Eurographics Symposium on Parallel Graphics and Visualization (2013)
F. Marton and K. Moreland (Editors)

In Situ Pathtube Visualization with Explorable Images

Yucong Ye, Robert Miller, and Kwan-Liu Ma

University of California, Davis

Abstract

In situ processing is considered to be the most plausible data analysis and visualization solution for extreme-scale
simulations. Explorable images were introduced as an in situ visualization method to enable interactive explo-
ration of scalar field data without need for access to the massive original data and a powerful computer. We
present a technique for in situ generation of explorable images for the visualization of vector field data without in-
curring additional inter-processor communication during simulation. We demonstrate this technique for pathtube
generation on a variety of large datasets. The resulting pathtube visualization succinctly captures the flow struc-
ture over the full time span of the simulation. Users may explore the vector field structure through the generated
images by changing the view angle, generating block cutaways, adjusting lighting, or changing transfer functions

to recolor pathtubes or provide partial transparency.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image
Generation— Viewing algorithms Computer Graphics [1.3.1]: Hardware Architecture—Parallel Processing

1. Introduction

In recent years, the computational power of supercomputers
has not been matched by the other resources required by the
simulations running on those systems. As a result, simula-
tions running on these systems are often not limited by pro-
cessor speed, but instead are limited by available communi-
cation, I/0, or memory requirements. One strategy is thus to
trade small computational time for reduced communication,
I/O, or storage space. The scientists who use these super-
computers often need to visualize the results of their simula-
tions, so in situ visualization and data reduction has become
a popular way to make use of some of the extra computa-
tional power [Ma09]. There are, however, some difficulties
in using in situ visualization effectively.

Most of the early in situ visualization works render static
images of the simulation output from some prespecified an-
gle, using prespecified lighting and transfer function param-
eters. The inherent problem here is that it is difficult to know
a priori what parameters will provide useful visualizations
before the simulation has been run. As a result, some users
first run a subset of the simulation to determine useful visual-
ization parameters, then repeat the simulation with these new
parameters for a final rendering. For exploration of the sim-
ulation space, either multiple simulation runs, direct storage
of geometry for rendering, or often heavyweight run-time

(© The Eurographics Association 2013.

DOI: 10.2312/EGPGV/EGPGV13/009-016

visualization and interaction techniques may be necessary.
While each of these solutions has its place, each may be ex-
pensive with respect to I/O or computational resources.

An alternative approach is to generate several static im-
ages on each simulation run, using different visualization
parameters for each. It is common, for instance, to render
several different views of a simulation from different an-
gles. This often addresses some of the aforementioned prob-
lems, but in addition to the excessive cost there are still cases
where none of the generated images are valuable, especially
when searching for useful transfer function parameters. To
resolve these problems, we extend a technique based upon
explorable images [TCM10a, TCM10b], which was shown
effective for visualizing scalar field data, to defer specifi-
cation of relevant visualization parameters for visualizing
vector field data until after the simulation run is complete.
Specifically, we compute pathtube visualization for the vec-
tor field and make it explorable. We would like to let the
users adjust view angle, transfer function, and lighting con-
ditions after simulation completion, without reference to the
full simulation data or re-simulation. We would also like to
provide spatial cutaways to reveal internal structure.

Inter-processor communication and I/O are often the crit-
ical resource bottlenecks for modern simulations, so in situ
visualizations should require as little communication and I/O

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV13/009-016

10 Yucong Ye & Robert Miller & Kwan-Liu Ma / In Situ Pathtube Visualization with Explorable Images

as possible. Therefore, the ideal case is for each node to com-
pute visualization of its data individually, and the visualiza-
tion should request minimal information from other nodes.
Compression should be used whenever possible to reduce
cost of data transfer. Combination of these results into a sin-
gle visualization should be deferred until after the simulation
completes and communication and I/O are no longer scarce.

Parallel particle pathlines and pathtubes are examples of
common visualizations that can have high requirements for
storing output geometry as compared with static images. We
show that such pathtubes can be rendered in parallel with
no additional inter-processor communication requirements
given an existing particle tracer, under the assumption that
the simulation subdivides space as outlined previously. Path-
tubes are also an example case where determination of good
visualization parameters can be difficult due to high occlu-
sion.

To summarize, we contribute the following:

e A method for in situ visualization that renders pathtubes
to generate explorable images with low communication,
storage, memory and computational requirements.

e An exploratory technique to analyze pre-rendered vec-
tor field data from different viewpoints, recolor by differ-
ent properties, vary lighting conditions, and enable partial
transparency and cutaways.

