

Kari Pulli Nokia Research Center

Jani Vaarala Nokia

Ville Miettinen
Robert Simpson AMD

Tomi Aarnio Nokia Research Center

Mark Callow HI Corporation

Mobile 3D
Graphics
Mobile 3D
Graphics

Today’s program: MorningToday’s program: Morning

• Start at 9:00

• Intro & OpenGL ES
overview
40 min, Kari Pulli

• Using OpenGL ES 1.x
45 min, Jani Vaarala

• OpenGL ES on PyS60
5 min, Kari Pulli

• Break 10:30 – 11:00
• OpenGL ES

performance
considerations
40 min, Ville Miettinen

• OpenGL ES 2.0
50 min, Robert Simpson

• Break 12:30

Today’s program: AfternoonToday’s program: Afternoon

• Start at 14:00

• M3G Intro
5 min, Kari Pulli

• M3G API overview
60 min, Tomi Aarnio

• M3G in the Real World 1
25 min, Mark Callow

• Break 15:30 – 16:00
• M3G in the Real World 2

55 min, Mark Callow

• M3G 2.0
25 min, Tomi Aarnio

• Closing & Q&A
10 min, Kari Pulli

• Finish at 17:30

Evolution of the ComputerEvolution of the Computer
Mainframe computer Mini computer Personal computer

Laptop computer Multimedia Computer

Pervasive Mobile ComputingPervasive Mobile Computing

• Mobile phones are the largest and fastest growing market - ever
– The largest ever market opportunity for the graphics industry

• Handsets are becoming personal computing platform
– Not “just” phones: A real computer in your hand

• Sophisticated media processing is a key
– Just like it has been on the PC

– Games are one of the first handheld media applications

Sources: Nokia 2005 & 2006, GSM Association 2006

3 billion mobile
subscribers by 2007.

Over 1 billion wireless
broadband subscribers
by 2009.

Up to 90% of the 6
billion will have mobile
coverage by 2010.

Current expectation:

Towards the 3 Billion Milestone
Mobile phone
subscriptions
globally,
millions

Source: Nokia

3 billion
in 2007

3 billion
in 2007

0
-92 -93 -94 -95 -96 -97 -98 -99 -00 -02-01 -03 -04 -05 -07e

200

400

600

800

1 000

1 200

1 400

1 600

1 800
2 000

2 200
2 400

2 600

2 800

3 000

Current global
penetration 33

%

Challenge? Power!Challenge? Power!

• Power is the ultimate bottleneck
– Usually not plugged to wall, just batteries

• Batteries don’t follow Moore’s law
– Only 5-10% per year

Challenge? Power!Challenge? Power!

• Gene’s law
– "power use of integrated circuits decreases

exponentially" over time => batteries will last longer
• Since 1994, the power required to run an IC has declined 10x

every 2 years

– But the performance of 2 years ago is not enough
• Pump up the speed

• Use up the power savings

Challenge? Thermal mgt!Challenge? Thermal mgt!

• But ridiculously good batteries still won’t be
the miracle cure
– The devices are small

– Generated power must get out

– No room for fans

Challenge? Thermal mgt!Challenge? Thermal mgt!

• Thermal management must
be considered early in the
design
– Hot spot would fry electronics

• Or at least inconvenience the user…

– Conduct the heat through the
walls, and finally release to the
ambient

Changed? Displays!Changed? Displays!

• Resolution
– S60: 320 x 240

– Communicators: 640 x 200

– Internet tablets like N800: 800 x 480

• Color depth
– Not many new B/W phones

– 12 / 16 / 18 / … bit RGB

Future? Displays!Future? Displays!

• Physical size remains limited
– TV-out connection

– Near-eye displays?

– Projectors?

– Roll-up flexible displays?
allaboutsymbian.com

Changed? Computation!Changed? Computation!

• Moore’s law in action
– 3410: ARM 7 @ 26MHz

• Not much caching, narrow bus

– 6600: ARM 9 @ 104MHz
• Decent caching, better bus

– 6630: ARM 9 @ 220MHz
• Faster memories

– N93: ARM 11 @ 330MHz
• HW floating-point unit
• 3D HW

State-of-the-art in 2001:
GSM world
State-of-the-art in 2001:
GSM world

• The world’s most played
electronic game?
– According to The Guardian

(May 2001)

• Communicator demo 2001
– Remake of a 1994 Amiga demo

– <10 year from PC to mobile

State-of-the-art in 2001: JapanState-of-the-art in 2001: Japan

• High-level API with skinning, flat shading /
texturing, orthographic view

J-SH07
by SHARP

GENKI 3D Characters
(C) 2001 GENKI

ULALA
(c)SEGA/UGA.2001

J-SH51
by SHARP

Space Channel 5

©SEGA/UGA,2001 ©SEGA/UGA,2002

Snowboard Rider
©WOW ENTERTAINMENT INC.,
2000-2002all rights reserved.

State-of-the-art in 2002:
GSM world
State-of-the-art in 2002:
GSM world
• 3410 shipped in May 2002

– A SW engine: a subset of OpenGL
including full perspective (even textures)

– 3D screensavers (artist created content)

– FlyText screensaver (end-user content)

– a 3D game

State-of-the-art in 2002: JapanState-of-the-art in 2002: Japan

• Gouraud shading,
semi-transparency,
environment maps

3d menu

C3003P
by Panasonic

KDDI Au 3D Launcher

©SAN-X+GREEN CAMEL

I-3D PolyGame
Boxing

@ Hi Vanguard・REZO, BNW

Ulala Channel J

©SEGA/UGA,2001 ©SEGA/UGA,2002

Fathammer’s
Geopod

on XForge

State-of-the-art in 2003:
GSM world
State-of-the-art in 2003:
GSM world
• N-Gage ships

• Lots of proprietary 3D engines
on various Series 60 phones

State-of-the-art in 2003: JapanState-of-the-art in 2003: Japan

• Perspective view,
low-level API

Aqua ModeAqua ModeAqua ModeRidge Racer

@ Namco

Mission Commander
Multi player Fps Game

© IT Telecom

Mobile 3D in 2004Mobile 3D in 2004

• 6630 shipped late 2004
– First device to have both

OpenGL ES 1.0 (for C++) and
M3G (a.k.a JSR-184, for Java) APIs

• Sharp V602SH in May 2004
– OpenGL ES 1.0 capable HW

but API not exposed

– Java / MascotCapsule API

2005 and beyond: HW2005 and beyond: HW

Mobile graphics evolution snapshotMobile graphics evolution snapshot

2D Software 3D Accelerated 3D

Spider-Man 2 3D: NY Subway
Sony Pictures

Spider-Man 2
Activision

Spider-Man 2: The Hero Returns
Sony Pictures

Mobile 3D APIsMobile 3D APIs

OpenGL ESOpenGL ES

Java ApplicationsJava Applications

Java UI APIJava UI APIM3G (JSR-184)M3G (JSR-184)

Operating System (Symbian, Linux, …)Operating System (Symbian, Linux, …)

Java Virtual MachineJava Virtual Machine

Native C/C++
Applications

Native C/C++
Applications

Graphics HardwareGraphics Hardware

Overview: OpenGL ESOverview: OpenGL ES

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

• The most widely adopted graphics standard
– most OS’s, thousands of applications

• Map the graphics process into a pipeline
– matches HW well

• A foundation for higher level APIs
– Open Inventor; VRML / X3D; Java3D; game engines

What is OpenGL?What is OpenGL?

modeling

projecting

clipping

lighting & shading

texturing

hidden surface

blending

pixels to screen

What is OpenGL ES?What is OpenGL ES?

• OpenGL is just too big for Embedded
Systems with limited resources
– memory footprint, floating point HW

• Create a new, compact API
– mostly a subset of OpenGL

– that can still do almost all OpenGL can

OpenGL ES 1.0 design targetsOpenGL ES 1.0 design targets

• Preserve OpenGL structure
• Eliminate un-needed functionality

– redundant / expensive / unused
• Keep it compact and efficient

– <= 50KB footprint possible, without HW FPU
• Enable innovation

– allow extensions, harmonize them
• Align with other mobile 3D APIs (M3G / JSR-184)

AdoptionAdoption

• Symbian OS, S60

• Brew

• PS3 / Cell architecture

Sony’s arguments: Why ES over OpenGL
• OpenGL drivers contain many features not needed

by game developers
• ES designed primarily for interactive 3D app devs
• Smaller memory footprint

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

OpenGL ES PipeOpenGL ES Pipe

• Here’s the
OpenGL ES
pipeline stages
– vertices

– primitives

– fragments

Vertex pipelineVertex pipeline

Primitive processingPrimitive processing

Fragment pipelineFragment pipeline

Functionality: in / out? (1/7)Functionality: in / out? (1/7)

• Convenience functionality is OUT
– GLU

(utility library)

– evaluators
(for splines)

– feedback mode
(tell what would draw without drawing)

– selection mode
(for picking, easily emulated)

– display lists
(collecting and preprocessing commands)

gluOrtho2D(0,1,0,1)
vs.
glOrtho(0,1,0,1,-1,1)

glNewList(1, GL_COMPILE)
myFuncThatCallsOpenGL()
glEndList()
…
glCallList(1)

Functionality: in / out? (2/7)Functionality: in / out? (2/7)

• Remove old complex functionality
– glBegin – glEnd (OUT); vertex arrays (IN)

– new: coordinates can be given as bytes

glBegin(GL_POLYGON);
glColor3f (1, 0, 0);
glVertex3f(-.5, .5, .5);
glVertex3f(.5, .5, .5);
glColor3f (0, 1, 0);
glVertex3f(.5,-.5, .5);
glVertex3f(-.5,-.5, .5);
glEnd();

static const GLbyte verts[4 * 3] =
{ -1, 1, 1, 1, 1, 1,

1, -1, 1, -1, -1, 1 };
static const GLubyte colors[4 * 3] =
{ 255, 0, 0, 255, 0, 0,

0,255, 0, 0,255, 0 };
glVertexPointer(3,GL_BYTE,0, verts);
glColorPointerf(3,GL_UNSIGNED_BYTE,

0, colors);
glDrawArrays(GL_TRIANGLE_STRIP,

0, 4);

Functionality: in / out? (3/7)Functionality: in / out? (3/7)

• Simplify rendering modes
– double buffering, RGBA, no front buffer access

• Emulating back-end missing functionality is
expensive or impossible
– full fragment processing is IN

alpha / depth / scissor / stencil tests,
multisampling,
dithering, blending, logic ops)

Functionality: in / out? (4/7)Functionality: in / out? (4/7)

• Raster processing
– ReadPixels IN, DrawPixels and Bitmap OUT

• Rasterization
– OUT: PolygonMode, PolygonSmooth, Stipple

Functionality: in / out? (5/7)Functionality: in / out? (5/7)

• 2D texture maps IN
– 1D, 3D, cube maps OUT

– borders, proxies, priorities, LOD clamps OUT

– multitexturing, texture compression IN (optional)

– texture filtering (incl. mipmaps) IN

– new: paletted textures IN

Functionality: in / out? (6/7)Functionality: in / out? (6/7)

• Almost full OpenGL light model IN
– back materials, local viewer,

separate specular OUT

• Primitives
– IN: points, lines, triangles

– OUT: quads & polygons

Functionality: in / out? (7/7)Functionality: in / out? (7/7)

• Vertex processing
– IN: transformations

– OUT: user clip planes, texcoord generation

• Support only static queries
– OUT: dynamic queries, attribute stacks

• application can usually keep track of its own state

Floats vs. fixed-pointFloats vs. fixed-point

• Accommodate both
– integers / fixed-point numbers for efficiency
– floats for ease-of-use and being future-proof

• Details
– 16.16 fixed-point: add a decimal point inside an int

– get rid of doubles

glRotatef(0.5f, 0.f , 1.f, 0.f);
vs.

glRotatex(1 << 15, 0 , 1 << 16, 0);

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

OpenGL ES 1.1: coreOpenGL ES 1.1: core

• Buffer Objects
allow caching vertex data

• Better Textures
>= 2 tex units, combine (+,-,interp), dot3 bumps, auto mipmap gen.

• User Clip Planes
portal culling (>= 1)

• Point Sprites
particles as points not quads, attenuate size with distance

• State Queries
enables state save / restore for middleware

Bump mapsBump maps

• Double win
– increase realism

– reduce internal bandwidth -> increase performance

OpenGL ES 1.1: optionalOpenGL ES 1.1: optional

• Draw Texture
fast drawing of pixel rectangles
using texturing units
(data can be cached),
constant Z, scaling

• Matrix Palette
vertex skinning
(>= 3 matrices / vertex, palette >= 9)

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0

• OpenGL ES 1.1

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

EGL glues OpenGL ES to OSEGL glues OpenGL ES to OS

• EGL is the interface between OpenGL ES
and the native platform window system
– similar to GLX on X-windows, WGL on Windows

– facilitates portability across OS’s (Symbian, Linux, …)

• Division of labor
– EGL gets the resources (windows, etc.) and

displays the images created by OpenGL ES

– OpenGL ES uses resources for 3D graphics

EGL surfacesEGL surfaces

• Various drawing surfaces, rendering targets
– windows – on-screen rendering

(“graphics” memory)

– pbuffers – off-screen rendering
(user memory)

– pixmaps – off-screen rendering
(OS native images)

EGL contextEGL context

• A rendering context is an abstract
OpenGL ES state machine
– stores the state of the graphics engine

– can be (re)bound to any matching surface

– different contexts can share data
• texture objects

• vertex buffer objects

• even across APIs (OpenGL ES, OpenVG, later others too)

Main EGL 1.0 functionsMain EGL 1.0 functions

• Getting started
– eglInitialize() / eglTerminate(), eglGetDisplay(),

eglGetConfigs() / eglChooseConfig(),
eglCreateXSurface() (X = Window | Pbuffer | Pixmap),
eglCreateContext()

• eglMakeCurrent(display, drawsurf, readsurf,
context)

– binds context to current thread, surfaces, display

Main EGL 1.0 functionsMain EGL 1.0 functions

• eglSwapBuffer(display, surface)
– posts the color buffer to a window

• eglWaitGL(), eglWaitNative(engine)
– provides synchronization between OpenGL ES

and native (2D) graphics libraries

• eglCopyBuffer(display, surface, target)
– copy color buffer to a native color pixmap

EGL 1.1 enhancementsEGL 1.1 enhancements

• Swap interval control
– specify # of video frames between buffer swaps

– default 1; 0 = unlocked swaps, >1 save power

• Power management events
– PowerMgmnt event => all Context lost

– Display & Surf remain, Surf contents unspecified

• Render-to-texture [optional]
– flexible use of texture memory

OutlineOutline

• Background: OpenGL & OpenGL ES

• OpenGL ES 1.0 functionality

• OpenGL ES beyond 1.0

• EGL: the glue between OS and OpenGL ES

• How can I get it and learn more?

SW ImplementationsSW Implementations

• Vincent
– Open-source OpenGL ES library

– http://www.vincent3d.com/
http://sourceforge.net/projects/ogl-es

• Reference implementation
– Wraps on top of OpenGL

– http://www.khronos.org/opengles/documentation/gles-
1.0c.tgz

HW implementationsHW implementations

• There are many designs

• The following slides gives some idea
– rough rules of thumb

• from a couple to dozens of MTri / sec (peak)

• 1 pixel / clock

• clock speeds 50MHz – 200+MHz

• power consumption should be ~ 10’s of mW

• Graphics processors

– G12: OpenVG 1.0

– G34: OpenGL ES 1.1
vertex shader

– G40: OpenGL ES 2.0, GLSL
OpenVG 1.0
vertex and pixel shader

– Flipquad antialiasing

– Max clock 200MHz

• Partners / Customers

– NEC Electronics

– Hybrid Graphics (drivers)

Bitboys

ATIATI

• Imageon 2300
– OpenGL ES 1.0
– Vertex and raster HW

• 32-bit internal pipe

• 16-bit color and Z buffers

• Integrated QVGA buffer

• Imaging / Video codecs

• Imageon 3D (for Qualcomm)
– OpenGL ES 1.1
– 3M Tri / s,100M Pix / s @ 100 MHz

• 2nd gen. Imageon 3D adds
– OpenGL ES 1.1 extension pack
– Vertex shader
– HyperZ
– Audio codecs, 3D audio

• Partners, customers
– Qualcomm
– LG SV360, KV3600
– Zodiac

60

AMD Graphics IP

3D Processors

AMD Z430 & Z460

Unified Shader architecture derived from the Xbox 360 Xenos core

OpenGL ES 2.0

OpenGL ES 1.1 backwards compatible

OpenVG 1.x

Vector Graphics Processors

AMD Z160 & Z180

Native, high-performance OpenVG acceleration

OpenVG 1.x

16 x antialiasing

All processors are designed to be combined to achieve
native HW acceleration of both OpenGL ES 2.0 and
OpenVG 1.x for unrivalled performance and image quality.

Falanx

Mali 110
» OpenGL ES 1.1 + extensions
» 4x / 16x full screen anti-aliasing
» Video codecs (e.g., MPEG-4)
» 170-400k logic gates + SRAM
» 2.8M Tri / s, 100M Pix / s with 4xAA

Mali 200
» OpenGL ES 2.0, OpenVG, D3D

Mob.
» 5M Tri / s, 100M Pix / s, 11 instr. /

cycle
Partners / Customer
» Zoran

62626262

ARM® Mali™ Architecture
Compared to traditional immediate mode
renderer

80% lower per pixel bandwidth usage, even
with 4X FSAA enabled
Efficient memory access patterns and data
locality: enables performance even in high
latency systems

Compared to traditional tile-based renderer
Significantly lower per-vertex bandwidth
Impact of scene complexity increases is
substantially reduced

Other architectural advantages
Per frame autonomous rendering
No renderer state change performance
penalty
On-chip z / stencil / color buffers

minimizes working memory footprint
Acceleration beyond 3D graphics (OpenVG
etc.)

YESNAYESOpenVG 1.x

100NA275Fill rate Mpix / s

1M9M9MTriangles / s

200MHz275MHz275MHzMax CLK

YES

YES

4X / 16X

Mali200

4X / 16X4X / 16XAnti-Aliasing

YES

YES

MaliGP2

NO

YES

Mali55

OpenGL®ES
1.x

OpenGL®ES
2.x

© 2008 Digital Media Professionals Inc. All rights reserved.

Visualize the futureDMP Inc.

PICA graphics core
3D Features

OpenGLES 1.1
DMP’s proprietary “Maestro” shader extensions
• Very high quality graphics with easier

programming interface
•• PerPer--fragment lighting, fragment lighting,
•• ShadowShadow--mapping, mapping,
•• Procedural texture, Procedural texture,
•• Polygon subdivision (Geo Polygon subdivision (Geo shadershader), and), and
•• Gaseous object rendering.Gaseous object rendering.

