

Rendering on Tiled Displays using Advanced Stream Caching

Mario Lorenz, Guido Brunnett and Marcel Heinz

Computer Graphics and Visualization, Chemnitz University of Technology, Germany
{ Mario.Lorenz | Guido.Brunnett }@informatik.tu-chemnitz.de, Marcel.Heinz@s2001.tu-chemnitz.de

Abstract

To render complex scenes on tiled displays efficiently modifications to the Chromium framework have been
proposed that lead to significant lower processor and memory load on the client and a very effective utilization
of available network bandwidth. To avoid redundant transmissions of identical command sequences that are
generated by the application a transparent stream cache can be used that accelerates the multicast
communication channel. It can be profiled that applications that do not use display lists or VBO’s to control the
rendering put a heavy load on the client host because the cache control has to compute a checksum for the
identification of repeated command sequences. In this paper we analyse the possibilities to improve the stream
caching for unmodified GL applications. As our main result we introduce a new GL extension to control the
stream cache with minimally modified applications.

Categories and Subject Descriptors (ACM CCS): I.3.2 [Computer Graphics]: Distributed/network graphics

1. Introduction

Since today’s tiled displays are driven by clusters of PC’s

parallel rendering becomes necessary. In general, parallel
rendering processes running on different cluster nodes take
advantage of the cluster best, but the design of parallel
rendering applications is often difficult and expensive
because one has to deal with complex data distribution
strategies and synchronization models. As an alternative to
redesign existing applications a special parallel rendering
interface can be implemented that allows running native
applications on tiled displays [ISH98]. In this case a library
has to manage the parallel rendering process on the cluster.
In other words, a parallel OpenGL library has to simulate a
virtual GL-Pipeline with a frame buffer resolution identical
to the resolution of the entire tiled display. The main
problem of this approach is the internal handling of very
large data streams that carry simple graphical commands
delivered by the applications to the virtual pipeline.

In this paper we briefly recall recent optimizations
[LB06] integrated in the Chromium framework [HHN*02]
to achieve non redundant network communication of most
stream parts using stream cached multicasting. Since the
necessary computation of cache ident checksums may limit
the acceleration of scenes that contain mainly small or
deforming objects the main focus of this paper lies on
advanced stream caching. We introduce a GL extension
intended for application based control of the stream cache.
Using this extension it is possible to overcome the
bottleneck caused by repeated computations of cache id’s.
Since only minimal changes to an existing graphical
application are necessary to increase the overall
performance significantly this approach may be interesting
for all users who need very easy and fast porting of existing
code to a rendering cluster for driving a tiled display.

2. Related Work

Based on Stanford’s WireGL [HEB*01] the widely

known Chromium framework was designed. This software
allows building a parallel rendering system for high
performance remote rendering [HBEH00]. In Chromium a
client/server architecture based on the concatenation of so
called software nodes running stream processing units
(SPU’s) is realized. All nodes may be placed on different
cluster hosts. Using the so called Tilesort- and Render-
SPU’s, a Sort-First architecture [MCEF94] can be
configured to allow native OpenGL programs to drive a
tiled display [MUE95].

Unfortunately, the overall graphical performance of such
clusters does not scale very well. It can be seen that the
frame rate becomes lower with every tile added to the
cluster. If objects are visible on many tiles the frame rate
may also be negatively affected. This behaviour is caused
by the design of the Tilesort-SPU and the network layer.
The Tilesort-SPU implements a screen space decision
method for splitting the incoming command stream into
several streams [BHH00] that are sent to the servers with
point-to-point (unicast) connections only. This implies the
redundant transmission of stream parts that must be sent to
different nodes. With respect to the overall performance
this is very harmful.

3. Previous Work

To improve the overall performance of Chromium the
most important task was the effective elimination of
redundant transmissions. This reduced the consumed
bandwidth as well as the clients processor load because less
buffers need to be packed and sent. First, we integrated
Multicasting into Chromium by the implementation of a

IPT-EGVE Symposium (2007)
B. Fröhlich, R. Blach, and R. van Liere (Editors)

Short Papers

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

new connection type that allows sending incoming GL
commands to all render servers at once. To transfer
geometry buffers through the multicast channel we
designed a new SPU (OPT-SPU) to replace the Tilesort-
SPU. This works in the following way. Most parts of the
incoming stream are encoded to packed buffers and
forwarded to all tile servers using the UDP Multicast
channel. Thereby the consumed bandwidth will be
significantly reduced. The so called serializing instructions,
e.g. viewport settings, are handled separately using the
state tracker [BHH00]. Since the expensive tile-sorting of
geometry blocks is no longer necessary we implemented a
conventional frustum culling method to avoid situations
where servers will process geometric primitives outside
their viewports. It has the same effect as tile-sorting: no
geometry outside the tile borders is drawn, but it runs on
the low utilized servers.