2. Related Work

Our explorable images can be generated in a classic postpro-
cessing style, but we believe they are most useful if gener-
ated in situ with simulations. In situ visualization can often
provide great benefits at little cost [ASM* 11]. In situ visual-
izations can be roughly divided into the following two types:

e Tightly-coupled synchronous: In this method, the visu-
alization and simulation share CPUs and main memory.
This method generates the visualization as the simulation
is running, and can thus be used for simulation monitor-
ing. Additionally, it can reduce data output size, leading
to lower I/O and storage requirements. [Y WMO8]

e Loosely-coupled asynchronous: In this method, the visu-
alization and simulation run on separate compute and stor-
age resources. This has the advantage of specialized hard-
ware for the different techniques, but data must be trans-
ferred to the separate storage space first. [LZKS09]

Whitlock, et al. provide a good overview of the the prob-
lem and a library to ease in situ integration with Vislt
[WEMI11]. Lofstead, et al. present a system called ADIOS
which allows user-selection of efficient I/O methods while
not restricting output file formats or identification of data for
analysis, and which may be used as the basis for loosely-
coupled asynchronous techniques [LZKS09]. Bennett, et al.
use ADIOS for efficient data movement for in situ process-
ing [BAB*12]. Kim, et al. also use ADIOS to demonstrate
an in situ indexing technique for high-performance data ac-
cess [KAC*11]. A variety of other frameworks useful for in

situ visualization have also been recently developed, includ-
ing EAVL, Dax, DIY and PISTON. [SMM*12]

Kageyama, et al. provide similar exploratory capabilities
via generation of myriad in situ movies, which are then ex-
ported to a dataset on the order of 10TB. Our benefit over
this method is greatly reduced storage and I/O cost [KY13].

Particle pathtubes can provide an effective visualization
of time-varying flow fields [Gra85]. Efficient visualization
of time varying flow fields remains an active area of re-
search [YWMO7]. One of the underlying assumptions of our
technique is that many simulations subdivide space and as-
sign subregions to nodes of the cluster. This approach is
common enough that it has been used as an example of a
parallel visualization pattern [KHP*11] [PRN*11].

Several approaches for efficient parallel rendering have
been developed. Eilemann introduces an efficient sort-last
composition algorithm [EPO7]. Many researchers address
reduction of I/O requirements for parallel rendering of
volume data, including Yu [YMWO04], Kim [KAC*11],
Kendall [KHP*11], and Vishwanath [VHI*10]. Takeuchi
provides improvements of the binary swap composition
technique [TIHO3], while Yu introduces a 2-3 swap tech-
nique [YWMO8]. Peterka confirms that in situ composi-
tion techniques are scalable on distributed memory archi-
tectures [PYR*09]. For individual compute nodes, Wang
demonstrates a method that composes of parallel renderings
implicitly using modern graphics hardware [WLL*11].

To achieve high-speed rendering with modern graphics
hardware on desktops, we make use of per-pixel displace-
ment maps [KSO1]. Levoy et al present lightfields which use
dense sampling to obtain new viewpoints of models [LH96].
Others such as McMillan present methods to combine multi-
ple images from the same viewpoint to produce environment
maps [MB95]. Our chosen technique for view synthesis is
similar to Shade’s layered depth images [SGHS98]. Todt
presents a light field technique using per-pixel depth to allow
view angle changes [TRSKO7]. Chan describes a technique
for generating multiple viewpoints for animations [CSNO7].

Curless and Levoy present a method for determining ob-
ject surfaces given range information [CL96]. Chang, et
al. describe a tree-based method to improve sampling to
generate new viewpoints [CBL99]. Yamazaki, et al. de-
scribe an approach using an inverse volume rendering tech-
nique. [YMKO6]. We perform mesh reconstruction of the
point cloud in hardware using a triangle filtering technique in
the geometry shader via a modification of a method proposed
by Ha, et al [HRK12]. IBR methods exist to mitigate disoc-
clusion errors, such as Mei’s Occlusion Camera [MPS05].
Use of depth-map discontinuity is also possible [PA06].

Tikhonova, et al. present a method for visualization by
proxy [TCM10b], which stores extra information into a
proxy image which in turn can be processed into output
images with different lighting and transfer functions, and
which can slightly alter the view angle. Ma introduces

(© The Eurographics Association 2013.