Hardware Features
» Performance: 40Mtri/s, 40Mtri/s,

400Mpixel/s@100MHz400Mpixel/s@100MHz
» Power consumption: 0.5-1mW/MHz

» Max. clock freq. 400MHz (65nm)

www.dmprof.com

Fujitsu Microelectronics Europe – http://emea.fujitsu.com/microelectronics

Fujitsu Graphics Controllers

Optimized for automotive environment
Extended temp range (-40...+85degC or -40...+105degC)
No external active or passive cooling required
Long term availability (devices from 1998 still in full mass production!)
Fulfills the latest qualification requirements from automotive industry
Automotive network interfaces included on-chip
Dedicated competence center in Munich for automotive graphics

Used in many major car brands for :
Onboard navigation systems (2D and 3D)
Cluster Instrumentation (incl. virtual dashboards)
Rear seat entertainment systems
Head-up displays
Night vision systems

Also used today in :
Flight instrumentation
Marine displays
Medical, etc...

~10MT/s ; 500Mpix/s~5MT/s ; 200Mpix/sPerformance

2 display outputs
with dual view option

2 display outputs# of display outputs

4 video inputs (up to HD)2 video inputs# of video inputs

OpenGL ES 2.0 ; OpenVGOpenGL ES 1.1Graphic processing

~6 GB/s~2 GB/sBandwidth

Next generation (tba)This generation (in MP)Feature

Imagination Technologies
POWERVR MBX & SGX 2D/3D Acceleration
IP5th Generation Tile Based Deferred Rendering

Market Proven Advanced Tiling Algorithms
Order-independent Hidden Surface Removal
Lowest silicon area, bandwidth and power
Excellent system latency tolerance

POWERVR SGX: OpenGL ES 2.0 in Silicon Now
Scalable from 1 to 8 pipelines and beyond
Programmable multi-threaded multimedia GPU
Optimal load balancing scheduling hardware
Vertex, Pixel, Geometry shaders + image processing

Partners/Customers
TI, Intel, Renesas, Samsung, NXP, NEC, Freescale,
Sunplus, Centrality & others unannounced

www.powervrinsider.com
Market-leading Ecosystem with more than 1650 members

POWERVR MBX: The de-facto standard for
mobile graphics acceleration, with >50 PowerVR

3D-enabled phones shipping worldwide

1M … 15.5M1.7M … 3.7MTriangles/Sec
50M … 500M135M … 300MPixels/Sec

1.0.1 and 1.11.0OpenVG
Mobile, 9L and 10.1MobileDirect3D
2.0, ES1.1 and ES2.0ES1.1OpenGL

PowerVR SGX
Family

PowerVR MBX
Family

Performance quoted at 100MHz for MBX, MBX Lite and for SGX510 to SGX545.
Peak SoC achievable performance not quoted, e.g. <50% Shader load for Tri/Sec.
Performance scales with clock speeds up to 200MHz and beyond.
Planned future cores will offer higher performance levels.

MitsubishiMitsubishi
• Z3D family

– Z3D and Z3D2 out in 2002, 2003

• Pre-OpenGL ES 1.0

• Embedded SRAM architecture

– Z3D3 in 2004

• OpenGL ES 1.0, raster and vertex HW

• Cache architecture

• @ 100 MHz: 1.5M vtx / s, 50-60 mW, ~250 kGates

– Z3D4 in 2005

• OpenGL ES 1.1

• Partners / Customers

– Several Japanese manufacturers

Z3D
First mobile 3D HW?

New Wave Digital Paradigm

3D Digital Innovation

GiPump™ NX1005
; Mobile 3D graphics acc. with camera control functions
- OpenGL ES 1.1 / GIGA / JSR184
- 5M poly/s, 80M pix/s @ 80MHz, JPEG codec (3M pixel), ~QVGA display
- Cellular phone, smart phone, etc.

GiPump™ NX2001
; 3D Graphics enhanced multimedia processor
- OpenGL ES 2.0 / 1.1 Ext. / JSR184 / D3DM
- 10M poly/s, 200M pix/s @ 200MHz, ~SVGA display
- PND, PMP, game device, mobile device, etc.

GiPump™ NX1009
; Economical mobile 3D graphics accelerator
- OpenGL ES 1.1 + Ext. / GIGA / JSR184
- 12.5M poly/s, 200M pix/s @ 100MHz, ~SVGA display, boost mode
- Cellular phone, Smart phone, etc.

GiPump™ NX1008
; Mobile 3D graphics acc. with stereoscopic display
- OpenGL ES 1.1 / GIGA / JSR184
- 5M poly/s, 80M pix/s @ 80MHz, ~QVGA display, stereoscopic display
- Cellular phone, smart phone, etc.

GiPump™ NX1007
; High end 3D graphics acc. for mobile
- OpenGL ES 1.1 + Ext. / GIGA / JSR184
- 12.5M poly/s, 200M pix/s @ 100MHz, ~SVGA display, PIP supports
- PND, PMP, game device, mobile device, etc.

Nexus Mobile PlatformTM

Gaming Device Platform
(OS: WinCE, Linux, RTOS,
etc.)
To: Game Device Maker

GiPump™ Series Service Solutions

GiPump™ Partners : Samsung, SKT, Other Device Manufactures

GiPump™ SDK
NXsdk with Emulator
NXsdk Shader+
NXm3g Engine
NX3D Engine & Tools

NX1008TKTM

3D Reference B/D
GiPump™ Integration Platform
To: Device Developer

* GiPump™ : Pronounced, “G”, “I”, “Pump”. It means “Graphics / Image Pump”.
* GIGA (Giga Instruction Giga Acceleration) : SK Telecom’s mobile 3D graphics platform
* PND (Personal Navigation Device)

NexusChips

GoForce 4800 DawnGoForce 4800 Dawn
GoForce 5500 handheld GPU

3D geometry and rasterization HW
OpenGL ES 1.1, D3D Mobile, OpenVG 1.0
1.3M tri / s, 100M pix / s (@ 100 MHz)
Programmable pixel micro shaders
40 bit signed non-int (overbright) color pipeline
Dedicated 2D engine (bitblt, lines, alpha blend)
Supersampled anti-aliasing, up to 6 textures
<50mW avg. dynamic power cons. for graphics
10MPxl camera support, XGA LCD, MPEG-4 video, audio

Partners / Customers
Motorola, Sony Ericsson, Samsung,
LG, Kyocera, O2, HTC, Marvell, Freescale, …

NVidia

Sony PSPSony PSP
• Game processing unit

– Surface engine

• tessellation of Beziers and splines

• skinning (<= 8 matrices), morphing (<= 8 vtx)

• HW T&L

• 21 MTri / s (@ 100 MHz)

– Rendering engine

• basic OpenGL-style fixed pipeline

• 400M pix / s (@ 100 MHz)

– 2MB eDRAM

• Media processing engine
– 2MB eDRAM

– H.264 (AVC) video up to 720x480 @ 30fps

• GSHARK-TAKUMI Family
– GP

• OpenGL ES 1.0
• 0.5M tri/s @100MHz, 170Kgate

– GT
• OpenGL ES 1.1
• 1.4M tri/s @100MHz, < 30mW

– G2
• OpenGL ES 1.1
• 5M tri/s @100MHz

• Partners / Customers
– NEC Electronics

TAKUMI
• Concepts & Architecture

– Small Gate Counts
– Low Power Consumption
– Vertex Processor (T&L)
– Dedicated 2D Sprite Engine
– Target Application

• Mobile Phone and Digital AV
Equipments such as DTV, STB,
DSC, PMP, etc.

ToshibaToshiba
• TC35711XBG

– Programmable shader

– Plan to support OpenGL ES2.0

– Large embedded memory for

• Color and Z buffer

• Caches for vertex arrays, textures

• Display lists (command buffer)

– 50M vtx / sec, 400M pix / sec (@ 100 MHz)

• clocks up to 200MHz

– WVGA LCD controller

– 13mm x 13mm x 1.2mm 449Ball BGA

Vivante GPU for Handheld
• OpenGL ES 1.1 & 2.0 and D3D 9.0
• Unified vertex & pixel shader
• Anti-Aliasing
• AXI/AHB interface
• GC500

– 3 mm2 die area in 65nm (1.8mm x 1.2mm)
– 10 MPolygons/s and 100 MPixel/s at 200 MHz
– 50mW GPU core power

• Scalable solution to 50 MPolygons/s
and 1 GPixels/s (GC1000, GC4000)

•• Silicon proven solutionSilicon proven solution
• Designed into multiple 65nm SoCs

SDKsSDKs

• Nokia S60 SDK (Symbian OS)
– http://www.forum.nokia.com

• Imagination SDK
– http://www.pvrdev.com/Pub/MBX

• NVIDIA handheld SDK
– http://www.nvidia.com/object/hhsdk_home.html

• Brew SDK & documentation
– http://brew.qualcomm.com

• see http://people.csail.mit.edu/kapu/EG_08/

Mobile 3D Graphics
with OpenGL ES and M3G
Mobile 3D Graphics
with OpenGL ES and M3G
Kari Pulli, Tomi Aarnio, Ville Miettinen, Kimmo Roimela, Jani Vaarala

• http://www.graphicsformasses.com/

Questions?Questions?

Using OpenGL ESUsing OpenGL ES

Jani Vaarala

Nokia

Using OpenGL ESUsing OpenGL ES

- Simple OpenGL ES example

- EGL configuration selection

- Texture matrix example

- Fixed point programming

- Converting existing code

“Hello OpenGL ES”“Hello OpenGL ES”

Hello OpenGL ES, EGL initializationHello OpenGL ES, EGL initialization

/* ===
* "Hello OpenGL ES" OpenGL ES code.
*
* Eurographics 2008 tutorial.
*
* Copyright: Jani Vaarala
* ===
*/

#include <GLES/gl.h>
#include <GLES/egl.h>

EGLDisplay display;
EGLContext context;
EGLSurface surface;
EGLConfig config;

Hello OpenGL ES, EGL initializationHello OpenGL ES, EGL initialization

EGLint attrib_list[] =
{

EGL_BUFFER_SIZE, 16,
EGL_DEPTH_SIZE, 15,
EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
EGL_NONE

};

void init_egl(void)
{

EGLint numOfConfigs;

display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(display, NULL, NULL);
eglChooseConfig(display, attrib_list, &config, 1 , &numOfConfigs);
surface = eglCreateWindowSurface(display, config, WINDOW(), NULL);
context = eglCreateContext(display, config, EGL_NO_CONTEXT, NULL);
eglMakeCurrent(display, surface, surface, context);

}

Hello OpenGL ES, OpenGL ES partHello OpenGL ES, OpenGL ES part

#include <GLES/gl.h>

static const GLbyte vertices[3 * 3] =
{

-1, 1, 0,
1, -1, 0,
1, 1, 0

};

static const GLubyte colors[3 * 4] =
{

255, 0, 0, 255,
0, 255, 0, 255,
0, 0, 255, 255

};

v0 (-1,1)

v1 (1, -1)

v2 (1, 1)

Hello OpenGL ES, OpenGL ES partHello OpenGL ES, OpenGL ES part

void init()
{

glClearColor (0.f, 0.f, 0.1f, 1.f);
glMatrixMode (GL_PROJECTION);
glFrustumf (-1.f, 1.f, -1.f, 1.f, 3.f, 1000.f);
glMatrixMode (GL_MODELVIEW);
glShadeModel (GL_SMOOTH);
glDisable (GL_DEPTH_TEST);
glVertexPointer (3, GL_BYTE, 0, vertices);
glColorPointer (4, GL_UNSIGNED_BYTE, 0, colors);
glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_COLOR_ARRAY);
glViewport (0, 0, GET_WIDTH(), GET_HEIGHT());

INIT_RENDER_CALLBACK(drawcallback);
}

Hello OpenGL ES, OpenGL ES partHello OpenGL ES, OpenGL ES part

void drawcallback(void)
{

glClear (GL_COLOR_BUFFER_BIT);
glLoadIdentity ();
glTranslatef (0.f, 0.f, -5.f);
glDrawArrays (GL_TRIANGLES, 0, 3);

eglSwapBuffers(display, surface);
}

EGL config sortingEGL config sorting

…

Smaller6AtLeast0EGL_DEPTH_SIZE [15]

Smaller3AtLeast0EGL_BUFFER_SIZE [16]

SORT ORDERSORT
PRIORITY

SELECTION
RULE

DEFAULT
VALUE

ATTRIBUTE

- Selection rule: minimum requirement
- Sort priority: which attrib is sorted first
- Sort order: how attrib is sorted
- One way of sorting
- Not optimal for all applications

Example of sorted list of configsExample of sorted list of configs

152440

32323

323230

153211

32162

15165

EGL_DEPTH_SIZE
(Sort priority = 6)

EGL_BUFFER_SIZE
(Sort priority = 3)

EGL_CONFIG_ID

Sorted first, smaller comes first Sorted next, smaller comes first

Sorted last (if otherwise no unique order exists), smaller comes first

Example EGL config selectionExample EGL config selection

EGLConfig select_config(int type, int color_bits, int depth_bits, int stencil_bits)
{

EGLBoolean err;
EGLint amount, attrib_list[5*2]; /* fits 5 attribs */
EGLConfig best_config, configs[64]; /* max 64 configs considered */
EGLint *ptr;

ptr = &attrib_list[0];

/* Make sure that the config supports target surface type */
*ptr++ = EGL_SURFACE_TYPE;
*ptr++ = type;

/* For color, we require minimum of <color_bits> bits */
*ptr++ = EGL_BUFFER_SIZE;
*ptr++ = color_bits;

/* For depth, we require minimum of <depth_bits> bits */
if(depth_bits)
{

*ptr++ = EGL_DEPTH_SIZE;
*ptr++ = depth_bits;

}

Real-world EGL config selectionReal-world EGL config selection

if(stencil_bits)
{

ptr[0] = EGL_STENCIL_SIZE;
ptr[1] = stencil_bits;
ptr[2] = EGL_NONE;

}
else
{

ptr[0] = EGL_NONE;
}

err = eglChooseConfig(display, &attrib_list[0], &configs[0], 64, &amount);

if(amount == 0)
{

/* If we didn't have get any configs, try without stencil */
ptr[0] = EGL_NONE;
err = eglChooseConfig(display, &attrib_list[0], &configs[0], 64, &amount);

}

Real-world EGL config selectionReal-world EGL config selection

if(amount > 0)
{

/* We have either configs w/ or w/o stencil, not both. Find one with best AA */
int i,best_samples;
best_samples = 0;
best_config = configs[0];

for(i=0 ; i<amount ; i++)
{

int samp;
eglGetConfigAttrib(display, configs[i], EGL_SAMPLES, &samp);
if(samp > best_samples)
{

best_config = configs[i];
best_samples = samp;

}
}

}
else best_config = (EGLConfig)0; /* no suitable configs found */

return best_config;
}

Texture matrix exampleTexture matrix example

void appinit_glass(void)
{

GLint texture_handle;

/* View parameters */
glMatrixMode (GL_PROJECTION);
glFrustumf (-1.f, 1.f, -1.f, 1.f, 3.f, 1000.f);
glMatrixMode (GL_MODELVIEW);

/* Reset state */
glEnable (GL_DEPTH_TEST);
glClearColor (0.f, 0.f, 0.1f, 1.f);

/* Enable vertex arrays */
glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_TEXTURE_COORD_ARRAY);

Texture matrix exampleTexture matrix example

/* Setup texture */
glEnable (GL_TEXTURE_2D);

glGenTextures (1, texture_handle);
glBindTexture (GL_TEXTURE_2D, texture_handle);
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, 256, 256, 0,

GL_RGB, GL_UNSIGNED_BYTE, texture_data);
glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_MODULATE);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,

GL_CLAMP_TO_EDGE);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,

GL_CLAMP_TO_EDGE);
}

Texture matrix exampleTexture matrix example

int render(float time)
{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* draw background with two textured triangles */
glMatrixMode (GL_TEXTURE);
glLoadIdentity ();
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();
glColor4ub (255, 255, 255, 255);
glScalef (2.f, -2.f, 0.f);
glTranslatef (-0.5f, -0.5f, 0.f);
glVertexPointer (2, GL_BYTE, 0, back_coords);
glTexCoordPointer (2, GL_BYTE, 0, back_coords);
glDrawArrays (GL_TRIANGLE_STRIP, 0, 4);

Texture matrix example, coordinatesTexture matrix example, coordinates

Texture ”normals”

Vertex coordinates

Texture matrix example, coordinatesTexture matrix example, coordinates

We just take the (x,y) of the texture coordinate output

Texture matrix example, coordinatesTexture matrix example, coordinates

Texture matrix example, coordinatesTexture matrix example, coordinates

In this example we use the same data for vertex and texture ”normals” as
the object is cut away from roughly tessellated sphere (all coordinates unit length)

This is NOT possible for general objects. You should use separate normalized
normals for other objects

This example

Generic case

Texture matrix exampleTexture matrix example

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
glFrustumf (-1.f, 1.f, -1.f, 1.f, 3.f, 1000.f);

glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();
glTranslatef (0, 0, -5.f);
glRotatef (time*25, 1.f, 1.f, 0.f); /* (1) */
glRotatef (time*15, 1.f, 0.f, 1.f);

glMatrixMode (GL_TEXTURE);
glLoadIdentity ();
glTranslatef (0.5f, 0.5f, 0.f); /* [-0.5,0.5] -> [0,1] */
glScalef (0.5f, -0.5f, 0.f); /* [-1,1] -> [-0.5,0.5] */
glRotatef (time*25, 1.f, 1.f, 0.f); /* identical rotations! */
glRotatef (time*15, 1.f, 0.f, 1.f); /* see (1) */

Texture matrix exampleTexture matrix example

/* use different color for the (glass) object vs. the background */
glColor4ub (255, 210, 240, 255);
glVertexPointer (3,GL_FIXED, 0, vertices);
glTexCoordPointer (3,GL_FIXED, 0, vertices);
glDrawArrays (GL_TRIANGLES, 0, 16*3);

}

Texture matrix exampleTexture matrix example

Fixed point programmingFixed point programming

- Why should you use it?
- Most mobile handsets don’t have a FPU

- Where does it make sense to use it?
- Where it makes the most difference

- For per-vertex processing: morphing, skinning, etc.

