has originally
been implemented to support collaboration of two or more distant engineers evaluating
simulation results [3] can be used for this task to synchronize multiple viewers on the
same display.

transferMarker()

logOn()
logOff()

askForToken()

transferEvent()

SessionServer

Viewer 2

Viewer 3Viewer 1

Fig. 6. The session server acts as a controler of a multi-viewer session and controls the master
token. The viewer which currently holds the token sends event messages directly to other partic-
ipating viewers.

Therefore a small control application (SessionServer, Fig. 6) is started which links
the participating viewer instances together and assigns the master token to them. After
the session server has been started, it stores a CORBA reference to disk. Using this
reference a crashViewer instance can register itself to the session. The registration is
propagated to the other viewers by the session server. Any event message will be trans-
mitted from the master viewer (which is the one that currently holds the token) to the
slave viewers directly without involvement of the session server. Each slave viewer can
claim for the token by sending a message to the session server. After the current master
has released the token, it will be transfered to the next claiming slave.

Fig. 7. Our prototype crashViewer is started four times and shows different simulation
results of the same input deck. The camera movement is synchronized using a CORBA
connection. The 3D arrow marks the same global coordinate while the circle tags the
same finite element mesh node. The mapped standard deviation in the upper left window
points out the different deformation behavior.

The camera position is sent by the master as a transformation matrix. Furthermore,
markers can be inserted into the scene to define reference points. Fig. 7 shows four

different simulation results. The upper left viewer visualizes the standard deviation of
all results. The 3D arrow marks the same global coordinate in each viewer and points out
the geometric difference between the simulation runs. The upper right window shows a
completely different deformation around the circled node which marks the same mesh
node in each window.

Of course this functionality can also be used to compare the crash performance
of variants when the reasons for instability have been removed. This would enhance
the car development process significantly because the differences between constructive
variants and their effects to the whole model regarding crash dynamics would directly
be visible.

5 Results

The calculation of a measure for the instability of crash-worthiness simulations is con-
strued to be time and memory efficient. The test data set that can be shown here con-
tains about 60.000 shell elements and nearly 55.000 nodes. Each of the 15 result files
store 81 simulated time steps of the same source model. On a SGI Octane with one
R12k/300MHz CPU the standard deviation of the local deformation as described in sec-
tion 2.2 is computed for all result files in 4.5 minutes. The process needs about 45MB
main memory. The memory consumption depends on the number of nodes and the num-
ber of states but it is independant of the number of simulation runs. Simulation results
with 500.000 nodes over 60 time steps should require less than 500MB. For larger mod-
els or result files with more time steps it is possible to make the memory consumption
also independant of the number of states which would lower the performance.

With the described methods integrated our prototype crashViewer allows for the
first time the comparative visualization of instability in crash-worthiness simulations.
The interactive modification of transfer functions used by the index texture map pro-
vides value-based geometry clipping. The engineer is visually guided to regions in the
finite element model where different crash behavior originates. The detailed investiga-
tion of such areas is supported by several functions like the camera locking mechanism.
(See Appendix for additional color plate.)

6 Conclusion

We introduced a method to determine and visualize the instability across multiple crash-
worthiness simulations of the same source model. The integration of the presented tech-
niques into our prototype crashViewer, allows the engineers of the crash simulation
department to explore the origins of instability. Finally, the use of multiple synchro-
nized viewers displaying different simulation results makes a direct comparison pos-
sible. Only the combination of advanced rendering techniques and exploiting graphics
hardware allows an innovative visualization application which is in productive use at
BMW.

7 Acknowledgements

We thank the Institute for Algorithms and Scientific Computing (SCAI) of the German
National Research Center for Information Technology and the crash department of the
BMW Group for providing the simulation results. This work was partially funded by the
Bundesministerium für Bildung und Forschung in the context of the Autobench project.

References

1. Autobench – An Integrated Construction Environment for Virtual Prototypes in Automotive
Industry. http://www.autobench.de, 1998–2001.

2. Jürgen Bendisch and Hartmut von Trotha. Stabilitätsuntersuchungen mit Mitteln der Statis-
tik. Internal report of GMD, Autobench project, April 2000.

3. Klaus Engel, Ove Sommer, and Thomas Ertl. A Framework for Interactive Hardware Accel-
erated Remote 3D-Visualization. In Proc. of EG/IEEE TCVG Symposium on Visualization
VisSym 2000, pages 167–177,291. Springer Wien/New York, May 2000.

4. Norbert Frisch, Dirc Rose, Ove Sommer, and Thomas Ertl. Pre-processing of Car Geometry
Data for Crash Simulation and Visualization. In Vaclav Skala, editor, WSCG 2001 - The
Ninth International Conference in Central Europe on Computer Graphics and Visualization,
pages 25–32, February 2001.

5. E. Haug, A. Dagba, J. Clinckemaillie, F. Aberlenc, A. Pickett, R. Hoffman, and D. Ulrich. In-
dustrial Crash Simulations using the PAM-CRASH code. In Supercomputing in Engineering
Structures, pages 171–196. Computational Mechanics Publications, 1989.

6. Silicon Graphics Inc. Cosmo3D k,l Programmer’s Guide. Silicon Graphics Inc., IRIS Insight
Library, 1998. http://techpubs.sgi.com/.

7. Silicon Graphics Inc. OpenGL Optimizer k,l Programmer’s Guide: An Open API
for Large-Model Visualization. Silicon Graphics Inc., IRIS Insight Library, 1998.
http://techpubs.sgi.com/.

8. Sven Kuschfeldt, Thomas Ertl, and Michael Holzner. Efficient Visualization of Physical and
Structural Properties in Crash-Worthiness Simulations. In Yagel and Hagen, editors, Proc.
IEEE Visualization ’97, pages 487–490,583. IEEE Computer Society Press, October 1997.
ISBN 1-58113-011-2.

9. Sven Kuschfeldt, Ove Sommer, and Thomas Ertl. Efficient Visualization of Crash-
Worthiness Simulations. IEEE Computer Graphics and Applications, 18(4):60–65,
July/August 1998.

10. William E. Lorensen. Geometric Clipping Using Boolean Textures. In Proceedings Visual-
ization ’93, pages 268–274. IEEE, 1993.

11. Ove Sommer and Thomas Ertl. Geometry and Rendering Optimizations for the Interactive
Visualization of Crash-Worthiness Simultations. In Proceedings of IT&T/SPIE Electronic
Imaging, Visual Data Exploration and Analysis VII, volume 3960, pages 124–134, January
2000.

12. Michael Teschner and Christian Henn. Texture Mapping in Technical, Scientific, and En-
gineering Visualization. http://www.sgi.com/chembio/resources/texture/index.html, 1995.
Technical Report, Silicon Graphics Inc.