Yucong Ye & Robert Miller & Kwan-Liu Ma / In Situ Pathtube Visualization with Explorable Images 11

the concept of explorable images [MTC10]. Tikhonova
later demonstrated explorable images for volume visualiza-
tion [TCM10a], where multiple images of a volume from
the same viewpoint with different transfer function values
are layered into a single image. In other work, Tikhonova
demonstrates the use of ray attenuation functions to store
compact representations of large volume datasets to allow
for later alteration of transfer functions [TCM10b].

3. Explorable Image Generation

To generate pathtube images, we perform each of the follow-
ing substeps per node:

o The particle tracer sends the data for two timesteps of each
of this node’s particles.

e We construct tube segments between these particle posi-
tions, capped by spheres to prevent artifacts.

e These segments are rendered into framebuffers stored lo-
cally on the node, with several framebuffers being neces-
sary for each camera position.

e When time to render the next frame, the particle tracer
sends the data for each particle at the next timestep. The
above steps are then repeated, and in aggregate the seg-
ments form cohesive pathtubes (See Figure 3)

e When the final timestep completes, the framebuffers are
written to disk and archived as a single explorable image.

3.1. Explorable Image Format

Each node on the server renders to several different frame-
buffers as shown in Figure 1, which we will denote as the
scattered images. These scattered images are then compos-
ited into a single explorable image in a customized PNG for-
mat, which we will denote as a multilayered PNG format.
The multilayered PNG format is designed to achieve two
main goals. First, when viewed in a standard PNG viewer,
it should be viewable as a standard image. Second, when
viewed in our specialized client, full exploratory capabilities
should be exposed. While other formats such as TIFF would
be suitable for this kind of extension, we choose PNG for its
portability, ease of extension, and compression performance.

3.1.1. Scattered Images

In the traditional sort-last parallel rendering composition
technique, after all nodes have completed rendering the im-
age there comes a final composition step where the images
from all nodes are composited in front-to-back order so that
in the end a correct view is established from the camera
viewpoint. Due to occlusion from regions closer to the cam-
era, this will discard information about the regions processed
by more distant nodes, especially for dense images with high
occlusion. Instead, we defer this composition step until anal-
ysis takes place on a standard desktop. In this way, we are
able to preserve some of the occluded information, but this
comes at the cost of higher storage. Each set of scattered
images contains camera configurations and a set of image
buffers. Each buffer enables certain exploration options.

(© The Eurographics Association 2013.

Figure 1: Scattered Images: The color buffer (top left), depth
buffer (top right), property buffers (bottom left), and normal
buffers (bottom right) each provide exploratory capabilities.

e Color buffer: RGB information of each pixel. This is the
view given in standard PNG viewers.

e Normal buffer: Compressed representation of the nor-
mal vector of the rendered surfaces at each pixel. When
present, these normals, combined with the depth map, al-
low for relighting of pre-rendered surfaces.

e Depth buffer: Depth from the camera to the surface at each
pixel. Depth is local to each node’s domain for greater ac-
curacy. This allows view-angle changes, multiple camera
position integration and arbitrary cutaways.

e Property buffer: This buffer may store any other per-pixel
property and is used as input to a transfer function that the
user may alter interactively during analysis.

Each framebuffer is generated independently per node.
After completion of the final timestep, these are written
as independent PNG files. In total, these images are much
smaller than storage of dense geometry from particle tracing
data, but it is difficult to manage them in this form because
of their scattered nature, so we perform a global composition
to organize them into a single explorable image. This allows
improved compression, choice of maximum sample depth,
and choice of desired exploration options for the end user.

We perform a global composition and depth-reordering
before storing the final result, as shown in Figure 2. The
global composition combines each scattered image into a
global viewport, then depth reordering is performed by con-
structing a list of samples per-pixel in the global viewport,
sorted by depth.



12 Yucong Ye & Robert Miller & Kwan-Liu Ma / In Situ Pathtube Visualization with Explorable Images

Figure 2: Global composition and reordering: Global com-
position, shown left, composites the scattered images into
cohesive layers. These layers are then partitioned into new
layers based on visibility for compact storage, shown right.

3.1.2. Multilayered PNG Format

After global composition and depth-reordering, the result-
ing layers for each framebuffer stored in the multilayered
PNG format, which extends the standard PNG format. The
color buffer of the front layer is stored as normal in the PNG
format and is thus visible in standard viewers. The remain-
ing layers are encoded into custom chunks as supported by
the PNG specification. Each custom chunk contains relevant
metadata such as camera orientation and buffer type, along
with the pixel data for the associated buffer. When viewed in
our specialized client, we detect these buffers and enable the
associated exploratory capabilities for the image.