- Per vertex data shouldn’t be floating point

- OpenGL ES API supports 32-bit FP numbers

Fixed point programmingFixed point programming

- There are many variants of fixed point:
- Signed / Unsigned

- 2’s complement vs. Separate sign

- OpenGL ES uses 2’s complement

- Numbers in the range of [-32768, 32768 [

- 16 bits for decimal bits (precision of 1/65536)

- All the examples here use 16.16 fixed point

Float to fixed and vice versaFloat to fixed and vice versa

- Convert from floating point to fixed point
#define float_to_fixed(a) (int)((a)*(1<<16)) or

#define float_to_fixed(a) (int)((a)*(65536))

- Convert from fixed point to floating point
#define fixed_to_float(a) (((float)a)/(1<<16)) or

#define fixed_to_float(a) (((float)a)/(65536))

Fixed point programmingFixed point programming

- Examples:
0x0001 0000 = 65536 = “1.0f”

0x0002 0000 = 2*65536 = “2.0f”

0x0010 0000 = 16*65536 = “16.0f”

0x0000 0001 = 1/65536 = “0.0000152587…”

0xffff ffff = -1/65536(-0x0000 0001)

Fixed point operationsFixed point operations

- Addition
#define add_fixed_fixed(a,b) ((a)+(b))

- Multiply fixed point number with integer
#define mul_fixed_int(a,b) ((a)*(b))

- MUL two FP numbers together
#define mul_fixed_fixed(a,b) \

(int)((((int64)a)*((int64)b)) >> 16)

Fixed point operations and scaleFixed point operations and scale

Addition:

a & b = original float values

S = fixed point scale (e.g., 65536)

result = (a * S) + (b * S) = (a + b) * S

- Scaling term keeps the same
- Range of the result is 33 bits
- Possible overflow by 1 bit

Fixed point operations and scaleFixed point operations and scale

Multiplication:
a & b = original float values
S = fixed point scale (e.g., 65536)

result = (a * S) * (b * S) = ((a * b) * S^2)
final = ((a * b) * S^2) / S = (a * b) * S

- Scaling term is squared (S^2) and takes 32 bits
- Also the integer part of the multiplication takes 32 bits

=> need 64 bits for full s16.16 * s16.16 multiply

48-bit
64-bit

Fixed point programmingFixed point programming

>> 16 = RESULT

Intermediate overflow
• Higher accuracy (64-bit)
• Downscale input
• Redo range analysis

Result overflow (48 bits)
• Redo range analysis
• Detect overflow, clamp

*VALUE 1 VALUE 2
32-bit 32-bit

Fixed point programmingFixed point programming

- Division of integer by integer to a fixed point result
#define div_int_int(a,b) \

(int)((((int64)a)*(1<<16))/(b))

(a*S)/ b = (a/b)*S

- Division of fixed point by integer to a fixed point result
#define div_fixed_int(a,b) ((a)/(b))

- Division of fixed point by fixed point
#define div_fixed_fixed(a,b) \

(int)((((int64)a)*(1<<16))/(b))

(a*S*S)/(b*S) = (a/b)*S

Fixed point programmingFixed point programming

- Power of two MUL & DIV can be done with shifts
- a * 65536 = a << 16, a / 256 = a >> 8

- Fixed point calculations overflow easily

- Careful analysis of the range requirements is required

=>

Always add validation code to your fixed point code

Fixed point programmingFixed point programming

#if defined(DEBUG)
int add_fix_fix_chk(int a, int b)
{

int64 bigresult = ((int64)a) + ((int64)b);
int smallresult = a + b;
assert(smallresult == bigresult);
return smallresult;

}
#endif

#if defined(DEBUG)
define add_fix_fix(a,b) add_fix_fix_chk(a,b)
#else
define add_fix_fix(a,b) ((a)+(b))
#endif

Fixed point math functionsFixed point math functions

- Complex math functions
- Pre-calculate for the range of interest

- An example: Sin & Cos
- Sin table between [0, 90°], fixed point angle (S = 2048)
- Generate other angles and Cos from the table
- Store in a short table (16-bit) as s0.16 (S = 32768)
- Range for shorts is [-32768,32767] ([-1.0, 1.0[for s0.16 FP)
- Equals to [-1.0, +1.0[for s0.16 FP (+1.0 not included !)
- Negative values stored in the table (can represent -1.0)

Example: Simple morphing (LERP)Example: Simple morphing (LERP)

• Simple fixed point morphing loop (16-bit data, 16-bit coeff)

#define DOLERP_16(a,b,t) (short)(((((b)-(a))*(t))>>16)+(a))

void lerpgeometry(short *out, const short *inA, const short *inB,
int count, int scale)

{
int i;

for(i=0; i<count; i++)
{

out[i*3+0] = DOLERP_16(inB[i*3+0], inA[i*3+0], scale);
out[i*3+1] = DOLERP_16(inB[i*3+1], inA[i*3+1], scale);
out[i*3+2] = DOLERP_16(inB[i*3+2], inA[i*3+2], scale);

}
}

Converting existing codeConverting existing code

- OS/device conversions
- Programming model, C/C++, compiler, CPU

- Windowing API conversion
- EGL API is mostly cross platform

- EGL Native types are platform specific

- OpenGL -> OpenGL ES conversion

Example: Symbian portingExample: Symbian porting

Programming model
- C++ with some changes (e.g., exceptions)

- Event based programming (MVC), no main / main loop

- Three level multitasking: Process, Thread, Active Objects

- ARM CPU
- Unaligned memory accesses will cause exception (unlike x86)

- OpenC (http://www.forum.nokia.com/openc)

Example: EGL portingExample: EGL porting

- Native types are OS specific
- EGLNativeWindowType (RWindow *)

- EGLNativePixmapType (CFbsBitmap *)

- Pbuffers are portable

- Config selection
- Select the color depth to be same as in the display

- Windowing system issues
- What if render window is clipped by a system dialog?

- Only full screen windows may be supported

OpenGL portingOpenGL porting

• glBegin/glEnd wrappers
• _glBegin stores the primitive type
• _glColor changes the current per-vertex data
• _glVertex stores the current data behind arrays and increments
• _glEnd calls glDrawArrays with primitive type and length

_glBegin(GL_TRIANGLES);
_glColor4f(1.0,0.0,0.0,1.0);
_glVertex3f(1.0,0.0,0.0);
_glVertex3f(0.0,1.0,0.0);
_glColor4f(0.0,1.0,0.0,1.0);
_glVertex3f(0.0,0.0,1.0);

_glEnd();

OpenGL portingOpenGL porting

• Display list wrapper
– Add the display list functions as wrappers

– Add all relevant GL functions as wrappers

– When drawing a list, go through the collected list

OpenGL portingOpenGL porting

void _glEnable(par1, par2)
{
if(GLOBAL()->iSubmittingDisplayList)
{

*(GLOBAL()->dlist)++ = DLIST_CMD_GLENABLE;
*(GLOBAL()->dlist)++ = (GLuint)par1;
*(GLOBAL()->dlist)++ = (GLuint)par2;

}
else
{

glEnable(par1,par2);
}

}

OpenGL portingOpenGL porting

• Vertex arrays
– OpenGL ES supports only vertex arrays

– SW implementations get penalty from float data

– Use as small types as possible (byte, short)

– For HW it shouldn’t make a difference, mem BW

– With OpenGL ES 1.1 always use VBOs

OpenGL portingOpenGL porting

• No quads
– Convert a quad into 2 triangles

• No real two-sided materials in lighting
– If you really need it, submit front and back triangles

• OpenGL ES and querying state
– OpenGL ES 1.0 only supports static getters

– OpenGL ES 1.1 supports dynamic getters

– For OpenGL ES 1.0, create own state tracking if needed

DemoDemo

• Sequel to game One (Nokia)

Questions?Questions?

?

OpenGL ES
on PyS60
OpenGL ES
on PyS60

Kari Pulli

Nokia Research Center

Python: Great for rapid prototypingPython: Great for rapid prototyping

• Python
– designed to be as small, practical,

and open as possible

– easy and fun OO programming

• sourceforge.net/projects/pyS60
– Python 2.2.2 on Symbian S60

– wrappers for phone SDK libraries

– can extend in Symbian C++

Python bindings to OpenGL ESPython bindings to OpenGL ES

• Almost direct bindings

• OpenGL ES functions that take in pointers
typically take in a Python list

• Next we’ll show a full S60 GUI program with
OpenGL ES

Import librariesImport libraries

import appuifw # S60 ui framework

import sys

from glcanvas import *

from gles import *

from key_codes import *

Application class, dataApplication class, data

class Hello:

vertices = array(GL_BYTE, 3,
[-1, 1, 0,

1,-1, 0,
1, 1, 0])

colors = array(GL_UNSIGNED_BYTE, 4,
[255, 0, 0, 255,
0, 255, 0, 255,
0, 0, 255, 255])

Initialize the applicationInitialize the application

def __init__(self): # class constructor
self.exiting = False # while !exit, run
self.frame, self.angle = 0, 0 # set variables
self.old_body = appuifw.app.body
try: # create surface

c = GLCanvas(redraw_callback = self.redraw,
resize_callback = self.resize)

appuifw.app.body = c
self.canvas = c

except Exception, e:
appuifw.note(u"Exception: %s" % (e))
self.start_exit()
return

appuifw.app.menu = [(u"Exit", self.start_exit)]
c.bind(EKeyLeftArrow, lambda:self.left())
c.bind(EKeyRightArrow, lambda:self.right())
self.initgl()

Keyboard and resize callbacksKeyboard and resize callbacks

def left(self):
self.angle -= 10

def right(self):
self.angle += 10

def resize(self):
if self.canvas:

glViewport(0, 0,
self.canvas.size[0],
self.canvas.size[1])

Main loopMain loop

def start_exit(self):
self.exiting = True

def run(self):
app = appuifw.app
app.exit_key_handler = self.start_exit
while not self.exiting:

self.canvas.drawNow()
e32.ao_sleep(0.01)

app.body = self.old_body
self.canvas = None
app.exit_key_handler = None

Initialize OpenGL ESInitialize OpenGL ES

def initgl(self):
glMatrixMode(GL_PROJECTION)
glFrustumf (-1.0, 1.0, -1.0, 1.0,

3.0, 1000.0)
glMatrixMode(GL_MODELVIEW)
glDisable (GL_DEPTH_TEST)
glShadeModel(GL_SMOOTH)
glClearColor(0.0, 0.0, 0.1, 1.0)
glVertexPointerb(self.vertices)
glColorPointerub(self.colors)
glEnableClientState(GL_VERTEX_ARRAY)
glEnableClientState(GL_COLOR_ARRAY)

Draw cycleDraw cycle

def redraw(self, frame=None):
if self.canvas:

glClear(GL_COLOR_BUFFER_BIT)
glLoadIdentity()
glTranslatef(0.0, 0.0, -5.0)
glRotatef (self.angle,

0.0, 0.0, 1.0)
glRotatef (self.frame,

0.0, 1.0, 0.0)
glDrawArrays(GL_TRIANGLES, 0,3)
self.frame += 1

Using the classUsing the class

appuifw.app.screen = 'full'

try:
app = Hello()

except Exception, e:
appuifw.note(u"Cannot start: %s" %

(e))

else:
app.run()

del app

OpenGL ES
Performance
Considerations

OpenGL ES
Performance
Considerations

Ville Miettinen

Targeting the ”mobile platform”Targeting the ”mobile platform”

• CPU speed and available memory varies

– Current range ~30Mhz - 600+ MHz, ARM7 to ARM11

– From no FPUs to SIMD FPUs

• Different resolutions

– QCIF (176x144) to VGA (640x480) and beyond, antialiasing on
higher-end devices

– Color depths 4-8 bits per channel (12-32 bpp)

• Portability issues

– Different CPUs, OSes, Java VMs, C compilers, ...

– OpenKODE from the Khronos Group will help to some extent

Graphics capabilitiesGraphics capabilities

• General-purpose multimedia hardware
– Pure software renderers (all done using CPU & integer ALU)

– Software + DSP / WMMX / FPU / VFPU

– Multimedia accelerators

• Dedicated 3D hardware
– Software T&L + HW tri setup / rasterization

– Full hardware acceleration

• Performance: 50K – 2M tris, 1M – 100M pixels / sec
• Next gen: 30M+ tris, 1000M pixels / sec

Standards help somewhatStandards help somewhat

• Act as hardware abstraction layers
– Provide programming interface (API)

– Same feature set for different devices

– Unified rendering model

• Performance cannot be guaranteed

Scalability Scalability

• Successful application has to run on
hundreds of different phone models
– No single platform popular enough

• Same gameplay but can scale video and
audio

• Design for lowest-end, add eye candy for
high-end
– Scalability has to be built into the design

3D content is easy to scale3D content is easy to scale

• Separate low and high poly count 3D models

• Different texture resolutions & compressed formats

• Rendering quality can be scaled
– Texture filtering, perspective correction, blend functions,

multi-texturing, antialiasing

Special effectsSpecial effects

• Identify special effects
– Bullet holes, skid marks, clouds, ...

– Cannot have impact on game play
• Fog both gameplay and visual element

• Multiplayer games have to be fair

• Users can alter performance by controlling
effects

Tuning down the detailsTuning down the details

• Particle systems
– Number of particles, complexity, visuals

– Shared rendering budget for all particle systems

• Background elements
– Collapse into sky cubes, impostors

• Detail objects
– Models to have “important” and “detail” parts

ProfilingProfiling

• Performance differences often system
integration issues - not HW issues

• Measuring is the only effective way to find
out how changes in code affect performance

• Profile on actual target device if possible
• Public benchmark apps provide some idea

of graphics performance
• gDEBugger ES for gfx driver profiling

Identifying bottlenecksIdentifying bottlenecks

• Three groups: application code, vertex
pipeline, pixel pipeline
– Further partitioned into pipeline stages

– Overall pipeline runs as fast as its slowest stage

• Locate bottlenecks by going through each
stage and reducing its workload
– If performance changes, you have a bottleneck

• Apps typically have multiple bottlenecks

Pixel pipeline bottlenecksPixel pipeline bottlenecks

• Find out by changing rendering resolution
– If performance increases, you have a bottleneck

– Either texturing or frame buffer accesses

• Remedies
– Smaller screen resolution, render fewer objects,

use simpler data formats, smaller texture maps,
less complex fragment and texture processing

Vertex pipeline bottlenecksVertex pipeline bottlenecks

• Vertex processing or submission bottlenecks
– Find out by rendering every other triangle but

using same vertex arrays

• Remedies
– Submission: smaller data formats, cache-friendly

organization, fewer triangles

– Vertex processing: simpler T&L (fewer light
sources, avoid dynamic lighting and fog, avoid
floating-point data formats)

Application code bottlenecksApplication code bottlenecks

• Two ways to find out
– Turn off all application logic

– Turn off all rendering calls

• Floating-point code #1 culprit
• Use profiler

– HW profilers on real devices costly and hard to get

– Carbide IDE from Nokia (S60 and UIQ Symbian)

– Lauterbach boards

– Desktop profiling (indicative only)

Changing and querying the stateChanging and querying the state

• Rendering pipes are one-way streets

• Apps should know their own state
– Avoid dynamic getters if possible!

• Perform state changes in a group at the
beginning of a frame

• Avoid API synchronization
– Do not mix 2D and 3D libraries!

”Shaders””Shaders”

• Combine state changes into blocks (”shaders”)
– Minimize number of shaders per frame

– Typical application needs only 3-10 ”pixel shaders”

• Different 3-10 shaders in every application

• Enforce this in artists’ tool chain

• Sort objects by shaders every frame
– Split objects based on shaders

Complexity of shadersComplexity of shaders

• Software rendering: everything costs!
– Important to keep shaders as simple as possible

• Even if introduces additional state changes

• Example: turn off fog & depth buffering when rendering overlays

• Hardware rendering: Usually more important to
keep number of changes small

Model dataModel data

• Keep vertex and triangle data short and simple!
– Better cache coherence, less memory used

• Make as few rendering calls as possible
– Combine strips with degenerate triangles

• Weld vertices using off-line tool

• Order triangle data coherently

• Use hardware-friendly data layouts

– Buffer objects allow storing data on server

Transformation pipelineTransformation pipeline

• Minimize matrix changes
– Changing a matrix may involve many hidden costs

– Combine simple objects with same transformation

– Flatten and cache transformation hierarchies

• ES 1.1: Skinning using matrix palettes
– CPU doesn’t have to touch vertex data

• ES 1.1: Point sprites for particle effects

Rendering pipelineRendering pipeline

• Rendering order is important
– Front-to-back improves depth buffering efficiency

– Also need to minimize number of state changes!

• Use culling to speed up rendering pipeline
– Conservative: frustum culling & occlusion culling

• Portals and Potentially Visible Sets good for mobile

– Aggressive culling
• Bring back clipping plane in, drop detail & small objects

LightingLighting

• Fixed-function lighting pipelines are so 1990s
– Drivers implemented badly even in desktop space

– In practice only single directional light fast

– OpenGL’s attenuation model difficult to use

– Spot cutoff and specular model cause aliasing

– No secondary specular color

– Flat shading sucks

– Artifacts unless geometry heavily tessellated

Lighting (if you have to use it)Lighting (if you have to use it)

• Single directional light usually accelerated

• Pre-normalize vertex normals

• Avoid homogeneous vertex positions

• Turn off specular illumination

• Avoid distance attenuation

• Turn off distant non-contributing lights

Lighting: the fast wayLighting: the fast way

• While we’re waiting for OpenGL ES 2.0 drivers

– Pre-computed vertex illumination good if slow T&L

– Illumination using texturing

• Light mapping

• ES 1.1: dot3 bump mapping + texture combine

• Less tessellation required

– Combining with dynamic lighting: color material tracking

Environment mappingEnvironment mapping

TexturesTextures

• Mipmaps always a Good Thing™
– Improved cache coherence and visual quality

– ES 1.1 supports auto mipmap generation

• Avoid modifying texture data

• Keep textures ”right size”, use compressed textures

• Different strategies for texture filtering & perspective
correction
– SW implementations affected

Textures (cont’d)Textures (cont’d)

• Multitexturing
– Always faster than doing multiple rendering passes

– ES 1.1: support at least two texturing units

– ES 1.1: TexEnvCombine neat toy

• Use small & compressed texture formats
• Texture atlases: combining multiple textures

– Reduces texture state changes

ES 2.0
Overview
ES 2.0
Overview

Robert J. Simpson
AMD

ContentsContents

• GLSL Overview
• Example Application

– Physics of reflections
– Creating the skybox
– Simulating water

• Detailed walk-through
– Initializing EGL
– Compiling and linking shaders
– Setup: attributes, textures, uniforms, attribute buffers
– Drawing the frame

• OpenGL ES Shading Language
– Differences versus desktop
– Embedded architectures
– Relative cost of operations
– Special features: Precision & Invariance
– Some tips for programming with ES

ES 2.0
Pipeline
ES 2.0
Pipeline

Robert J. Simpson
AMD

Open GL Fixed Function pipelineOpen GL Fixed Function pipeline

APIAPI

Transform
and

Lighting

Transform
and

Lighting RasterizerRasterizerPrimitive
Assembly

Primitive
Assembly

Texture
Environment

Texture
Environment

Depth
Stencil

Depth
Stencil

Colour
Sum

Colour
Sum

Alpha
Test

Alpha
Test

FogFog

DitherDitherColour
Buffer
Blend

Colour
Buffer
Blend

Vertex
Buffer

Objects

Vertex
Buffer

Objects

Vertices

Triangles/Lines/Points

Primitive
Processing
Primitive

Processing

Frame BufferFrame Buffer

Open GL Programmable pipelineOpen GL Programmable pipeline

APIAPI
Vertex
Shader

Vertex
Shader RasterizerRasterizerPrimitive

Assembly
Primitive
Assembly

Fragment
Shader

Fragment
Shader

Depth
Stencil

Depth
Stencil DitherDitherColour

Buffer
Blend

Colour
Buffer
Blend

Vertex
Buffer

Objects

Vertex
Buffer

Objects

Vertices

Triangles/Lines/Points

Primitive
Processing
Primitive

Processing

Frame BufferFrame Buffer

Programmer’s modelProgrammer’s model

Vertex
Shader

Vertex
Shader

Fragment
Shader

Fragment
Shader

Primitive
Assembly

& Rasterize

Primitive
Assembly

& Rasterize

Per-Sample
Operations

Per-Sample
Operations

Attributes
(8 * vec4)

Attributes
(8 * vec4)

Vertex Uniforms
(128 * vec4)

Vertex Uniforms
(128 * vec4)

Varyings
(8 * vec4)

Varyings
(8 * vec4)

Fragment Uniforms
(16 * vec4)

Fragment Uniforms
(16 * vec4)

Vertex ShaderVertex Shader

Attribute 0Attribute 0

UniformsUniforms TexturesTextures

Attribute 1Attribute 1

Attribute 2Attribute 2

Attribute 3Attribute 3

Attribute 4Attribute 4

Attribute 5Attribute 5

Attribute 6Attribute 6

Attribute 7Attribute 7

Varying 0Varying 0

Varying 1Varying 1

Varying 2Varying 2

Varying 3Varying 3

Varying 4Varying 4

Varying 5Varying 5

Varying 6Varying 6

Varying 7Varying 7

Temporary
variables

Temporary
variables

gl_Positiongl_Position

Vertex ShaderVertex Shader

gl_PointSizegl_PointSize

Fragment ShaderFragment Shader

UniformsUniforms TexturesTextures

Temporary
variables

Temporary
variables

gl_Positiongl_Position

gl_FragColorgl_FragColor

Varying 0Varying 0

Varying 1Varying 1

Varying 2Varying 2

Varying 3Varying 3

Varying 4Varying 4

Varying 5Varying 5

Varying 6Varying 6

Varying 7Varying 7

Fragment ShaderFragment Shader

gl_FragCoordgl_FragCoord

gl_FrontFacinggl_FrontFacing

gl_PointPositiongl_PointPosition

The Vertex ShaderThe Vertex Shader

• The vertex shader can do:
– Transformation of position using model-view and

projection matrices

– Transformation of normals, including
renormalization

– Texture coordinate generation and transformation

– Per-vertex lighting

– Calculation of values for lighting per pixel

The Vertex ShaderThe Vertex Shader

• The vertex shader cannot do:
– Anything that requires information from more than

one vertex

– Anything that depends on connectivity.
– Any triangle operations (e.g. clipping, culling)

– Access colour buffer

The Fragment ShaderThe Fragment Shader

• The fragment shader can do:
– Texture blending

– Fog

– Alpha testing
– Dependent textures

– Pixel discard

– Bump and environment mapping

The Fragment ShaderThe Fragment Shader

• The fragment shader cannot do:
– Blending with colour buffer

– ROP operations

– Depth or stencil tests

– Write depth

Robert J. Simpson
AMD

GLSL ESGLSL ES

GLSL ES OverviewGLSL ES Overview

• Based on GLSL as used in OpenGL 2.0
– Open standard

• Pure programmable model
– Most fixed functionality removed.

• Not 100% backward compatible with ES1.x
– Embedded systems do not have the legacy requirements of the desktop

• No Software Fallback
– Implementations (usually) hardware or nothing
– Running graphics routines in software doesn’t make sense on embedded

platforms
• Optimized for use in Embedded devices

– Aim is to reduce silicon cost
– Reduced shader program sizes
– Reduced register usage
– Reduced numeric precision

GLSL ES OverviewGLSL ES Overview

• ‘C’ – like language
• Many simplifications

– No pointers
– Strongly typed. No implicit type conversion
– Simplified preprocessor

• Some graphics-specific additions
– Built-in vector and matrix types
– Built-in functions
– Support for mixed precisions
– Invariance mechanism.

• Differences from Desktop OpenGL
– Restrictions on shader complexity
– Fewer sampler modes

GLSL ES OverviewGLSL ES Overview

• Comments
//
/* */

• Control
#if
#ifdef
#ifndef
#else
#elif
#endif
#error

• Operators
defined

• Macros
• #
• #define
• #undef

• Extensions
• #pragma
• #extension

• Misc
• #version
• #line

GLSL ES OverviewGLSL ES Overview

• Scalar
void float int bool

• Vector
– boolean: bvec2 bvec3 bvec4
– integer: ivec2 ivec3 ivec4
– floating point: vec2 vec3 vec4

• Matrix
– floating point mat2 mat3 mat4

• Sampler
sampler2D

• Containers
– Structures struct
– Arrays []

GLSL ES Storage QualifiersGLSL ES Storage Qualifiers

• const
– Local constants within a shader.

• uniform
– ‘Constant shader parameters’ (light position/direction, texture

units, …)
– Do not change per vertex.

• attribute
– Per-vertex values (position, normal,…)

• varying
– Generated by vertex shader
– Interpolated by the rasterizer to generate per pixel values
– Used as inputs to Fragment Shader
– e.g. texture coordinates

Function Parameter QualifiersFunction Parameter Qualifiers

• Used to pass values in or out or both e.g.

bool f(in vec2 in_v, out float ret_v)
{

...
}

• Qualifiers:

in Input parameter. Variable can be modified
const in Input parameter. Variable cannot be modified.
out Output parameter.
inout Input and output parameter.

• Functions can still return a value
– But need to use a parameter if returning an array

Function Parameter QualifiersFunction Parameter Qualifiers

• Call by value ‘copy in, copy out’ semantics.
– Not quite the same as c++ references:

bool f(inout float a, b)
{

a++;
b++;

}

void g()
{

float x = 0.0;
f(x,x); // x = 1.0 not 2.0

}

GLSL ES OverviewGLSL ES Overview

• Order of copy back is undefined
bool f(inout float a, b)
{

a = 1.0;
b = 2.0;

}

void g()
{

float x ;
f(x,x); // x = 1.0 or 2.0

// (undefined)
}

Precision QualifiersPrecision Qualifiers

• lowp float
– Effectively sign + 1.8 fixed point.
– Range is -2.0 < x < 2.0
– Resolution 1/256
– Use for simple colour blending

• mediump float
– Typically implemented by sign + 5.10 floating point
– -16384 < x < 16384
– Resolution 1 part in 1024
– Use for HDR blending.

Precision QualifiersPrecision Qualifiers

• highp float
– Typically implemented by 24 bit float (16 bit mantissa)
– range ± 262

– Resolution 1 part in 216

– Use of texture coordinate calculation
• e.g. environment mapping

• single precision (float32)
– Not explicit in GLSL ES but usually available in the

vertex shader (refer to device documentation)

Precision QualifiersPrecision Qualifiers

• Precision depends on the operands:
lowp float x;
mediump float y;
highp float z = x * y;

(evaluated at medium precision)

• Literals do not have any defined precision
lowp float x;
highp float z = x * 2.0 + 1.2;

(evaluated at low precision)

ConstructorsConstructors

• Replaces type casting
• No implicit conversion: must use constructors
• All named types have constructors available

– Includes built-in types, structures
– Excludes arrays

• Integer to Float:
int n = 1;
float x,y;
x = float(n);
y = float(2);

ConstructorsConstructors

• Concatenation:
float x = 1.0,y = 2.0;
vec2 v = vec2(x,y);

• Structure initialization
struct S {int a; float b;};
S s = S(2, 3.5);

Swizzle operatorsSwizzle operators

• Use to select a set of components from a vector
• Can be used in L-values

vec2 u,v;
v.x = 2.0; // Assignment to single

// component
float a = v.x; // Component selection
v.xy = u.yx; // swap components
v = v.xx; // replicate components
v.xx = u; // Error

• Component sets: Use one of
xyzw OR rgba OR stpq

Indexing operatorIndexing operator

• Indexing operator
vec4 u,v;
float x = u[0]; // equivalent to u.x

• Must use indexing operator for matrices
mat4 m
vec4 v = m[0];
m.x; // error

GLSL ES OverviewGLSL ES Overview

• Operators
++ -- + - ! () []
* / + -
< <= > >=
== !=
&& ^^ ||
?:
= *= /= += -=

• Flow control
x == y ? a : b
if else
for while do
return break continue
discard (fragment shader only)

Built-in VariablesBuilt-in Variables

• Aim of ES is to reduce the amount of fixed
functionality
– Ideal would be a totally pure programmable model
– But still need some

• Vertex shader
vec4 gl_Position; // Write-only
float gl_PointSize; // Write-only

• Fragment shader
vec4 gl_FragCoord; // Read-only
bool gl_FrontFacing;// Read-only
vec2 gl_PointCoord; // Read-only
float gl_FragColor; // Write only

Built-in FunctionsBuilt-in Functions

• General
pow, exp2, log2, sqrt, inversesqrt
abs, sign, floor, ceil, fract, mod,
min, max, clamp

• Trig functions
radians, degrees, sin, cos, tan,
asin, acos, atan

• Geometric
length, distance, cross, dot, normalize,
faceForward, reflect, refract

GLSL ES OverviewGLSL ES Overview

• Interpolations
mix(x,y,alpha)

x*(1.0-alpha) + y*alpha)
step(edge,x)

x <= edge ? 0.0 : 1.0
smoothstep(edge0,edge1,x)

t = (x-edge0)/(edge1-edge0);
t = clamp(t, 0.0, 1.0);
return t*t*(3.0-2.0*t);

• Texture
texture1D, texture2D, texture3D, textureCube
texture1DProj, texture2DProj, textureCubeProj

GLSL ES OverviewGLSL ES Overview

• Vector comparison (vecn, ivecn)
bvecn lessThan(vecn, vecn)
bvecn lessThanEqual(vecn, vecn)
bvecn greaterThan(vecn, vecn)
bvecn greaterThanEqual(vecn, vecn)

• Vector comparison (vecn, ivecn, bvecn)
bvecn equal(vecn, vecn)
bvecn notEqual(vecn, vecn)

• Vector (bvecn)
bvecn any(bvecn)
bvecn all(bvecn)
bvecn not(bvecn)

• Matrix
matrixCompMult (matn, matn)

InvarianceInvariance

Robert J. Simpson
AMD

InvarianceInvariance

– Definition:

“An invariant operation is an operation that, given
the same set of inputs, always produces the
same result.”

• So why might this not be true?

Invariance: The ProblemInvariance: The Problem

• Causes of variance:
• Mathematical operations are not precisely defined.

• No IEEE arithmetic
• User has limited control over the driver/compiler

• Compilers ‘cheat’ a bit to get better performance e.g.

a + b + c + d --> (a+b) + (c+d)

Mathematically correct but in floating point can give
different a result

• Consequence:
• Same code may produce (slightly) different results

InvarianceInvariance

– Why do you care?
• Multi-pass
• Any algorithm relying

on repeatable
calculations

• Any algorithm relying
on a value
remaining constant

InvarianceInvariance

• Consider a simple transform in the vertex shader:

• x’ = ax + by + cz + dw

• But how is this calculated in practice?
– There may be several possible code sequences

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′
′
′
′

w
z
y
x

ponm
lkji
hgfe
dcba

w
z
y
x

InvarianceInvariance

e.g.
MUL R1, a, x
MUL R2, b, y
MUL R3, c, z
MUL R4, d, w
ADD R1, R1, R2
ADD R3, R3, R4
ADD R1, R1, R3

or
MUL R1, a, x
MADD R1, b, y
MADD R1, c, z
MADD R1, d, w

InvarianceInvariance

• Three reasons the result may differ:

– Use of different instructions
– Instructions executed in a different order
– Different precisions used for intermediate results (only

minimum precisions are defined)

• But it gets worse...

InvarianceInvariance

• Modern compilers may rearrange your code
– Values may lose precision when written to a register
– Sometimes cheaper to recalculate a value

• But will it be calculated the same way?

const vec2 pos = a + b * c; // Done once
// or twice?

vec4 col1 = texture2D(tex1, pos);
...
vec4 col2 = texture2D(tex2, pos); // does pos have

// the same value
// as before?

gl_FragColor = col1 – col2; //

InvarianceInvariance

• Solution is in two parts:
– invariant keyword specifies that specific variables are

invariant e.g.

invariant varying vec3 LightPosition;

Currently can only be used on certain variables

– Global switch to make all variable invariant

#pragma STDGL invariant(all)

InvarianceInvariance

– Invariance flag controls:
• Invariance within shaders
• Invariance between shaders.

– Usage
• Turn on invariance to make programs ‘safe’ and easier to

debug
• Turn off invariance to get the maximum optimization from

the compiler.

ES2.0 Example:

The Application Framework

ES2.0 Example:

The Application Framework

Robert J. Simpson
AMD

Writing an application – Basic StepsWriting an application – Basic Steps

– Set up EGL

– Setup shader, pipeline state

– Create vertex buffers, textures

– Main loop
• Update state (transforms etc.)
• Bind
• Draw

Writing an App – Initialization Writing an App – Initialization

• EGL
– Get EGL display
– EGL Initialization
– Choose EGL config options using an attribute list
– Create window surface
– Create EGL context and attach to surface

• GL ES
– Compile and Link shaders
– Create and bind Textures
– Bind (or get) attributes
– Set up uniforms
– Create Vertex Buffers
– Map buffer data

Writing an App – EGL InitializationWriting an App – EGL Initialization

EGLDisplay egl_display =
eglGetDisplay(EGL_DEFAULT_DISPLAY);

int ok = eglInitialize(egl_display,
&majorVersion,

&minorVersion)

EGL InitializationEGL Initialization

Set up attributes for EGL context
EGLint attr[MAX_EGL_ATTRIBUTES];

attr[nAttrib++] = EGL_RED_SIZE;
attr[nAttrib++] = 5;
...

attrib[nAttrib++] = EGL_DEPTH_SIZE;
attrib[nAttrib++] = 16;
attrib[nAttrib++] = EGL_STENCIL_SIZE;
attrib[nAttrib++] = 0;

...

EGL Initialization (cont)EGL Initialization (cont)

eglChooseConfig(egl_display,
attrib_list,
&egl_config, // returned configs
1, // max no. of configs
&num_configs)

eglCreateWindowSurface(egl_display,
egl_config,
NativeWindowType (hWnd),
NULL)

EGL Initialization: Creating a contextEGL Initialization: Creating a context

context = eglCreateContext(egl_display,
egl_config,
EGL_NO_CONTEXT,
NULL);

eglMakeCurrent(egl_display,
egl_surface, // for draw
egl_surface, // for read
egl_context);

Compiling and using shadersCompiling and using shaders

glCreateProgramObject

glAttachObject

glAttachObject

glLinkProgram

glUseProgramObject

glCreateShaderObject

glShaderSource

glCompileShader

glDeleteObject

glCreateShaderObject

glShaderSource

glCompileShader

glDeleteObjectglDeleteObject

Vertex
Shader

Fragment
Shader

Compiling and Linking ShadersCompiling and Linking Shaders

• Create objects
program_handle = glCreateProgram();

// Create one shader of object of each type.

GLuint vertex_shader_handle

= glCreateShader (GL_VERTEX_SHADER);

GLuint fragment_shader_handle

= glCreateShader (GL_FRAGMENT_SHADER);

Compiling ShadersCompiling Shaders

• Compile vertex shader (and fragment shader)
char* vert_source = ...

const char* vert_gls[1] = {vert_source};

glShaderSource(vertex_shader_handle,
1, // no. of strings
vert_gls,
NULL);

glCompileShader(vertex_shader_handle);

GLint vertCompilationResult = 0;

glGetShaderiv(vertex_shader_handle,
GL_COMPILE_STATUS,
&vertCompilationResult);

Linking ShadersLinking Shaders

• Attach shaders to program object and link
glAttachShader(program_handle,

vertex_shader_handle);

glAttachShader(program_handle,
fragment_shader_handle);

glLinkProgram (program_handle);

• Note that many compilers will only report errors at
link time.

Setting up AttributesSetting up Attributes

• Can bind attributes before linking e.g.
glBindAttribLocation (prog_handle, 0, “pos");

• Or get attribute location after linking:
GLint p;

p = glGetAttribLocation (prog_handle, “pos");

• Can do a combination.

Setting up TexturesSetting up Textures

• Texture samplers are Uniforms in GLSL ES

• First Generate ID and specify type (cube map)
uint32 Id;

glGenTextures(1, &Id);

glActiveTexture (GL_TEXTURE0);

glBindTexture(GL_TEXTURE_CUBE_MAP, Id);

Setting up Textures (cont)Setting up Textures (cont)

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X,
0,
GL_RGBA,
width,
height,
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
image [0].pixels);

glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, ...
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, ...
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, ...
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, ...
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, ...

Setting up UniformsSetting up Uniforms

• Must do this after glUseProgram:
glUseProgram(prog_handle);

• Use glGetUniformLocation e.g.
GLint loc_sky_box =

glGetUniformLocation (prog_handle,"skyBox“);

• Can then set value e.g.