In addition to distribution in a format usable in standard
viewers, we benefit from existing image compression tech-
niques in the PNG format, and allow the user to choose
whether explorability or storage size is more important via
activation or deactivation of the different framebuffers.

If deactivation of a buffer is not desirable, the bit depth
of an image buffer may be reduced. Combination of some
buffers is also possible, such as encoding a property buffer
into the color buffer with a reversible transfer function.

3.2. Pathtube Generation

Many vector field simulations operate by performing a spa-
tial subdivision and assigning regions of space to each com-
pute node. In this approach, the particle tracer for each node
is assigned some initial population. The tracer then updates
the position and other properties of these particles between
timesteps. When particles leave the spatial region assigned to
the node, they are passed to the appropriate neighbor nodes
for further processing.

The standard approach for generating pathlines is to peri-
odically store particle positions and any necessary attributes.
This generates a representation of geometry with a size that
is linear in the number of particles and in the number of
timesteps. By comparison, image-based approaches have a
constant maximum size. For sparse sets, our explorable im-
ages are closer to the former case, whereas for denser sets
our approach converges to the latter.

To render pathtubes, we require the particle tracer to pe-
riodically pass two sets of particles to our pathtube gen-
erator, which are the particles from the previous timestep

Figure 3: At each timestep, a capped tube segment from the
previous timestep to the current timestep is rendered. In ag-
gregate, these segments form the complete pathtube.

and the particles from the current timestep. Each particle
should include its position, radius and any properties for the
output property buffers. A spherically capped cylinder be-
tween these two locations is then rendered into our frame-
buffer. We preserve this framebuffer and the associated depth
map for use when rendering subsequent timesteps. Once all
timesteps have been rendered, this produces an image of the
pathtubes generated by each node from all requested view-
points. Currently software rendering is used, but this ap-
proach should also work well with hardware rendering.

4. Explorable Image Interaction (client-side)

When explorable images are loaded with our specialized
viewer, we support two visualization techniques and several
exploratory capabilities.

4.1. Visualization Methods

The two image-based rendering visualization methods we
support are point-sprite cloud generation and mesh regenera-
tion via triangle filtering. Each offers significant exploratory
capability and good image quality, but each also comes with
some associated artifacts. Both methods begin by first pro-
jecting the pixels back into their 3D positions using the depth
buffers and the stored camera position.

4.1.1. Point-sprite Cloud

The point-sprite cloud is a standard IBR method, in which
we directly render the projected pixels as points, or sprites.
At the original zoom level, the point-sprite cloud render-
ing approach works well, because gaps between points are
not visible at this level. However, as the user zooms in,
these gaps become apparent. A standard IBR solution for
this problem is to simply scale up the point-sprites based on
the zoom level and distance to cover these gaps and give the
appearance of a cohesive surface. This tends to give the sur-
face a somewhat blocky appearance. Changes to the view
angle make the disconnects especially apparent, but this can
be largely resolved via the storage of multiple camera angles.

4.1.2. Triangle Filtering

In our other visualization method, we attempt to regenerate
the mesh by connecting pixels from connected surfaces to
form triangles. To determine which pixels should be con-
nected, we can store the ID of each tube into a property

(© The Eurographics Association 2013.



Yucong Ye & Robert Miller & Kwan-Liu Ma / In Situ Pathtube Visualization with Explorable Images 13

map. Then we can generate triangles based on the IDs of
the corners of a pixel quad, as shown in Figure 4. In order
to save GPU memory and increase rendering speed, we per-
form the triangle filtering in the geometry shader. As input to
the shader, we need all the pixel properties and a base mesh,
which is a rectangular grid of triangles.

To perform the triangle filtering, we use the ID map to
break the original connectivities in the bash mesh and then
reconnect the vertices according to the IDs, as shown in Fig-
ure 4. Finally we compute the vertex positions and apply the
transfer function in the fragment shader.

Reconstructing a mesh eliminates the gap artifacts in the
point-sprite cloud version with a cost of higher computa-
tional cost. In addition, triangle filtering introduces other
types of artifacts such as discontinuities between discrete
pathtubes and incorrect connectivities with spiral pathtubes.

4.2. Exploration Techniques

The exploration techniques we support are transfer function
modification, view angle changes, relighting, and cutaways.

4.2.1. Transfer Function Modification

By including a transfer function editor and making use of
the property buffers in the explorable image, we allow user-
defined recoloring. Although transparency is not supported
in the initial in situ rendering, it is supported during user
analysis. Transfer functions may be applied independently
for each property buffer, but each additional property buffer
linearly increases the size of the explorable image.