GLint texture_unit = 0;
glUniform1i (loc_sky_box,texture_unit);

Setting up Attribute BuffersSetting up Attribute Buffers

• Create buffer names
GLuint bufs[1];

glGenBuffers (1, bufs);

• Create and initialize buffer
glBindBuffer (GL_ARRAY_BUFFER, bufs[0]);

glBufferData (GL_ARRAY_BUFFER,
size_bytes, p_data, GL_STATIC_DRAW);

Setting up Attribute Buffers (cont)Setting up Attribute Buffers (cont)

• Specify format:

glBindBuffer(GL_ARRAY_BUFFER, bufs[0]);

glVertexAttribPointer(0, // index
4, // size
GL_FLOAT, // type
GL_FALSE, // normalize?
0, // (stride)
NULL); // (attribs)

Drawing the frame Drawing the frame

– Clear frame buffer
– Set render state
– Enable array
– DrawArray

DrawingDrawing

• Enable array and Draw

glEnableVertexAttribArray(0);

glBindBuffer (GL_ARRAY_BUFFER,0);

glDrawArrays (GL_TRIANGLE_STRIP,0, n_vertices);

ES2.0 Example
- The shaders
ES2.0 Example
- The shaders

Example: Water demoExample: Water demo

SkyboxSkybox

• Geometry is a
sphere

• Use position to
access a cube map

Cube MapCube Map

SkyboxSkybox

• Access cube map
using the normals of
the vertices

Cube map

Mesh

SkyboxSkybox

• But...

• Normal = Position

• So no need to
generate and
store separate
normals

Mesh

Position

Normal

Sky box: Vertex shaderSky box: Vertex shader

uniform mat4 view_proj_matrix;

uniform vec4 view_position;

attribute vec4 rm_Vertex;

varying vec3 vTexCoord;

void main(void)

{

vec4 newPos = vec4(1.0);

newPos.xyz = rm_Vertex.xyz + view_position.xyz;

gl_Position = view_proj_matrix * vec4(newPos.xyz,1.0);

vTexCoord = rm_Vertex.xyz;

}

Sky box: Fragment Shader Sky box: Fragment Shader

precision highp float;

uniform samplerCube skyBox;

varying vec3 vTexCoord;

void main(void)

{

gl_FragColor = textureCube(skyBox,vTexCoord);

}

Water: Reflection MappingWater: Reflection Mapping

Original
normal

Perturbed
normal

Actual
geometry

Geometry we are
trying to emulate

Approximating Fresnel ReflectionApproximating Fresnel Reflection

Greater angle of
incidence

= more reflection

Smaller angle of
incidence

= less reflection

Fresnel Reflection (cont.)Fresnel Reflection (cont.)

View vector

Unperturbed
normal

Low angle of
incidence

Perturbed
normal

High angle of
incidence

More
reflection

Less
reflection

WaterWater

• Geometry is a
simple grid

• Uses the same
cubemap as the
skybox

Water RipplesWater Ripples

• Use noise texture
for bump map.

• Exact texture not
important
– Try experimenting

Water: Vertex ShaderWater: Vertex Shader

uniform vec4 view_position;

uniform vec4 scale;

uniform mat4 view_proj_matrix;

attribute vec4 rm_Vertex;

attribute vec3 rm_Normal;

varying vec2 vTexCoord;

varying vec3 vNormal;

varying vec3 view_vec;

Water: Vertex Shader (cont)Water: Vertex Shader (cont)

void main(void)

{

vec4 Position = rm_Vertex.xyzw;

Position.xz *= 1000.0;

vTexCoord = Position.xz * scale.xz;

view_vec = Position.xyz - view_position.xyz;

vNormal = rm_Normal;

gl_Position = view_proj_matrix * Position;

}

Water: Fragment ShaderWater: Fragment Shader

uniform sampler2D noise;

uniform samplerCube skyBox;

uniform float time_0_X;

uniform vec4 waterColor;

uniform float fadeExp;

uniform float fadeBias;

uniform vec4 scale;

uniform float waveSpeed;

varying vec2 vTexCoord;

varying vec3 vNormal;

varying vec3 vViewVec;

Water Fragment Shader (cont)Water Fragment Shader (cont)

void main(void)

{

vec2 tcoord = vTexCoord;

tcoord.x += waveSpeed * time_0_X;

vec4 noisy = texture2D(noise, tcoord.xy);

// Signed noise

vec3 bump = 2.0 * noisy.xyz - 1.0;

bump.xy *= 0.15;

// Make sure the normal always points upwards

bump.z = 0.8 * abs(bump.z) + 0.2;

Water Fragment Shader (cont)Water Fragment Shader (cont)

// Offset the surface normal with the bump

bump = normalize(vNormal + bump);

// Find the reflection vector

vec3 reflVec = reflect(vViewVec, bump);

vec4 refl = textureCube(skyBox, reflVec.yzx);

Water Fragment Shader (cont)Water Fragment Shader (cont)

float lrp = 1.0 - dot(-normalize(vViewVec), bump);

// Interpolate between the water color and

// reflection

float blend = fadeBias + pow(lrp, fadeExp);

blend = clamp(blend ,0.0, 1.0);

gl_FragColor = mix(waterColor, refl, blend);

}

Programming TipsProgramming Tips

Programming TipsProgramming Tips

• Check for errors regularly
• Use e.g.

assert(!glError ());

• But remember glError () gets the last error:
... // error here
Glint error = glError ();
...
assert(!glError ()); // No error

The coordinate systemThe coordinate system

• Coordinate system is:

• Right handed before projection
• Increasing z is towards the viewer.

• Left handed after projection
• Increasing z is away from the viewer.

Matrix ConventionMatrix Convention

• Matrices are column-major
• column index varies more slowly

• Vectors are columns
• But this is purely convention
• Only the position in memory is important

• Translation specified in elements 12,13,14

The projection matrixThe projection matrix

• You need to provide a projection matrix e.g.

• near and far are both positive

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

∗∗−
−
+−

−
+

−
∗

−
+

−
∗

0.00.10.00.0
0.00.0

0.00.0
0.00.0

0.2)(

0.2

0.2

nearfar
nearfar

nearfar
nearfar

bottomtop
bottomtop

bottomtop
near

leftright
leftright

leftright
near

Performance TipsPerformance Tips

• Keep fragment shaders simple
– Fragment shader hardware is expensive.
– Early implementations will not have good performance

with complex shaders.
• Try to avoid using textures for function lookups.

– Calculation is quite cheap, accessing textures is
expensive.

– This is more important with embedded devices.

Performance Tips (cont)Performance Tips (cont)

• Minimize register usage
– Embedded devices do not support the same number of

registers compared with desktop devices. Spilling
registers to memory is expensive.

• Minimize the number of shader changes
– Shaders contain a lot of state
– May require the pipeline to be flushed
– Use uniforms to change behaviour in preference to

loading a new shader.

ES vs. Desktop ES vs. Desktop

GLSL ES vs. GLSL desktopGLSL ES vs. GLSL desktop

• Based on GLSL as used in OpenGL 2.0
– Open standard

• Pure programmable model
– Most fixed functionality removed.

• Not 100% backward compatible with ES1.x
– Embedded systems do not have the legacy requirements of the desktop

• No Software Fallback
– Implementations (usually) hardware or nothing
– Running graphics routines in software doesn’t make sense on embedded

platforms
• Optimized for use in Embedded devices

– Aim is to reduce silicon cost
– Reduced shader program sizes
– Reduced register usage
– Reduced numeric precision

Mobile ArchitectureMobile Architecture

• CPU, graphics on the same chip.

• Unified memory architecture

• Cache for CPU

• Only limited cache for graphics device

• No internal framebuffer

• No internal z buffer

• Limited texture cache

Mobile vs. PC ArchitectureMobile vs. PC Architecture

CPU GPU

Memory

BUS

CPU GPU

Memory

Chipset

Memory

Mobile PC

SOC

Mobile Architecture – What this
means
Mobile Architecture – What this
means

– Limited memory bandwidth
• Hardware number crunching is relatively cheap
• Moving data around is the main problem
• Frame buffer access (or geometry buffer access for tiled

architectures) is a heavy user
• Texture bandwidth is an issue

– CPU cannot perform floating point
• Rather different from the PC world
• Means more rapid move to hardware vertex shaders

– Any advantages?
• Lower resolution means less data to move around
• Easier to access frame/depth buffer because of unified

memory

Performance TipsPerformance Tips

Tips for Improving PerformanceTips for Improving Performance

– Golden rules:

• Don’t do things you don’t need to do

• Let the hardware do as much as possible

• Don’t interrupt the pipeline

• Minimize data transfer to and from the GPU

Don’t do what you don’t need to doDon’t do what you don’t need to do

– What frame rate do you actually need?

• Achieving 100fps on a PC may be a good thing

• LCD displays have slower response

• Eats power.

– Not using depth testing? Turn off the z buffer

• Saves at least one read per pixel

– Not using alpha blending? Turn it off.

• Saves reading the colour buffer.

– Not using textures? Don’t send texture coordinates to the
GPU

• Reduces geometry bandwidth

Let the hardware do itLet the hardware do it

Hardware is very good at doing computation
– Transform and lighting is fast

– Will become even more useful with vertex shaders

– Texture blending is ‘free’. Don’t use multi-pass.

– Anti-aliasing is very cheap.

– Hardware is good when streaming data

• But works best when data is aligned with memory

• Most efficient when large blocks are transferred

– BUT: Memory bandwidth is still in short supply

Minimize Data TransferMinimize Data Transfer

Use Vertex Buffers
– Driver can optimize storage (alignment, format)

• Reduce Vertex Size
– Use byte coordinates e.g. for normals

• Reduce size of textures
– Textures cached but limited on-chip memory

– Use mip-mapping. Better quality and lower data
transfer

– Use texture compression where available.

Memory AlignmentMemory Alignment

• Always best to align data
– Alignment to bus width very important

– Alignment to DRAM pages gives some benefit

• Embedded devices have different types of memory
– Bus width may be 32 bit, 64 bit or 128 bit

• Penalty for crossing a DRAM page (typically 1-4KB)
– Can be several cycles.

Batch DataBatch Data

• Why?
– Big overhead for interpreting the command and

setting up a new transfer

– Memory latency large

• How?
– Combine geometry into large arrays.

– Use Vertex Buffer Objects

Batch DataBatch Data

Vertices GPU
DrawArrays

Vertices GPU

DrawArrays

Don’t:

Do:

Multiple API calls
Lots of overhead
Slow

Fewer API calls
Less overhead
Much faster

Vertex Buffer ObjectsVertex Buffer Objects

Vertices VBO GPUVBO

Step 1:
Create

Even better:

Step 2:
Draw

Client Side Server Side

Driver can
optimize storage

Vertex Buffer ObjectsVertex Buffer Objects

Ultimately:

GPU
Draw

Local
Memory

Vertices VBO

Don’t interrupt the pipelineDon’t interrupt the pipeline

• GPUs are streaming architectures.
They have high bandwidth but also long latencies.
• Minimize state changes.

– Set up state and then render as much as possible.
– E.g. Don’t mix 2d and 3d operations

• Don’t lock buffers unnecessarily
– OK at end of scene

• Don’t use GetState unnecessarily
– Main usage is for 3rd party libraries. App should know what the

state is.
All these can cause interruptions to data streaming.

– May even cause the entire pipeline to be flushed.

More on State ChangesMore on State Changes

• Major changes of state will always be expensive
– Changing textures (consider using a texture atlas)

– Texture environment modes

– Light types (e.g. turning on specular)

• Some are quite cheap
– Turning individual lights on and off

– Enabling/disabling depth buffer

• BUT
– Varies with the hardware (and driver) implementation

Be nice to the Vertex CacheBe nice to the Vertex Cache

• Hardware typically holds 8-32 vertices.

– Smaller than in software implementations

– Likely to vary between implementations

– Possible to trade no. of vertices against vertex size in some
implementations

• Hardware cannot detect when two vertices are the same.

• To make efficient use of the cache use:

– Vertex Strips

– Vertex fans

– Indexed triangles

Vertex CacheVertex Cache

• Individual triangles: 3 vertices/triangle

• Vertex Strip: 1 vertex triangle (ideal case)

• Indexed triangles: 0.5 vertices/triangle (ideal case)

Depth ComplexityDepth Complexity

• Drawing hidden triangles is expensive.

• Costs:

– Transferring the geometry

– Transform & lighting

– Fetching texels for hidden pixels

– Reading and writing the colour and depth buffer

– Storing and reading the geometry (tiled or delay stream
architectures)

• Deferred rendering is not a magic solution

– Can even make matters worse in some situations

Depth Complexity - solutionsDepth Complexity - solutions

• Render scene front to back
– Eliminates many writes to colour and depth buffer

– Can reduce texture fetches (early z kill)

• Use standard occlusion culling techniques
– View frustum culling (don’t draw objects that are out of

view)

– DPVS

– Portals

Future TrendsFuture Trends

Future TrendsFuture Trends

• More local caches for graphics hardware

• Display resolution increasing
– More pixel pipelines

• Better power management

• Integration of other functionality
– Video

Questions?Questions?

M3G IntroM3G Intro

Kari Pulli

Nokia Research Center

Mobile 3D Graphics APIsMobile 3D Graphics APIs

OpenGL ES

M3G (JSR-184)

Java applications

Graphics Hardware

Native C/C++
Applications

Why Should You Use Java?Why Should You Use Java?

• Largest and fastest growing installed base
– 1200M phones running Java by June 2006

– The majority of phones sold today support Java

• Better productivity compared to C/C++
– Much fewer opportunities to introduce bugs

– Comprehensive, standardized class libraries

Java Will Remain SlowerJava Will Remain Slower

Benchmarked on an ARM926EJ-S processor with hand-optimized Java and assembly code

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Vertex
transformation

Image
downsampling

Assembly
KVM
Jazelle™
HotSpot

M3G Design PrinciplesM3G Design Principles

• Move all graphics processing to native code
– Not only rasterization and transformations

– Also morphing, skinning, and keyframe animation

– All data on native side to avoid Java-native traffic

#1#1#1 No Java code along critical pathsNo Java code along critical pathsNo Java code along critical paths

M3G Design PrinciplesM3G Design Principles

• Do not mandate hardware-only features
– Such as per-pixel mipmapping or per-pixel fog

• Do not try to expand the OpenGL pipeline
– Such as with hardcoded transparency shaders

#2#2#2 Cater for both software and hardwareCater for both software and hardwareCater for both software and hardware

M3G Design PrinciplesM3G Design Principles

• Address content creation and tool chain issues
– Export art assets into a compressed file (.m3g)

– Load and manipulate the content at run time

– Need scene graph and animation support for that

• Minimize the amount of “boilerplate code”

#3#3#3 Maximize developer productivityMaximize developer productivityMaximize developer productivity

M3G Design PrinciplesM3G Design Principles

#4#4#4 Minimize engine complexityMinimize engine complexityMinimize engine complexity

#5#5#5 Minimize fragmentationMinimize fragmentationMinimize fragmentation

#6#6#6 Plan for future expansionPlan for future expansionPlan for future expansion

Why a New Standard?Why a New Standard?

• OpenGL ES is too low-level
– Lots of Java code and function calls needed

– No support for animation and scene management

• Java 3D is too bloated
– A hundred times larger (!) than M3G

– Still lacks a file format, skinning, etc.

M3G API
Overview
M3G API
Overview

Tomi Aarnio

Nokia Research Center

ObjectivesObjectives

• Get an idea of the API structure and features

• Learn practical tricks not found in the spec

PrerequisitesPrerequisites

• Fundamentals of 3D graphics

• Some knowledge of OpenGL ES

• Some knowledge of scene graphs

M3G API OverviewM3G API Overview

Getting started
Rendering

Scene graph

Performance tips

Deformable meshes

Keyframe animation

Demos

Programming ModelProgramming Model

• M3G is not an “extensible scene graph”

• Rather a black box – much like OpenGL
– No interfaces, events, or render callbacks

– No threads; all methods return only when done

Programming ModelProgramming Model

• Scene update is decoupled from rendering
– render Draw the scene, no side-effects
– animate Update the scene to the given time

– align Re-orient target cameras, billboards

Graphics3D
3D graphics context
Performs all rendering

World
Scene graph root node

Loader
Loads individual objects
and entire scene graphs

Key ClassesKey Classes

Mesh
Encapsulates triangles,
vertices and appearance

Graphics3D: How to UseGraphics3D: How to Use

• Bind a target to it, render, release the target

void paint(Graphics g) {

myGraphics3D.bindTarget(g);

myGraphics3D.render(world);

myGraphics3D.releaseTarget();

}

Rendering StateRendering State

• Graphics3D contains global state
– Frame buffer, depth buffer
– Viewport, depth range

• Most rendering state is in the scene graph
– Vertex buffers, textures, matrices, materials, …

– Packaged into Java objects, referenced by meshes

– Minimizes Java-native data traffic, enables caching

M3G API OverviewM3G API Overview

Getting started

Rendering
Scene graph

Performance tips

Deformable meshes

Keyframe animation

Demos

Renderable ObjectsRenderable Objects

Mesh
Made of triangles
Base class for meshes

Sprite3D
2D image placed in 3D space
Always facing the camera

Sprite3DSprite3D

• 2D image with a position in 3D space
– Scaled mode for billboards, trees, etc.

– Unscaled mode for text labels, icons, etc.

– Too much overhead for particle effects

Image2D

Sprite3D Appearance

Image2D

CompositingMode

Fog

MeshMesh

• One VertexBuffer, containing VertexArrays

• 1..N submeshes (IndexBuffer + Appearance)

Mesh VertexBuffer coordinates

normals

colors

texcoords

IndexBuffer

Appearance

VertexArraysVertexArrays

IndexBuffer TypesIndexBuffer Types

Im
plicit

Byte Short Strip Fan List

Point sprites

Points

Lines

Triangles

Relative to OpenGL ES 1.1

VertexBuffer TypesVertexBuffer Types

*Colors

FloatByte Short Fixed

PointSizes

Normals

TexCoords

Vertices

4D3D2D

* M3G supports RGB color arrays, although OpenGL ES only supports RGBA

Vertex and Index Buffer ObjectsVertex and Index Buffer Objects

• Vertices and indices are stored on server side

• Similar to OpenGL Buffer Objects
– Reduces data traffic from Java to native

– Allows caching, bounding box computation, etc.

Appearance ComponentsAppearance Components

CompositingMode

Material colors for lighting
Can track per-vertex colors

PolygonMode

Fog

Texture2D

Material
Blending, depth buffering
Alpha testing, color masking

Winding, culling, shading
Perspective correction hint

Fades colors based on distance
Linear and exponential mode

Texture matrix, blending, filtering
One Texture2D for each unit

Fragment (Pixel) PipelineFragment (Pixel) Pipeline

Alpha Test Depth TestFog Blend &
Mask

Texture
Blend

Texel
Fetch

Texture
Blend

Frame
Buffer

Depth
Buffer

Colored
Fragment

Texel
Fetch

CompositingMode

Texture2D

Fog

M3G API OverviewM3G API Overview

Getting started

Rendering

Scene graph
Performance tips

Deformable meshes

Keyframe animation

Demos

Scene GraphScene Graph

SkinnedMesh

Group

Group

Group

Mesh

Sprite

Light

World

Group Camera

Group MorphingMesh

Not allowed!