4.2.2. Variant Viewing Angle and Illumination Angle

We use the quaternion camera model to allow users to ob-
serve the volume from any arbitrary angle, but the quality of
the altered view is limited to the information available from
the original viewpoints within the image. In addition to view
angle modification, the normal buffers within the image al-
low relighting of rendered surfaces. We accomplish this local
relighting in the fragment shader via the phong model.

4.2.3. Cutaways

Users may define arbitrary cutting planes, as shown in Figure
5. Quality is best when cutting planes are near node region
boundaries due to fewer disocclusion errors.

5. Results
5.1. In Situ Performance

Our visualization code is not capable of adding inter-node
communication. No I/O is required except for the storage of
the completed image upon completion of the simulation.

Our memory requirements are linearly related to the reso-
lution of the output images. In our technique, the only mem-
ory used is the memory necessary to store the image buffers
in each node. If there are 6 image buffers (a standard case

(© The Eurographics Association 2013.

Figure 4: Left: The 6 cases of the triangle filtering technique,
where the corner numbers are the IDs. Right: Regenerated
mesh with triangle filtering and the associated halo effect.

for full exploration), the memory requirement is 6 times the
size of a single image buffer. In the supernova case, 512x512
resolution was used for each node’s image buffer with nodes
in a 4x4x4 grid, leading to a global resolution of 2048x2048.
As aresult, 6%512%512%4 = 6,291,456 memory bytes are
required above the original simulation requirements. Note
that this value remains constant throughout the simulation.

The required storage I/O is determined by the size of
the scattered images from all the computing nodes. With-
out compression, required I/O would be identical to memory
usage. However, compression via the PNG format greatly
reduces necessary 1/0O. In the supernova case with 64 pro-
cesses, 6 images per process, image resolution of 512x512
per node, and 32 particles per node, the total size of all out-
put images collected after compression is 26.7 MB. Without
the PNG compression, it would have become 384 MB.

We have measured the time performance of our visualiza-
tion code on the XSEDE supercomputer (see Table 2) and
JAGUAR (see Table 1). We can observe the same conclu-
sions from both tables: The performance per frame linearly
correlates to the number of particles. The resolution of the
output image also definitely affects the performance, but this
is not as strong a connection as the number of particles ren-
dered. There is significant variance in node timings because
the workload of this simulation is not well balanced.

5.2. Composition Results

All generated images are viewable in static form in standard
PNG viewers. If we choose to combine the depth and normal
buffers, we can reduce the size of the scattered images in the
supernova case from 26.7 MB, to 16.0 MB.

5.3. Exploration Technique Results

Our explorable images provide several distinct kinds of ex-
ploration: Transfer function editing, cutaways, relighting,
and view angle changes. We will now present our images’
efficacy for each kind of exploration.

As shown in the leftmost section of Figure 5, careless se-
lection of the initial transfer function can render some in situ
results useless. In this case, the structure of the supernova



14 Yucong Ye & Robert Miller & Kwan-Liu Ma / In Situ Pathtube Visualization with Explorable Images

Figure 5: No exploration (left), transfer function modification (middle), and cutaways (right). Images contain 25600 pathtubes.

Figure 6: Zoomed in view of the supernova core: In the left
image, we have the light source at the camera position. All
surfaces are well lit, but this creates a cluttered image. Mov-
ing the light (right) helps highlight spatial relationships.

has been mostly obscured. through modification of the trans-
fer function, we may edit the transparency of the external
pathtubes as shown in the middle section of Figure 5.

Another important tool for dealing with occlusion in im-
ages are cut-planes, or cutaways. In the rightmost section of
Figure 5, we cut directly into the supernova core to reveal
additional detail. The quality of such cutaways depends on
the density of the rendered data and on how finely the nodes
are assigned regions for tracing, but in practice images can
become quite dense before significant artifacts are apparent.

Lighting in an image can play a critical role in understand-
ing the spatial relationships between objects. Consider Fig-
ure 6: A standard approach of placing the light at the camera
position is employed in the left image, equally illuminating
the entire image. By modifying the light position in the right
image, we emphasize structures of interest.

View-angle modification is difficult with image-based
techniques. The left part of Figure 7 demonstrates the ar-
tifacts visible with a large angle rotation for an explorable
image with only one camera angle. As the image on the right
shows, adding camera angles partially alleviates this issue.