Shared Node ComponentsShared Node Components

SkinnedMesh Mesh

World

Mesh Camera

Appearance Appearance

Texture2D

Node TransformationNode Transformation

• From this node to the parent node

• Composed of four parts
– Translation T

– Orientation R

– Non-uniform scale S

– Generic 3x4 matrix M

• C = T R S M Group

Group

Group

Mesh

Sprite

C

CC

C C

World

Node AlignmentNode Alignment

• Reorients a node towards a target node
– Recomputes the orientation component (R)

• For target cameras & lights, billboards, etc.

Other Node FeaturesOther Node Features

• Inherited properties
– Alpha factor (for fading in/out)

– Rendering enable (on/off)

– Picking enable (on/off)

• Scope mask

Content ProductionContent Production

DCC tool

Exporter

Intermediate
Format (e.g.
COLLADA)

Optimizer &
Converter

Delivery
Formats

(.m3g, .png)

M3G Loader

Runtime Scene Graph

M3G File FormatM3G File Format

• Small size, easy to decode

• Matches API features 1:1

• Stores individual objects, entire scenes

• ZLIB compression of selected sections

• Can reference external files – e.g. textures

• Highly portable – no extensions

M3G API OverviewM3G API Overview

Getting started

Rendering

Scene graph

Performance tips
Deformable meshes

Keyframe animation

Demos

Use the Retained ModeUse the Retained Mode

• Render a World instead of separate objects
– Minimizes Java code and method calls
– Allows view frustum culling, etc.

• Put co-located objects into Groups
– Speeds up hierarchic view frustum culling

Simplify Node PropertiesSimplify Node Properties

• Transformations
– Favor the T R S components over M

– Avoid non-uniform scales in S

– Use auto-alignment sparingly

• Keep the alpha factor at 1.0

Optimize Rendering OrderOptimize Rendering Order

•Appearance.setLayer(int layer)

– Defines a global ordering for submeshes

– Within each layer, opaque objects come first

• Use layers for…
– Making sure that overlays are drawn first

– Making sure that distant objects are drawn last

– Multipass effects (e.g. for lighting)

Optimize TexturingOptimize Texturing

• Multitexturing is faster than multipass
– Transformation and setup costs cut by half

• Use mipmaps to save memory bandwidth
– Tradeoff: 33% extra memory consumption

• Combine small textures into a texture atlas

Use Perspective CorrectionUse Perspective Correction

• Much faster than increasing triangle count
– Nokia: 2% fixed overhead, 20% in the worst case

– No overhead at all on hardware implementations

• Pitfall: Quality varies by implementation
– Refer to quality scores at www.jbenchmark.com

Reduce Object CountReduce Object Count

• Per-Mesh processing overhead is high

• Per-submesh overhead is also fairly high

• Merge
– Meshes that are close to each other

– submeshes that have a common Appearance

Avoid Dynamic GeometryAvoid Dynamic Geometry

• VertexArray.set(…) can be slow
– Java array contents must be copied in

– May also trigger bounding box updates, etc.

– Replace with morphing or skinning where possible

• IndexBuffers have no set(…) method at all
– new IndexBuffer(…) per frame is not a good idea

– Switch between predefined IndexBuffers instead

Beware of ExportersBeware of Exporters

• Exported content is often suboptimal
– Lighting enabled, but overwritten by texture

– Lighting disabled, normal vectors still included

– Alpha blending enabled, but alpha always 1.0

– 16-bit vertices when 8 bits would be enough

– Perspective correction always enabled

– …

• Always review the exported scene tree!

Hardware vs. SoftwareHardware vs. Software

• Shading state
– SW: Minimize per-pixel operations

– HW: Minimize shading state changes

• Mixing 2D and 3D rendering
– SW: No performance penalty

– HW: Substantial penalty (up to 3x)

Layering 2D and 3DLayering 2D and 3D

2D backdrop
3D background
2D spectators

3D field
2D players
2D overlays

~7 layers of
2D and 3D!

Playman Beach Volley © RealNetworks, Inc.

Use Picking with CautionUse Picking with Caution

• myWorld.pick(…) can be very slow

• Restrict the pick ray to
– meshes in a specific Group

– meshes with a specific scope mask

• Use simplified geometry for picking
– setPickingEnable(true)

– setRenderingEnable(false)

Particle EffectsParticle Effects

• Point sprites – not available

• Sprite3D – much too slow

• Put all particles in one Mesh
– One particle == two triangles

– Animate by VertexArray.set(…)

3
5

4

1

2 6

Particles glued
into a tri-strip

Easy Terrain RenderingEasy Terrain Rendering

• Split the terrain into tiles (Meshes)

• Put the meshes into a scene graph

• The engine will do view frustum culling

Terrain Rendering with LODTerrain Rendering with LOD

• Preprocess into a quadtree
– leaf node == Mesh

– inner node == Group

• Use setRenderingEnable
based on the view frustum

M3G API OverviewM3G API Overview

Getting started

Rendering

Scene graph

Performance tips

Deformable meshes
Keyframe animation

Demos

Deforming MeshesDeforming Meshes

SkinnedMesh
Skeletally animated mesh

MorphingMesh
Vertex morphing mesh

MorphingMeshMorphingMesh

• Traditional vertex morphing animation
– Can morph any vertex attribute(s)

– A base mesh B and any number of morph targets Ti

– Result = weighted sum of morph deltas

• Change the weights wi to animate

()∑ −+=
i

iiw BTBR

MorphingMeshMorphingMesh

Base Target 1
eyes closed

Target 2
mouth closed

Animate eyes
and mouth

independently

SkinnedMeshSkinnedMesh

• Articulated characters without cracks at joints
• Stretch a mesh over a hierarchic “skeleton”

– The skeleton consists of scene graph nodes

– Each node (“bone”) defines a transformation

– Each vertex is linked to one or more bones

– Mi are the node transforms – v, w, B are constant

∑=
i

iii vwv BM'

SkinnedMeshSkinnedMesh

Neutral pose, bones at rest

SkinnedMeshSkinnedMesh

Bone B rotated 90 degrees

SkinnedMeshSkinnedMesh

Mesh SkinnedMesh

M3G API OverviewM3G API Overview

Getting started

Rendering

Scene graph

Performance tips

Deformable meshes

Keyframe animation
Demos

Animation ClassesAnimation Classes

KeyframeSequence

AnimationController

AnimationTrack
A link between sequence,
controller and target

Object3D

Base class for all objects
that can be animated

Controls the playback of
one or more sequences

Storage for keyframes
Defines interpolation, looping

AnimationController

Animation ClassesAnimation Classes

Identifies
animated
property on
this object

Object3D

AnimationTrack

KeyframeSequence

KeyframeSequence:
Interpolation Modes
KeyframeSequence:
Interpolation Modes

LI
N

E
A

R
S

TE
P

time

S
P

LI
N

E

…plus SLERP and SQUAD for quaternions

AnimationController:
Timing and Speed
AnimationController:
Timing and Speed

world time

sequence time

Diagram courtesy of Sean Ellis, ARM

0 d

• Maps world time into sequence time

• Can control any number of sequences

AnimationController

AnimationAnimation

4. Apply value to
animated property 0 dsequence time

1. Call animate(worldTime)

s
v

2. Calculate
sequence time
from world time

3. Look up value at
this sequence time

Object3D

AnimationTrack

KeyframeSequence

Diagram courtesy of Sean Ellis, ARM

AnimationAnimation

Tip: Interpolate quaternions as ordinary 4-vectors
– Supported in HI Corp’s M3G Exporter

– SLERP and SQUAD are slower, but need less keyframes

– Quaternions are automatically normalized before use

M3G API OverviewM3G API Overview

Getting started

Rendering

Scene graph

Performance tips

Deformable meshes

Keyframe animation

Demos

SummarySummary

• M3G enables real-time 3D on mobile Java
– Minimizes Java code along critical paths

– Designed for both software and hardware

• OpenGL ES features at the foundation

• Animation & scene graph layered on top

30’000 devices sold during this presentation

DemosDemos

2D

3D

Playman Winter Games –
RealNetworks
Playman Winter Games –
RealNetworks

Perspective
and depth

Perspective
and depth

Side view onlySide view only

Playman World Soccer –
RealNetworks
Playman World Soccer –
RealNetworks

• 2D/3D hybrid

• Cartoon-like
2D figures in
a 3D scene

• 2D particle
effects etc.

Tower Bloxx –
Digital Chocolate
Tower Bloxx –
Digital Chocolate

• Puzzle/arcade
mixture

• Tower building
mode is in 3D, with
2D overlays and
backgrounds

• City building mode
is in pure 2D

Mini Golf Castles –
Digital Chocolate
Mini Golf Castles –
Digital Chocolate
• 3D with 2D

background
and overlays

• Skinned
characters

• Realistic ball
physics

Rollercoaster Rush –
Digital Chocolate
Rollercoaster Rush –
Digital Chocolate
• 2D backgrounds

• 3D main scene

• 2D overlays

Q&AQ&A

Thanks:
Sean Ellis (ARM)

Kimmo Roimela (Nokia)
Markus Pasula (RealNetworks)
Sami Arola (Digital Chocolate)

M3G in the Real
World

M3G in the Real
World

Mark Callow

Chief Architect

An M3G GameAn M3G Game

Copyright 2007, Digital Chocolate Inc.

Rollercoaster Rush 3D™Rollercoaster Rush 3D™

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walk through a sample game

• Why mobile game development is hard

• Publishing your content

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walk through a sample game

• Why mobile game development is hard

• Publishing your content

Game Development ProcessGame Development Process

• Traditional Java Game

Assets

Game logic Compile Java MIDlet JAR file

Images Sounds Music Other

D
istribute

Screen Image: Boulder Dash®-M.E.™

Game Platform

Sound

2D Graphics

Network

Other

Proprietary

Diagram courtesy of Sean Ellis, ARM.

Package

M3G Game Development ProcessM3G Game Development Process

• How M3G Fits

Assets

Game logic Compile Java MIDlet Package JAR file

Images Sounds Music Other3D World

Expanded
game logic

Game Platform

Sound

2D Graphics

Network

Other

Proprietary

3D Graphics

D
istribute

Diagram courtesy of Sean Ellis, ARM.
Screen Image: Boulder Dash®-M.E.™Screen Image: Sega/Wow Entertainment RealTennis.™

Development Team StructureDevelopment Team Structure

Planner/Producer

DesignersProgrammers

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walkthrough a sample game

• Why mobile game development is hard

• Publishing your content

Tools AgendaTools Agenda

• Tools
– Creating your assets

– Programming tools & development platforms

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Creating Your Assets: ImagesCreating Your Assets: Images

• Textures & Backgrounds

Images

Image EditorImage Editor with PNG with PNG
output. E. g:output. E. g:

••Adobe FireworksAdobe Fireworks

••Adobe PhotoshopAdobe Photoshop

Creating Your Assets: SoundsCreating Your Assets: Sounds

• Audio Tools

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Audio Production Tool; e. g.Audio Production Tool; e. g.

••Sony Sound ForgeSony Sound Forge®®

Commonly Used Formats:Commonly Used Formats:

••WAV, AU, MP3, SMAFWAV, AU, MP3, SMAF

Sounds

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

• Music Tools

Creating Your Assets: MusicCreating Your Assets: Music

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

MIDI Sequencer; e. g.MIDI Sequencer; e. g.

••Steinberg Steinberg CubaseCubase

Formats:Formats:

••SMAF, MIDI, SMAF, MIDI, cMIDIcMIDI, , MFiMFi

Music

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Creating Your Assets: 3d ModelsCreating Your Assets: 3d Models

• Modeling Tools

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

3D World

3d Modeler with M3G plug3d Modeler with M3G plug--in; e.g.in; e.g.

••LightwaveLightwave

••MayaMaya

••3d studio max3d studio max

••Softimage|XSISoftimage|XSI

Export 3d Model to M3GExport 3d Model to M3G

M3G File ViewerM3G File Viewer

On an EmulatorOn an Emulator

Tips for Designers 1Tips for Designers 1

• TIP: Don’t use GIF files
– The specification does not require their support

• TIP: Create the best possible quality audio & music
– It’s much easier to reduce the quality later than increase it

• TIP: Polygon reduction tools & polygon counters
are your friends
– Use the minimum number of polygons that conveys your

vision satisfactorily

Tips for Designers 2Tips for Designers 2

• TIP: Use light maps for lighting effects
– Usually faster than per-vertex lighting

– Use luminance textures, not RGB

– Multitexturing is your friend

• TIP: Try LINEAR interpolation for Quaternions
– Faster than SLERP

– But less smooth

Tips for Designers 3Tips for Designers 3

• TIP: Favor textured quads over Background &
Sprite3D
– Background and Sprite3D will be deprecated in M3G 2.0

– Were intended to speed up software renderers

– but implementation is complex, so not much speed up and
no speed up at all with hardware renderers

– Nevertheless Sprite3Ds are convenient to use for 2D
overlays and Backgrounds are convenient when
background scrolling is required.

• LIMITATION: Sprites not useful for particle systems

Tools AgendaTools Agenda

• Tools
– Creating your assets

– Programming tools & development platforms

Program DevelopmentProgram Development

Assets
3D World

Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

D
istribute

Compile Java MIDletExpanded
game logic Package JAR file

• Edit, Compile, Package

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

TraditionalTraditional

•• WTK, shell, editor, make, WTK, shell, editor, make, javacjavac

Integrated Development EnvironmentIntegrated Development Environment

•• Eclipse + Eclipse + EclipseMEEclipseME

•• Borland JBuilder + J2ME Wireless ToolkitBorland JBuilder + J2ME Wireless Toolkit

•• NetBeans IDE + Mobility PackNetBeans IDE + Mobility Pack

Assets
3D World

Program DevelopmentProgram Development

• Test & Debug
Expanded
game logic Compile Java MIDlet Package JAR file

Images Sounds Music

Game Platform

3D Graphics

Sound

2D Graphics

Network

Proprietary

Game Platform

Sound

2D Graphics

Network

Proprietary

3D Graphics

D
istribute

Operator/Maker supplied SDKOperator/Maker supplied SDK

••EmulatorEmulator

••SimulatorSimulator

••Real deviceReal device

Screen Image: Sega/Wow Entertainment RealTennis.™

Java Wireless Toolkit 2.5.1 for CLDCJava Wireless Toolkit 2.5.1 for CLDC

KToolBar

Handset Emulator

NetBeans + Mobility Pack + SE SDKNetBeans + Mobility Pack + SE SDK

Java DebuggingJava Debugging

JPDA Debugger

Debug Agent

KVM in Emulator

Socket Connection
JavaDebugWireProtocol

Socket Connection
KvmDebugWireProtocol

Debug Agent

KVM on Device

Connection Proxy

E
m

ulator

O
n D

evice

NetBeans
Eclipse, JBuilder

Serial Connection
SLIP

JPDA Debugger

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walk through a sample game

• Why mobile game development is hard

• Publishing your content

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walk through a sample game

• Why mobile game development is hard

• Publishing your content

• Derived from MIDlet,
• Overrides three methods

• And that’s it.

The Simplest MIDletThe Simplest MIDlet

Canvas.paint() performs rendering
using Graphics3D
object.

MIDlet.StartApp()

[initialize]
[request redraw]

MIDlet.destroyApp()

[shut down]
Ｔｉｄｙ ｕｐ； exit MIDlet.

Create canvas; load
world.

A More Interesting MIDletA More Interesting MIDlet
MIDlet.StartApp()

Create canvas; load
world, start update
thread

draw

Canvas.paint()

performs rendering
using Graphics3D
object

initialize

user input

scene update

request
redraw

wait

shut down

Get any user input via
Canvas.commandListener

Game logic, animate,
align if necessary

Wait to ensure
consistent
frame rate

MIDlet.destroyApp()
Ｔｉｄｙ ｕｐ； exit MIDlet

Exit request

Update loop.

Runnable.run()

Read user input,
update scene

Flow-chart courtesy of Sean Ellis, ARM

MIDlet PhasesMIDlet Phases

• Initialize

• Update

• Draw

• Shutdown

InitializeInitialize

• Load assets: world, other 3D objects, sounds, etc.

• Find any objects that are frequently used

• Perform game logic initialization

• Initialize display

• Initialize timers to drive main update loop

UpdateUpdate

• Usually a thread driven by timer events

• Get user input

• Get current time

• Run game logic based on user input

• Game logic updates world objects, if necessary

• Animate

• Request redraw

Update TipsUpdate Tips

• TIP: Don’t create or release objects if possible

• TIP: Call system.gc() regularly to avoid long
pauses

• TIP: cache any value that does not change every
frame; compute only what is absolutely necessary

DrawDraw

• Usually on overridden paint method

• Bind Graphics3D to screen

• Render 3D world or objects

• Release Graphics3D

– …whatever happens!

• Perform any other drawing (UI, score, etc)

• Request next timed update

Draw TipsDraw Tips

• TIP: Don’t do 2D drawing while Graphics3D is
bound

ShutdownShutdown

• Tidy up all unused objects

• Ensure once again that Graphics3D is released

• Exit cleanly

• Graphics3D should also be released during
pauseApp

MIDlet ReviewMIDlet Review

draw

Graphics3D object
performs rendering

initialize

user input

scene update

request
redraw

wait

shut down

Get any user input,
network play, etc.

Game logic,
animate, align if
necessary

Wait to ensure
consistent
frame rate

Release assets,
tidy up

Exit request

Update loop.

Don’t create/destroy
objects if possible

Throttle to consistent
frame rate

Keep paint() as simple
as possible

Be careful with threads

Diagram courtesy of Sean Ellis, ARM

Set up display, load
assets, find commonly
used objects, initiate
update thread.

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walk through a sample game

• Why mobile game development is hard

• Publishing your content

Demo: GhostHuntDemo: GhostHunt

GhostHuntGhostHunt

• Arrow keys move a “plasma” racquet side to side
to hit a “plasma” ball

• Ball hits deform ghost houses and make the
ghosts disappear

• Loads data from .m3g and .png files

• Uses Immediate mode

• Uses 2D for sky and scores

GhostHunt ModelsGhostHunt Models

GhostHunt AssetsGhostHunt Assets

GhostHunt FrameworkGhostHunt Framework

• MainApp.java – MIDlet specialization;
handles initialization & data loading; contains
run thread

• SubApp.java – canvas specialization

• Math2.java – math library

GhostHunt: initializationGhostHunt: initialization
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.m3g.*;

class MainApp extends MIDlet implements CommandListener {
MainApp() {
exit_command = new Command("Exit" , Command.EXIT , 0);
select_command = new Command("Debug", Command.SCREEN, 0);

/* Create canvas */
subapp = new SubApp ();
subapp.addCommand (exit_command);
subapp.addCommand (select_command);
subapp.setCommandListener (this);

SystemInit ();
prog_number = PROG_SPLASH;
WorkInit ();
GameInit ();
DataLoad ();

}

GhostHunt: loading dataGhostHunt: loading data

DataLoad() {
try {
image [TITLE_SP] = Image.createImage ("/title.png");
…

} catch (Exception e) {
System.out.println ("------------- SP Load");
ApplicationEnd ();

}

try {
load_data [RACKET_DATA] = Loader.load("/racket.m3g");

} catch (Exception e) {
…

}
mesh [RACKET_DATA] = (Mesh)load_data [RACKET_DATA][0];
vbuf [RACKET_DATA] = mesh [RACKET_DATA].getVertexBuffer();
ibuf [RACKET_DATA] = mesh [RACKET_DATA].getIndexBuffer(0);
app [RACKET_DATA] = mesh [RACKET_DATA].getAppearance(0);
…

}

GhostHunt: MIDlet functionsGhostHunt: MIDlet functions

public void startApp () {
thread = new Thread () {
public void run () {
GameStart ();

}
};
// Call the new thread’s run method.
thread.start ();

}

public void pauseApp ()
{

thread = null;
}

public void destroyApp (boolean unconditional)
{

ApplicationEnd();
}

GhostHunt: GameStart threadGhostHunt: GameStart thread

void GameStart () {
Thread thisThread = Thread.currentThread();
Display.getDisplay (this).setCurrent (subapp);
while (thread == thisThread) {
prev_time = now_time;
do {
now_time = System.currentTimeMillis ();

} while ((now_time - prev_time) < SYSTEM_SPEED);
loop_rate = (now_time - prev_time) / SYSTEM_SPEED;
if (loop_rate > 5.0f) { /* More than loop rate limit */
loop_rate = 5.0f;

}
/* do game stuff here … */

try {
Thread.sleep (1);

} catch (InterruptedException e) {
ApplicationEnd ();

}
}

}

GhostHunt: “do game stuff here ...”GhostHunt: “do game stuff here ...”

void GameStart () {
…
switch (prog_number) {

case PROG_SPLASH: /* Splash */
SplashProg ();
break;

case PROG_TITLE: /* Title */
TitleProg ();
break;

case PROG_GAME: /* Game */
GameProg ();
break;

}
…

}

GhostHunt: TitleProgGhostHunt: TitleProg

void TitleProg ()
{
key_dat = subapp.sys_key; /* Get keypresses */

if ((key_dat & KEY_FIRE) != 0) /* it is fire key */
{
racket_tx = 0.0f;
racket_tz = 0.0f; /* for initializing camera */
WorkInit ();
GameInit ();
…
prog_number = PROG_GAME;

}

/*------ Updating------*/
start_loop++;

/*------ Drawing ------*/
subapp.repaint ();

}

SubApp: GhostHunt’s CanvasSubApp: GhostHunt’s Canvas

public class SubApp extends Canvas {
int cnt;
static int keydata [] = { UP, LEFT, RIGHT, DOWN, FIRE };
int length = keydata.length;

static int sys_key = 0;

synchronized public void paint (Graphics graphics) { }

…

protected void keyPressed (int key) { }

protected void keyRepeated (int key) { }

protected void keyReleased (int key) { }
}

GhostHunt: key handlingGhostHunt: key handling

static int keydata [] = { UP, LEFT, RIGHT, DOWN, FIRE };

protected void keyPressed (int key) {
for (cnt = 0; cnt < length; cnt++) { /* Search key data.
*/
if (getGameAction (key) == keydata [cnt]) {
sys_key |= (1 << cnt);

}
}

}

protected void keyReleased (int key) {
for (cnt = 0; cnt < length; cnt++) { /* Search key data.
*/
if (getGameAction (key) == keydata [cnt]) {
sys_key &= (~(1 << cnt));

}
}

}

SubApp paint MethodSubApp paint Method

synchronized public void paint (Graphics graphics) {
/*------ select drawing process ------*/

switch (MainApp.prog_number)
{
case MainApp.PROG_SPLASH:

SplashDraw (graphics); /* Splash */
break;

case MainApp.PROG_TITLE:
TitleDraw (graphics); /* Title */
break;

case MainApp.PROG_GAME:
GameDraw (graphics); /* Game */
break;

}

Math2.Rand ();
}

GameDrawGameDraw

void GameDraw (Graphics graphics)
{

…
graphics.drawImage (MainApp.image[MainApp.BG_SP], 0, 0,
Graphics.TOP | Graphics.LEFT); /* 2D background sprite */

MainApp.g3d.bindTarget (graphics);
MainApp.g3d.clear (MainApp.background);

/*------ camera setup ------*/
…
/*------ draw 3D objects ------*/
…

MainApp.g3d.releaseTarget ();

/*------ draw score, items etc. in 2D ------*/
…

}

GameDraw: camera set-upGameDraw: camera set-up

MainApp.ctrans.setIdentity();
MainApp.ctrans.postTranslate(MainApp.camera_tx,

MainApp.camera_ty,
MainApp.camera_tz);

MainApp.ctrans.postRotate(MainApp.camera_ry,
0.0f, 1.0f, 0.0f);

MainApp.ctrans.postRotate(MainApp.camera_rx,
1.0f, 0.0f, 0.0f);

MainApp.ctrans.postRotate(MainApp.camera_rz,
0.0f, 0.0f, 1.0f);

MainApp.g3d.setCamera(MainApp.camera, MainApp.ctrans);

GameDraw: draw 3d objectsGameDraw: draw 3d objects
for (count = 0; count != MainApp.GHOST_MAX; count++)
{

if (MainApp.ghost_draw_flag [count] != 0) {
data = count * 2;
x = MainApp.ghost_xz [data + 0];
z = MainApp.ghost_xz [data + 1];
r = MainApp.ghost_r [count];
trans = MainApp.trans[MainApp.GHOST_M + count];

trans.setIdentity ();
trans.postTranslate (x, 0.0f, z);
trans.postRotate (r, 0.0f, 1.0f, 0.0f);
trans.postScale (MainApp.ghost_scale [count],

MainApp.ghost_scale [count],
MainApp.ghost_scale [count]);

MainApp.g3d.render (MainApp.vbuf [MainApp.GHOST_DATA],
MainApp.ibuf [MainApp.GHOST_DATA],
MainApp.app [MainApp.GHOST_DATA],
trans);

}
}

GameProgGameProg
void GameProg() {
key_dat_old = key_dat; /*---- Get key data ----*/
key_dat = subapp.sys_key;

CameraWorldSet ();
if (Math2.DistanceCalc2D (0.0f, 0.0f, ball_tx,
ball_tz) > 1.5f) {
CameraSet (15.0f * (1.0f / loop_rate));

}

if (freeze_time == 0) /* The Game is not frozen */ {
/*------- do game calculations ------*/
…

}
EffectProg ();
subapp.repaint ();
…

}

GameProg: do game calculationsGameProg: do game calculations
RacketProg (key_dat, key_dat_old); /*-- Plasma Racket --*/

if (racket_break_flag != 1) /*- Racket not destroyed -*/
BallProg ();

GhostProg ();

if (racket_break_flag != 1) /*- Racket not destroyed -*/ {
BallHit (); /*--- Collision Decision ---*/
RacketBreakCheck ();

}

house = HouseCheck (); /*------ Final Check ------*/
if (house == 0) /* All ghost houses are destroyed. */ {
/*------ make all remaining ghosts disappear ------*/
…
freeze_time = (int)(MOJI_CLEAR_WAIT * (1.0f/loop_rate));
moji_number = MOJI_CLEAR;

}
}

BallProg: compute new ball positionBallProg: compute new ball position
void BallProg () {
…
ball_speed_rate = ball_speed * loop_rate;

dis = Math2.DistanceCalc2D(ball_tx, ball_tz, 0.0f, 0.0f);
pd = Math2.DistanceCalc2D(ball_tx2, ball_tz2, 0.0f, 0.0f);
if ((dis > 2.0f) && pd > dis)) /* Homing is necessary */ {
angle = Math2.AngleCalc (ball_tx, ball_tz, 0.0f, 0.0f);
if (Math2.DiffAngleCalc (angle, ball_vec) > 0.0f) {
ball_vec -= (0.6f * loop_rate);

} else {
ball_vec += (0.6f * loop_rate);

}
}
Math2.RotatePointCalc (ball_speed_rate, ball_vec);
ball_tx2 = ball_tx; /* Save the previous coordinates */
ball_tz2 = ball_tz;
ball_tx += Math2.calc_x;
ball_tz += Math2.calc_y;

}

BallHitBallHit
void BallHit () {
…
/*------ racket collision detection ------*/
…
/*------ ghost house collision detection ------*/
…
/*------ ghost collision detection ------*/
…
/*------ obstacle (cross) collision detection ------*/
…
/*------ warp hole collision detection ------*/
…
/*------ check for outside the field ------*/
…

}

BallHit: racket collision detectionBallHit: racket collision detection
void BallHit () {
… /* final static int Math2.ANGLE = 360 */
dist = Math2.DistanceCalc2D (racket_tx, racket_tz

ball_tx, ball_tz);
if (dist <= BALL_RACKET_DISTANCE) {
angle = Math2.AngleCalc (ball_tx, ball_tz, racket_tx,

racket_tz);
diff = Math2.DiffAngleCalc(angle, ball_vec

+ (Math2.ANGLE/2.0f));
if (Math2.Absf (diff) > (Math2.ANGLE / 4.0f)) {
/* Feasible angle for collision */
ball_vec = angle + (diff * -1.0f);

Math2.RotatePointCalc (ball_speed_rate, ball_vec);
ball_tx = ball_tx2 + Math2.calc_x;
ball_tz = ball_tz2 + Math2.calc_y;

}
}
…

}

Improvement 1: simpler drawingImprovement 1: simpler drawing
for (count = 0; count != MainApp.GHOST_MAX; count++)
{

if (MainApp.ghost_draw_flag [count] != 0) {
…
MainApp.g3d.render (MainApp.vbuf [MainApp.GHOST_DATA],

MainApp.ibuf [MainApp.GHOST_DATA],
MainApp.app [MainApp.GHOST_DATA],
trans);

MainApp.g3d.render (MainApp.mesh[MainApp.GHOST_DATA],
trans)

}
}

Improvement 2: no busy waitingImprovement 2: no busy waiting
while (thread == thisThread) {

prev_time = now_time;
do {
now_time = System.currentTimeMillis ();

} while ((now_time - prev_time) < SYSTEM_SPEED);
loop_rate = (now_time - prev_time) / SYSTEM_SPEED;
if (loop_rate > 5.0f) { /* More than loop rate limit */

loop_rate = 5.0f;
}

/* do game stuff here … */
try {

Thread.sleep (1);
} catch (InterruptedException e) {

ApplicationEnd ();
}

}

Improvement 2: no busy waitingImprovement 2: no busy waiting
while (thread == thisThread) {

prev_time = now_time;
do {
now_time = System.currentTimeMillis ();

} while ((now_time - prev_time) < SYSTEM_SPEED);
now_time = System.currentTimeMillis();
long sleep_time = SYSTEM_SPEED + prev_time - now_time;
if (sleep_time < 0)

sleep_time = 1; /* yield anyway so other things can run */
try {

Thread.sleep(sleep_time);
} catch (InterruptedException e) {

ApplicationEnd ();
}
if (thread != thisThread) return;
now_time = System.currentTimeMillis ();
loop_rate = (now_time - prev_time) / SYSTEM_SPEED;
if (loop_rate > 5.0f) { /* More than loop rate limit */

loop_rate = 5.0f;
}

/* do game stuff here … */
}

Programming TricksProgramming Tricks

• Use per-object fog to highlight objects

• Use black fog for night time

• Draw large background objects last

• Draw large foreground objects first

• Divorce logic from representation

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walkthrough a sample game

• Why mobile game development is hard

• Publishing your content

Why Mobile Game Development is
Hard
Why Mobile Game Development is
Hard
• Device Fragmentation
• Device Fragmentation
• Device Fragmentation

– Porting platforms and tools are available:
• www.tirawireless.com, www.javaground.com

– Porting and testing services are available:
• www.tirawireless.com

– For some self-help using NetBeans see
• J2ME MIDP Device Fragmentation Tutorial with Marv The

Miner

Why Mobile Game Development is
Hard
Why Mobile Game Development is
Hard

• Severe limits on application size
– Download size limits

– Small Heap memory

• Small screens

• Poor input devices

• Poor quality sound

• Slow system bus and memory system

Why Mobile Game Development is
Hard
Why Mobile Game Development is
Hard
• No floating point hardware

• No integer divide hardware

• Many tasks other than application itself
– Incoming calls or mail

– Other applications

• Short development period

• Tight $100k – 250k budget

MemoryMemory

• Problems
①Small application/download size

②Small heap memory size

• Solutions
– Compress data ①

– Use single large file ①

– Use separately downloadable levels ①

– Limit contents ②

– Optimize your Java: combine classes, coalesce var’s,
eliminate temporary & local variables, … ②

PerformancePerformance

• Problems
① Slow system bus & memory

② No integer divide hardware

• Solutions
– Use smaller textures ①

– Use mipmapping ①

– Use byte or short coordinates and key values ①
– Use shifts ②

– Let the compiler do it ②

User-Friendly OperationUser-Friendly Operation

• Problems
– Button layouts differ

– Diagonal input may be impossible

– Multiple simultaneous button presses not recognized

• Solutions
– Plan carefully

– Different difficulty levels

– Same features on multiple buttons

– Key customize feature

Many Other TasksMany Other Tasks

• Problem
– Incoming calls or mail

– Other applications

• Solution
– Create library for each handset terminal

AgendaAgenda

• J2ME game development

• Tools

• COFFEE BREAK

• The structure of a MIDlet

• A walkthrough a sample game

• Why mobile game development is hard

• Publishing your content

Publishing Your Content AgendaPublishing Your Content Agenda

• Publishing your content
– Preparing contents for distribution

– Getting published and distributed

Preparing for Distribution:
Testing
Preparing for Distribution:
Testing
• Testing on actual handsets essential

– May need contract with operator to obtain tools
needed to download test MIDlets to target handset.

– May need contractor within operator’s region to
test over-the-air aspects as handset may not work
in your area

• Testing services are available
– e.g. www.tirawireless.com

Preparing for Distribution:
Signing
Preparing for Distribution:
Signing
• Java has 4 security domains:

– Manufacturer Operator

– 3rd Party Untrusted

• Most phones will not install untrusted MIDlets
– If untrusted MIDlets are allowed, there will be limits

on access to certain APIs

• Operators will not allow untrusted MIDlets in
their distribution channels

Preparing for Distribution:
Signing
Preparing for Distribution:
Signing
• Your MIDlet must be certified and signed

using a 3rd party domain root certificate

• Method varies by operator and country
– Many makers and operators participate in the Java

Verified Program to certify and sign MIDlets for
them

• To get certification, MIDlet must meet all
criteria defined by JVP and must pass testing

Publishing Your Content AgendaPublishing Your Content Agenda

• Publishing your content
– Preparing contents for distribution

– Getting published and distributed

Publishing Your Content:
Distribution Channels
Publishing Your Content:
Distribution Channels
• Game deck

– e.g. “More Games button”

• Off deck, in portal
– e.g. AT&T Wireless’s Beyond MEdia Net

• Off portal
– Independent of operator

– Premium SMS or web distribution

Distribution Channels:
Game Deck
Distribution Channels:
Game Deck
• Customers find you easily

– but many carriers only allow a few words of text to
describe and differentiate the on-deck games

• Operator does billing
– No credit worries

• Operator may help with marketing
– or they may not

• Shelf space limited

Distribution Channels:
off Deck, in Portal
Distribution Channels:
off Deck, in Portal
• Hard to find you. Need viral marketing

– Customers must enter search terms in operator’s
search box

– or find URL in some other way

• Operator does billing, may help with
marketing

• May be able to get here without a publisher

Distribution Channels:
off Deck, off Portal
Distribution Channels:
off Deck, off Portal
• Very hard for customers to find you

– Only 4% of customers have managed to buy from the game deck!

• You have to handle billing
– Typical game prices of $2 - $6 too low for credit cards. Must offer

subscription service for CC billing.

– Nobody is going to enter your url then billing information on a 9-
key pad and very few people will use a PC to buy games for their
phone.

– Premium SMS or advertiser funded are about the only ways.

• You take all the risks
• Some handsets/carriers do not permit off-portal

downloads

Publishing Your Content
Billing Mechanisms
Publishing Your Content
Billing Mechanisms
• One-time purchase via micropayment

– Flat-rate data? Larger, higher-cost games

• Subscription model via micropayment
– Episodic games to encourage loyalty

– Game arcades with new games every month

• Sending Premium SMS
– Triggers initial download

– Periodically refills scarce supplies

Operator Revenue Share 1999 - 2004Operator Revenue Share 1999 - 2004

9

90

10
4.5 20 25 25

12
50 60

35 30

%

DoCoMo Orange
WAP

SKT AT&T Sprint
PCS

Verizon
"GIN"

Vodafone
Live

Orange
World

Cingular SKT 3G

Operator VM Vendor Qualcomm

Source: www.roberttercek.com

Going On-DeckGoing On-Deck

• Find a publisher and build a good relationship with
them

• Japan: Square Enix, Bandai Networks, Sega WOW,
Namco, Infocom, etc.

• America: Bandai America, Digital Chocolate, EA
Mobile, MForma, Sorrent

• Europe: Digital Chocolate, Superscape, Macrospace,
Upstart Games

Going Off-DeckGoing Off-Deck

• There are off-deck distribution services:
– thumbplay, www.thumbplay.com

– playphone, www.playphone.com

– gamejump, www.gamejump.com free advertiser
supported games

• These services may be a good way for an
individual developer to get started

Other 3D Java Mobile APIsOther 3D Java Mobile APIs

Mascot Capsule Micro3D Family APIs

• Motorola iDEN, Sony Ericsson, Sprint, etc.

– com.mascotcapsule.micro3d.v3 (V3)

• Vodafone KK JSCL

– com.j_phone.amuse.j3d (V2), com.jblend.graphics.j3d (V3)

• Vodafone Global

– com.vodafone.amuse.j3d (V2)

• NTT Docomo (DoJa)

– com.nttdocomo.opt.ui.j3d (DoJa2, DoJa 3) (V2, V3)

– com.nttdocomo.ui.graphics3D (DoJa 4, DoJa 5) (V4)

(Vx) - Mascot Capsule Micro3D Version Number

Mascot Capsule V3 Game DemoMascot Capsule V3 Game Demo

Copyright 2006, by Interactive Brains, Co., Ltd.