Figure 7: The left image shows how dense datasets are not
adequately represented by use of a single camera. On the
right, we added another camera angle to the explorable im-
age which reveals features not captured by the first camera.

Sparse images, such as the combustion dataset shown in
Figure 8, are far better suited for large angle rotations. This
image contains two diametrically opposed camera positions.
The right image shows the same view rotated 90 degrees
without the need for additional camera angles.

6. Discussion

Visualization on supercomputers is sometimes divided into
the two categories of in situ visualization and a posteriori
visualization. The former has the advantages of low I/0O and
storage requirements, but makes data exploration without re-
running the simulation difficult. The latter provides full ex-
ploration of simulation results, but imposes very high stor-
age requirements which may then require significant 1/O,
which is already often the bottleneck for parallel simula-
tions. Explorable images provide a middle-ground with the
advantages of each, but with highly mitigated downsides.

Our explorable images allow for many common data ex-
ploration techniques, but require more storage space than a
standard image. We have found that the additional storage
required remains low enough to be negligible for supercom-
puter storage systems. Consider Figure 9: Static images have

(© The Eurographics Association 2013.



Yucong Ye & Robert Miller & Kwan-Liu Ma / In Situ Pathtube Visualization with Explorable Images 15

Total Node Particle Total Resolution Ttl. Mean Total Std. Total Min Total Max
Particles Count per Node Resolution per Node (ms/frame) (ms/frame) (ms/frame) (ms/frame)
4096 4096 1 1024x1024 64x64 22.7517 10.5985 0 71.6556
4096 4096 1 2048x2048 128x128 30.5011 14.1962 0 96.4901
65536 4096 16 1024x1024 64x64 384.601 78.1439 67.8146 578.543
65536 4096 16 2048x2048 128x128 411.506 84.0779 69.2053 659.073
65536 4096 16 4096x4096 256x256 460.257 94.9946 83.7748 747.815
65536 4096 16 8192x8192 512x512 528.287 104.228 97.4172 796.954
131072 4096 32 2048x2048 128x128 830.407 158.797 161.258 1191.66
131072 4096 32 4096x4096 256x256 936.168 178.931 176.755 1397.28
Table 1: Time performance measured on Jaguar, Oak Ridge with the combustion data set.
Total Node Particle Total Resolution Ttl. Mean Total Std. Total Min Total Max
Particles Count per Node Resolution per Node (ms/frame) (ms/frame) (ms/frame) (ms/frame)
4096 4096 1 1024x1024 64x64 3.0772 1.7338 0 12.2
4096 4096 1 2048x2048 128x128 3.4423 1.9338 0 13
65536 4096 16 1024x1024 64x64 47.7833 16.9476 8.4 141.5
65536 4096 16 2048x2048 128x128 53.6628 19.0581 9.7 161.3
65536 4096 16 4096x4096 256x256 62.9508 22.1502 12.2 193.5
65536 4096 16 8192x8192 512x512 80.1056 27.5718 14.6 218.3
131072 4096 32 2048x2048 128x128 106.8254 37.0618 22.7 300.8
131072 4096 32 4096x4096 256x256 124.3466 42.6937 25.4 358.7
262144 4096 64 8192x8192 512x512 230.5014 12.0475 170.3 278.3
Table 2: Time performance measured on Stampede, XSEDE with the supernova data set.
Disk Storage
240 B Geometry

Figure 8: Large-angle rotation on sparse dataset. Far fewer
artifacts are visible for rotation of sparser images.

a constant maximum size for their resolution which depends
on the complexity and density of the data being rendered;
this property is retained by our explorable images. Storage
space for raw (or compressed) geometry, on the other hand,
tends to scale linearly with the number of elements rendered.

Our approach works well for cases of low occlusion, such
as pathlines and pathtubes. The approach is less suitable for
other surfaces due to the higher likelihood of occlusion.

7. Conclusions and Future Work

We present a new technique for explorable image generation
of pathtubes, which is suitable for in situ visualization. Our
technique provides a better overview of the output data than
static images while incurring no additional I/O cost other
than final storage and minimal additional storage cost. Ad-
ditionally, our technique requires very little memory or com-
putational overhead, and scales well to large node counts.

(© The Eurographics Association 2013.

W Compressed Geometry
Explorable Images
M Single Image

—

0 1500 3000 4500 5000
Line Count (100 Time Steps)

Storage (MB)

@
3

Figure 9: Storage comparison among regular geometry,
compressed geometry, explorable image, and single image.
As images become more dense, the size of explorable images
converges to a maximum size.