SummarySummary

• Use standard tools to create assets

• Many J2ME SDKs and IDEs are available

• Basic M3G MIDlet is relatively easy

• Programming 3D Games for mobile is hard

• Getting your content marketed, distributed and sold
is a huge challenge

ExportersExporters

3ds max
– Simple built-in exporter since 7.0

– www.digi-element.com/Export184/

– www.mascotcapsule.com

– www.m3gexporter.com

Maya
– www.mascotcapsule.com

– www.m3gexport.com

Softimage|XSI
– www.mascotcapsule.com

Cinema 4D
– www.tetracon.de/public_main_modul

.php?bm=&ses=&page_id=453&doc
ument_id=286&unit=441299c9be098

Lightwave
– www.mascotcapsule.com

Blender
– www.nelson-games.de/bl2m3g/

M3GToolkit
– www.java4ever.com

Not a typo

vaporware?

SDKsSDKs

• Motorola iDEN J2ME SDK
– idenphones.motorola.com/iden/developer/developer_tools.jsp

• Nokia Series 40, Series 60 & J2ME
– www.forum.nokia.com/java

• Softbank MEXA & JSCL SDKs
– developers.softbankmobile.co.jp/dp/tool_dl/java/tech.php

– developers.softbankmobile.co.jp/dp/tool_dl/java/emu.php

SDKsSDKs

• Sony Ericsson
– developer.sonyericsson.com/java

• Sprint Wireless Toolkit for Java
– developer.sprintpcs.com

• Sun Java Wireless Toolkit 2.5.1 for CLDC
– http://java.sun.com/products/sjwtoolkit/index.html

• Vodafone VFX SDK
– via.vodafone.com/vodafone/via/Home.do

IDE’s for Java MobileIDE’s for Java Mobile

• Eclipse Open Source IDE
– www.eclipse.org & eclipseme.org

• JBuilder 2005 Developer
– www.borland.com/jbuilder/developer/index.html

• NetBeans
– www.netbeans.info/downloads/index.php

– www.netbeans.org/products/

• Comparison of IDE’s for J2ME
– www.microjava.com/articles/J2ME_IDE_Comparison.pdf

Other ToolsOther Tools

• Macromedia Fireworks
– www.adobe.com/products/fireworks/

• Adobe Photoshop
– www.adobe.com/products/photoshop/main.html

• Sony SoundForge
– www.sonymediasoftware.com/products/showproduct.asp?PID=96

1

• Steinberg Cubase
– www.steinberg.de/33_1.html

• Yamaha SMAF Tools
– smaf-yamaha.com/

Other ToolsOther Tools

• Java optimizer - Innaworks mBooster
– www.innaworks.com/mBooster.html

• Porting Platforms
– www.tirawireless.com

– www.javaground.com

ServicesServices

• MIDlet verification & signing
– www.javaverified.com

• Porting & testing
– www.tirawireless.com

• Off deck distribution
– www.thumbplay.com

– www.playphone.com

– www.gamejump.com

犬友 (Dear Dog) Demo犬友 (Dear Dog) Demo

Thanks to: Koichi Hatakeyama; HI’s
MascotCapsule Version 4 Development

Team; Sean Ellis; JSR-184 & JSR-297 Expert
Groups

M3G 2.0
Sneak Preview
M3G 2.0
Sneak Preview

Tomi Aarnio

Nokia Research Center

What is M3G 2.0?What is M3G 2.0?

• Mobile 3D Graphics API, version 2.0
– Java Specification Request 297

– Successor to M3G 1.1 (JSR 184)

• Work in progress
– Public Review Draft is out (www.jcp.org)

– Developer feedback is much appreciated!

Who’s Behind It?Who’s Behind It?

Hardware vendors
• AMD, ARM

• NVIDIA, PowerVR

Device makers
• Nokia, Sony Ericsson

• Motorola, Samsung

Platform providers
• Sun, Ericsson

• HI, Aplix, Acrodea

Developers
• Digital Chocolate

• RealNetworks

• Superscape

M3G 2.0 PreviewM3G 2.0 Preview

Design
Fixed functionality

Programmable shaders

New high-level features

Summary, Q&A

Design Goals & PrioritiesDesign Goals & Priorities

Target all devices
1. Programmable HW

2. No graphics HW

3. Fixed-function HW

Why Not Shaders Only?Why Not Shaders Only?

Fixed Function
Hardware

No Graphics Hardware

Shader
Hardware

Dev
ice

 sa
les

 in
 20

10
?

Shaders and Fixed FunctionalityShaders and Fixed Functionality

M3G 2.0

OpenGL ES 2.0

OpenGL ES 1.1

Shaders and Fixed FunctionalityShaders and Fixed Functionality

M3G 2.0

OpenGL ES 2.0

OpenGL ES 1.1

Design Goals & PrioritiesDesign Goals & Priorities

Enable reuse of
1. Assets & tools (.m3g)

2. Source code (.java)

3. Binary code (.class)

Target all devices
1. Programmable HW

2. No graphics HW

3. Fixed-function HW

Backwards Compatible – Why?Backwards Compatible – Why?

• Device vendors can drop M3G 1.1
– Rather than supporting both versions (forever)

– Cuts integration, testing & maintenance into half

• Developers can upgrade gradually
– Rather than re-doing all code, art, and tools

Backwards Compatible – How?Backwards Compatible – How?

M3G 2.0
AdvancedM3G 2.0 Core

M3G 1.1

M3G 2.0
Advanced

Backwards Compatible – How?Backwards Compatible – How?

M3G 2.0 Core

M3G 1.1

The DownsidesThe Downsides

• Must emulate fixed functionality on shader HW
– Extra implementation burden

• The API is not as compact as it used to be
– A pure shader API could have ~20% fewer classes

• Need to drag along obsolete features
– Flat shading, Sprite3D, Background image

– Can be deprecated, but not totally removed

Core vs. AdvancedCore vs. Advanced

• High-level features are common to both
– Scene graph

– Animation

• The differences are in rendering
– Core OpenGL ES 1.1

– Advanced OpenGL ES 2.0

What’s in the Core?What’s in the Core?

• Everything that’s in M3G 1.1

• Everything that’s in OpenGL ES 1.1
– Except for useless or badly supported stuff

– Such as points, logic ops, stencil, full blending

• A whole bunch of new high-level features

What’s in the Advanced Block?What’s in the Advanced Block?

• Everything that’s in OpenGL ES 2.0
– Vertex and fragment shaders

– Cube maps, advanced blending

– Stencil buffering

What’s not included?What’s not included?

• Optional extensions of OpenGL ES
– Floating-point textures

– Multiple render targets

– Depth textures, 3D textures

– Non-power-of-two mipmaps

– Occlusion queries

– Transform feedback

M3G 2.0 PreviewM3G 2.0 Preview

Design

Fixed functionality
Programmable shaders

New high-level features

Summary, Q&A

M3G 2.0 Core vs. M3G 1.1M3G 2.0 Core vs. M3G 1.1

• New capabilities

• Better and faster rendering

• More convenient to use

• Fewer optional features

Point SpritesPoint Sprites

• Ideal for particle effects

• Much faster than quads

• Consume less memory

• Easier to set up

Image copyright AMD

Better TexturingBetter Texturing

• More flexible input
– ETC (Ericsson Texture Compression), JPEG

– RGB565, RGBA5551, RGBA4444

– Can set individual mipmap levels

– Dynamic sources (e.g. video)

• Upgraded baseline requirements
– At least two texture units

– At least 1024x1024 size

– Perspective correction

– Mipmapping, bilinear filtering

Texture CombinersTexture Combiners

• Precursor to fragment shaders
– Quite flexible, but not very easy to use

Bump MappingBump Mapping

• Fake geometric detail

• Feasible even w/o HW

Image copyright AMD

Bump Mapping + Light MappingBump Mapping + Light Mapping

• Bump map modulated
by projective light map

Image copyright AMDImage copyright AMD

Floating-Point Vertex ArraysFloating-Point Vertex Arrays

• float (32-bit)
– Easy to use, good for prototyping

– Viable with hardware acceleration

• half (16-bit)
– Savings in file size, memory, bandwidth

• byte/short still likely to be faster

Triangle ListsTriangle Lists

• Much easier to set up than strips
– Good for procedural mesh generation

– Avoids the expensive stripification

• Sometimes even smaller & faster than strips
– Especially with a cache-friendly triangle ordering

Primitives – M3G 1.xPrimitives – M3G 1.x

Im
plicit

Byte Short Strip Fan List

Point sprites

Points

Lines

Triangles

Relative to OpenGL ES 1.1

Primitives – M3G 2.0Primitives – M3G 2.0

Im
plicit

Byte Short Strip Fan List

Point sprites

Points

Lines

Triangles

Relative to OpenGL ES 1.1

VertexBuffer Types – M3G 1.xVertexBuffer Types – M3G 1.x

*Colors

FloatByte Short Fixed

PointSizes

Normals

TexCoords

Vertices

4D3D2D

* OpenGL ES 1.1 only supports RGBA colors. M3G also supports RGB

VertexBuffer Types – M3G 2.0VertexBuffer Types – M3G 2.0

*Colors

Float
HalfByte Short Fixed

PointSizes

Normals

TexCoords

Vertices

4D3D2D

* OpenGL ES 1.1 only supports RGBA colors, M3G also supports RGB

Deprecated FeaturesDeprecated Features

• Background image
– Use a sky box instead

• Sprite3D
– Use textured quads or point sprites instead

• Flat shading
– Can’t have this on OpenGL ES 2.0!

Deprecated Features Cont’dDeprecated Features Cont’d

• Two-sided lighting
– Requires duplicated geometry on OpenGL ES 2.0

• Local camera lighting (a.k.a. local viewer)
– Only a hint that was poorly supported

• Less accurate picking
– Skinning and morphing not taken into account

M3G 2.0 PreviewM3G 2.0 Preview

Design

Fixed functionality

Programmable shaders
New high-level features

Summary, Q&A

Shading LanguageShading Language

• GLSL ES v1.00
– Source code format only

– Binary shaders would break the Java sandbox

• Added a few preprocessor #pragma’s
– To enable skinning, morphing, etc.

– Apply for vertex shaders only

The Shader PackageThe Shader Package

Shader
Program

Shader
Uniforms

VertexShader

FragmentShader

Shader
Appearance

Shader
Uniforms
Shader

Uniforms

Compiled on
construction
Compiled on
construction

Linked on
construction,
validated on

first use

Linked on
construction,
validated on

first use

Why Multiple ShaderUniforms?Why Multiple ShaderUniforms?

• So that uniforms can be grouped
– Global constants – e.g. look-up tables

– Per-mesh constants – e.g. rustiness

– Per-frame constants – e.g. time of day

– Dynamic variables – e.g. position, orientation

• Potential benefits of grouping
– Java object reuse – less memory, less garbage

– Can be faster to bind a group of variables to GL

A Fixed-Function Vertex ShaderA Fixed-Function Vertex Shader

• A small example shader

• Replicates the fixed-function pipeline using
the predefined #pragma’s

Necessary DeclarationsNecessary Declarations

#pragma M3Gvertex(myVertex)

#pragma M3Gnormal(myNormal)

#pragma M3Gtexcoord0(myTexCoord0)

#pragma M3Gcolor(myColor)

#pragma M3Gvertexstage(clipspace)

varying vec2 texcoord0;

varying vec4 color;

Names & roles for
vertex attributes

Names & roles for
vertex attributes

Transform all the
way to clip space

Transform all the
way to clip space

Variables to pass to
the fragment shader
Variables to pass to

the fragment shader

The Shader CodeThe Shader Code

void main() {

m3g_ffunction();

gl_Position = myVertex;

texcoord0 = myTexCoord0.xy;

color = myColor;

}

Applies morphing,
scale/bias, skinning,

model-view, projection

Applies morphing,
scale/bias, skinning,

model-view, projection

Results passed to the
fragment shader

Results passed to the
fragment shader

M3G 2.0 PreviewM3G 2.0 Preview

Design

Fixed functionality

Programmable shaders

New high-level features
Summary, Q&A

RenderPassRenderPass

• Automated render-to-texture (RTT)
– First set up RenderTarget, World, Camera
– Call myWorld.preRender() (e.g. every Nth frame)

– This updates all dynamic textures in the scene

– Finally, render the World as usual

• RTT effects can now be authored in DCC tools
– Advanced FX without programmer intervention

– Reflection, refraction, HDR bloom, etc.

Transparency SortingTransparency Sorting

• Can sort blended submeshes back-to-front
– Toggled ON/OFF per Appearance and layer

– Based on the Mesh origin’s depth in eye space

– Depth = MODELVIEW_MATRIX(3, 4)

• Individual triangles are not sorted

Level of Detail (LOD)Level of Detail (LOD)

• A Group node can select one of its children
– Based on their size in screen pixels

– Similar to mipmap level selection

• Formally
1.Compute s = pixels per model-space unit

2.Select the node whose ideal scale si satisfies

}|max{ sss ii ≤

Level of Detail (LOD)Level of Detail (LOD)

• Example – from highest detail to lowest:
– SkinnedMesh with 30 bones and 1000 vertices

– SkinnedMesh with 15 bones and 500 vertices

– MorphingMesh with 3 targets and 200 vertices

– Tiny billboard with flip-book animation

• Appearance detail scaled in the same way
– E.g. from complex shaders to per-vertex colors

Bounding Volumes (BV)Bounding Volumes (BV)

• To speed up view frustum culling & picking
– Processed hierarchically to cull entire branches

• Can be specified for each node
– Bounding sphere = center & radius

– Bounding box = min & max extents

– If both are given, use their intersection

– If neither is given, use an internal BV

Combined Morphing & SkinningCombined Morphing & Skinning

• First morph, then skin the result

• Useful for animated characters
– Morph targets for facial animation

– Skinning for the rest of the body

• Can morph and/or skin any vertex attribute
– Use the result in your own vertex shader

– #pragma M3Gvertexstage(skinned)

Subset MorphingSubset Morphing

• Can morph an arbitrary subset of vertices

• Previously, the whole mesh was morphed
– Now the morph targets are much smaller

– Big memory savings in e.g. facial animation

Multichannel Keyframe SequencesMultichannel Keyframe Sequences

• N channels per KeyframeSequence
– Same number of keyframes in all channels

– Shared interpolation mode

– Shared time stamps

• Huge memory savings with skinning
– M3G 1.1: two Java objects per bone (~60 total)

– M3G 2.0: two Java objects per mesh

Other StuffOther Stuff

• Event tracks associated with animations
– E.g. play a sound when a foot hits the ground

• Lots of new convenience methods
– findAll(Class) – find e.g. all Appearances

– Can enable/disable animations hierarchically

– Can use quaternions instead of axis/angle

– Easy pixel-exact 2D projection for overlays

– Easy look-at orientation for camera control

– Predefined, intuitive blending modes

File FormatFile Format

• Updated to match the new API
– File structure remains the same

– Same parser can handle both old & new

• Better compression for
– Textures (ETC, JPEG)

– SkinnedMesh, IndexBuffer

Things Under ConsiderationThings Under Consideration

• Simple collision detection

• Fast Matlab-style array arithmetic
– Based on floating-point VertexArrays

– Compute the dot product of two arrays, etc.

– Overcomes the Java Native Interface overhead

M3G 2.0 PreviewM3G 2.0 Preview

Design

Fixed functionality

Programmable shaders

New high-level features

Summary, Q&A

SummarySummary

• M3G 2.0 will replace 1.1, starting next year
– Existing code & assets will continue to work

• Several key improvements
– Programmable shaders to the mass market

– Fully featured traditional rendering pipeline

– Advanced animation and scene management

– Better perf across all device categories

Q&AQ&A

Thanks:
M3G 2.0 Expert Group

Dan Ginsburg (AMD)

Kimmo Roimela (Nokia)

Closing & SummaryClosing & Summary

• We have covered
– OpenGL ES

– M3G

• Let’s quickly see what else is there
– COLLADA

– 2D APIs: OpenVG, JSR 226, JSR 287

Khronos API familyKhronos API family

Embedded Media Acceleration APIs
2D/3D Vector 2D

Streaming Media Enhanced Audio

OS portability API

3D Authoring

Dynamic Media
Authoring

Dynamic Media Authoring Standards

Cross platform 2D/3D

Cross-platform graphics
authoring/acceleration

Ecosystem

Safety Critical 2D/3D

Physics

Scene Graph

Materials

Animation

Textures

Meshes

Shader FX

• An open interchange format
– to exchange data between

content tools

– allows mixing and
matching tools for
the same project

– allows using desktop
tools for mobile content

Collada conditioningCollada conditioning

• Conditioning pipelines take
authored assets and:

• 1. Strips out authoring-only
information

• 2. Re-sizes to suit the target
platform

• 3. Compresses and formats
binary data for the target
platform

• Different target platforms can
use the same asset database
with the appropriate
conditioning pipeline

Tool 1

Tool 2

Tool 3

Tool 4

COLLADA
Database

Conditioning
Pipeline

Conditioning
Pipeline

2D Vector Graphics2D Vector Graphics

• OpenVG
– low-level API, HW acceleration

– spec draft at SIGGRAPH 05, conformance tests summer 06

• JSR 226: 2D vector graphics for Java
– SVG-Tiny compatible features

– completed Mar 05

• JSR 287: 2D vector graphics for Java 2.0
– rich media (audio, video) support, streaming

– may still complete in 07

OpenVG featuresOpenVG features

Paints Mask

Stroke

Image transformation Paths

Fill rule

OpenVG pipelineOpenVG pipeline

Definition of path, transformation,
stroke and paint

Transformation

Clipping and Masking

Rasterization

Image Interpolation

Blending

Stroked path generation

Paint Generation

JSR-226 examplesJSR-226 examples

Game, with skins Scalable maps,
variable detail

Cartoon Weather info

Combining various APIsCombining various APIs

• It’s not trivial to efficiently combine use of
various multimedia APIs in a single
application

• EGL is evolving towards simultaneous
support of several APIs
– OpenGL ES and OpenVG now

– all Khronos APIs later

OpenGL ES and OpenVGOpenGL ES and OpenVG

OpenGL ES
Accurately represents
PERSPECTIVE and

LIGHTING

OpenVG
Accurately represents

SHAPE and
COLOR

OpenVG ideal for advanced compositing user interfaces
OpenGL ES for powerful 3D UI effects

SummarySummary

• Handheld devices are viable 3D platforms
– OpenGL ES, M3G, COLLADA

• 2D vector graphics is also available
– JSR 226, Flash, OpenVG, JSR 287

• Download the SDKs
– and start coding on the smallest (physical size) yet

largest (number of units) platform