We also present a modification of the PNG image for-
mat to allow distribution of the explorable images in a for-
mat viewable in a standard PNG viewer. Combined with our
viewer, this allows for view angle changes, relighting, user-
defined transfer functions, zooming, and cutaways.

For future work, we will integrate our technique with a
better quality, externally developed simulation. Then we will
try alternative mesh generation techniques for better integra-
tion of multiple cameras, and develop methods to extend the
technique to integrate both scalar and vector fields. Finally,
we will provide methods to measure uncertainty of the out-
put during exploration.




16 Yucong Ye & Robert Miller & Kwan-Liu Ma / In Situ Pathtube Visualization with Explorable Images

8. Acknowledgements

This work has been supported in part by the U.S. National
Science Foundation through grants OCI-0749227, CCF-
0811422, OCI-0850566, and OCI-0905008, and also by the
U.S. Department of Energy through the SciDAC program
with Agreement No. DE-FC02-06ER25777 and DE-FC02-
12ER26072, program manager Lucy Nowell.

References

[ASM*11] AHERN S., SHOSHANI A., MA K.-L., CHOUDHARY
A., CRITCHLOW T., KLASKY S., PAscuccI V., AHRENS J.,
BETHEL E., CHILDS H., ET AL.: Scientific discovery at the
exascale. report from the doe ascr 2011 workshop on exascale
data management. Analysis, and Visualization (2011). 2

[BAB*12] BENNETTJ. C., ABBASI H., BREMER P.-T., GROUT
R.,GYULASSY A.,JINT., KLASKY S., KOLLA H., PARASHAR
M., Pascuccl V., PEBAY P., THOMPSON D., YU H., ZHANG
F., CHEN J.: Combining in-situ and in-transit processing to en-
able extreme-scale scientific analysis. In SC 12 (2012), IEEE
Computer Society Press, pp. 49:1-49:9. 2

[CBL99] CHANG C.-F., BISHOP G., LASTRA A.: Ldi tree: a
hierarchical representation for image-based rendering. In SIG-
GRAPH ’99 (1999), ACM, pp. 291-298. 2

[CL96] CURLESS B., LEVOY M.: A volumetric method for build-
ing complex models from range images. In SIGGRAPH ’96
(1996), ACM, pp. 303-312. 2

[CSNO7] CHAN S., SHUM H.-Y., NG K.-T.: Image-based ren-
dering and synthesis. Signal Processing Magazine, IEEE 24, 6
(Nov. 2007), 22 -33. 2

[EPO7] EILEMANN S., PAJAROLA R.: Direct send compositing
for parallel sort-last rendering. Favre J. M., Santos L. P., Reiners
D., (Eds.), EGPGV ’07, Eurographics Association, pp. 29-36. 2

[Gra85] GRANGER R.: Fluid Mechanics. Dover Classics of Sci-
ence and Mathematics. Dover Publications, 1985. 2

[HRK12] HATI., RHEE T., KiM J.: Smooth mesh generation from
noisy depth image. In GCCE ’12 (Oct. 2012), pp. 495 —497. 2

[KAC*11] Kim J., ABBASI H., CHACON L., DocaN C.,
KLASKY S., L1U Q., PODHORSZKI N., SHOSHANI A., WU K.:
Parallel in situ indexing for data-intensive computing. In LDAV
’11 (Oct. 2011), pp. 65 -72. 2

[KHP*11] KENDALL W., HUANGJ., PETERKA T., LATHAM R.,
Ross R.: Toward a general i/o layer for parallel-visualization
applications. Computer Graphics and Applications, IEEE 31, 6
(Nov.-Dec. 2011), 6 -10. 2

[KSO1] KAutz J., SEIDEL H.-P.: Hardware accelerated dis-
placement mapping for image based rendering. In GRIN’0I
(2001), CIPS, pp. 61-70. 2

[KY13] KAGEYAMA A., YAMADA T.: An approach to exascale
visualization: Interactive viewing of in-situ visualization. arXiv
preprint arXiv:1301.4546 (2013). 2

[LH96] LEvVOY M., HANRAHAN P.: Light field rendering. In
SIGGRAPH ’96 (1996), ACM, pp. 31-42. 2

[LZKS09] LOFSTEAD J., ZHENG F., KLASKY S., SCHWAN K.:
Adaptable, metadata rich io methods for portable high perfor-
mance io. In IPDPS ’09 (May 2009), pp. 1 -10. 2

[Ma09] MA K.-L.: In situ visualization at extreme scale: Chal-
lenges and opportunities. Computer Graphics and Applications,
1IEEE 29, 6 (Nov.-Dec. 2009), 14 -19. 1

[MB95] MCMILLAN L., BISHOP G.: Plenoptic modeling: an
image-based rendering system. SIGGRAPH ’95, ACM. 2

[MPS05] MEI C., POPESCU V., SACKS E.: The occlusion cam-
era. Computer Graphics Forum 24, 3 (2005), 335-342. 2

[MTC10] MaA K.-L., TIKHONOVA A., CORREA C. D.: Distance
visualization of ultrascale data with explorable images. In ACM
SIGGRAPH 2010 Talks (2010), SIGGRAPH *10, ACM, p. 9. 3

[PAO6] POPESCU V., ALIAGA D.: The depth discontinuity oc-
clusion camera. In I3D '06 (2006), ACM, pp. 139-143. 2

[PRN*11] PETERKA T., ROSS R., NOUANESENGSY B., LEE T.-
Y., SHEN H.-W., KENDALL W., HUANG J.: A study of parallel
particle tracing for steady-state and time-varying flow fields. In
IPDPS ’11 (May 2011), pp. 580 -591. 2

[PYR*09] PETERKA T., YU H., Ross R., MA K.-L., LATHAM
R.: End-to-end study of parallel volume rendering on the ibm
blue gene/p. In ICPP ’09 (Sept. 2009), pp. 566 —573. 2

[SGHS98] SHADE J., GORTLER S., HE L.-w., SZELISKI R.:
Layered depth images. In SIGGRAPH 98 (1998), ACM. 2

[SMM*12] SEWELL C., MEREDITH J., MORELAND K., PE-
TERKA T., DEMARLE D., LO L.-T., AHRENS J., MAYNARD
R., GEVECI B.: The SDAV Software Frameworks for Visual-
ization and Analysis on Next-Generation Multi-Core and Many-
Core Architectures. Tech. rep., LANL, 2012. 2

[TCM10a] TIKHONOVA A., CORREA C., MA K.-L.: Explorable
images for visualizing volume data. In PacificVis '10 (Mar.
2010), pp. 177 -184. 1,3

[TCM10b] TIKHONOVA A., CORREA C., MA K.-L.: Visualiza-
tion by proxy: A novel framework for deferred interaction with
volume data. Visualization and Computer Graphics, IEEE Trans-
actions on 16, 6 (Nov.-Dec. 2010), 1551 -1559. 1,2,3

[TIHO3] TAKEUCHI A., INO F., HAGIHARA K.: An improved
binary-swap compositing for sort-last parallel rendering on dis-
tributed memory multiprocessors. Parallel Computing 29, 11-12
(2003), 1745 - 1762. 2

[TRSKO7] TobDT S., REZK-SALAMA C., KOLB A.: Fast (spher-
ical) light field rendering with per-pixel depth. Tech. rep., Tech-
nical report, University of Siegen, Germany, 2007. 5, 2007. 2

[VHI*10] VISHWANATH V., HERELD M., ISKRA K., KIMPE D.,
MOROZOV V., PAPKA M., RosS R., YOsHII K.: Accelerating
i/o forwarding in ibm blue gene/p systems. SC ’10. 2

[WEM11] WHITLOCK B., FAVRE J. M., MEREDITH J. S.: Par-
allel in situ coupling of simulation with a fully featured visual-
ization system. EGPGV ’11, Eurographics Association. 2

[WLL*11] WANG P., Liu H., L1 S., ZENG L., CAI X.:
Cad/graphics *11. pp. 103 -107. 2

[YMKO06] YAMAZAKI S., MOCHIMARU M., KANADE T.: In-
verse volume rendering approach to 3d reconstruction from mul-
tiple images. In Computer Vision - ACCV 2006, Narayanan P.,
Nayar S., Shum H.-Y., (Eds.), vol. 3851 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2006, pp. 409-418. 2

[YMWO04] Yu H., MA K.-L., WELLING J.: T/o strategies for
parallel rendering of large time-varying volume data. In EGPGV
’04 (2004), vol. 4, pp. 31-40. 2

[YWMO07] Yu H., WANG C., MA K.-L.: Parallel hierarchical
visualization of large time-varying 3d vector fields. In SC '07
(Nov. 2007), pp. 1 -12. 2

[YWMOS] YU H., WANG C., MA K.-L.: Massively parallel vol-
ume rendering using 2-3 swap image compositing. In SC 08
(Nov. 2008), pp. 1 -11. 2

(© The Eurographics Association 2013.