Unfortunately, Multicasting cannot be used to eliminate
the redundant data transmission caused by identical
command sequences in the GL stream. For instance, parts
of the scene may be used several times to render a frame.
The effective transmission of repeated stream parts can be
managed with stream caching. An implementation of a
stream cache was presented in [DKK02]. The main idea of
this approach is to compile a display list to encapsulate
suitable objects. The next time the object is detected by the
client, it will be replaced in the outgoing stream by a small
instruction. Unfortunately the compilation of the lists take
some time, so short pauses may occur.

Therefore we developed a stream cache without the
application of display list functionality. In contrast to the
display list approach our cache works transparently on
packed buffers. It stores cached packer buffers in the server
context. The set of cache control functions will be
processed when received buffers are unpacked. Figure 1
shows the components of our stream cache.

OPT-SPU

GL command
processing

packaging

cache control

send function

modified

stream

DRI

SPUn

Render-SPU

SPUi

SPU chain

server host

server node
Backend
X-Server

client host

client node

LAN

- uncached stream

- cached stream

cache
memory

cache
functions

serialization

Figure 1: Structure of the Stream Cache

Note that the cache content of all servers is identical. We
placed the cache control function in the OPT-SPU’s flush
function that is responsible for the transmission of filled
buffers. Buffers are identified with a checksum. When a
cached buffer is detected in the incoming stream next time
its content will be ignored. Instead only the small
glCallCacheCR() command will be transmitted to the
servers which initiates the extraction of the object from the
storage area of the cache at the server side.

To accelerate the rendering of large cached objects we
developed a cache extension based on OpenGL’s VBO
functionality. The basic idea is as follows: A method

running as part of the cache identifies suitable cached
Chromium buffers using a cost function and transforms the
covered GL commands to VA and EA structures. After that
a VBO will be compiled in the background. The next time
the cached data set is called, the cache control function
initiates the rendering of the related VBO instead of
unpacking the cached Chromium buffer.

The transparent stream cache reduces the consumed
network bandwidth significantly. It is suitable to improve
the rendering performance of most types of scenes. A
detailed description of the methods introduced in this
section can be found in [LB06] and [LBH07].

4. Advanced Stream Caching

The most difficult and expensive task in transparent

stream caching is the repeated identification of already
cached packer buffers. However, even fast identification
functions impact the CPU utilization of the client host
significantly. That is a problem because the client’s CPU
utilization is always a bottleneck. But, caused by the design
of a stream cache this task must be processed for every
buffer to be handled. Therefore we designed different
functions that work on a set of sample data from the binary
buffer content and its 3D bounding box coordinates. A
discussion of the results can be found in [LBH07].

The rendering performance will benefit from the
transparent stream cache if the related block can be called
from the storage area instead of transmission. On the other
hand, the cache may lower the rendering speed if the
related block will be cached and only called once. The
decision to cache a geometry block can only be made based
on a simple heuristic, e.g. count of commands and data
size. There is no other way because the cache has no
information whether the block will be transmitted again.
Additionally, in the case of a cache collision the cache
cannot estimate how long the already cached object will be
still needed. Therefore a heuristic is used to decide to cache
the new block or to leave the cached one on its position.
Obviously, a stream cache will accelerate the transmission
of native, even complex GL-streams significantly but it
will never reach the performance of an application based
acceleration using display lists or VBO’s.

If the application would have the chance to manage the
cache objects itself, the repeated computation of
checksums would no longer be necessary. This will
eliminate the drawbacks of the automated transparent
stream cache. The goals of such an application controlled
stream cache are a significant acceleration of the overall
rendering speed and the elimination of artefacts resulting
from the rendering of incorrect identified geometry by the
identification function. Remember that the identification
function only may use samples of the buffers and this may
lead to identification errors. The application may render
both, managed cache objects and native geometry blocks
mixed. The cache would handle native blocks in the usual
way, but managed blocks directly. Managed blocks will
produce no overhead because the identification is given by
the application.

M. Lorenz, G. Brunnett & M. Heinz / Rendering on Tiled Displays using Advanced Stream Caching

c© The Eurographics Association 2007.

106

Such a stream cache has different advantages. First, the
identification of already cached objects is given. This will
improve the overall rendering performance of the cluster
most because cached objects can be called directly with the
given identifier. In this case the application does not
specify the geometry data as sequences of vertex, color,
normal and texture commands. Instead, a simple cache
control command will be specified. Therefore it is not
necessary that the packer encodes the geometry commands
into a geometry buffer. Obviously this reduces the work
load of the client significantly and all other tasks will
benefit.

Next, the application has the chance to mark objects that
will not benefit from caching, e.g. such that will be drawn
only once or that change their geometry. This will avoid
the expensive computation of checksums by the cache
control function as well as the substitution of other,
suitable objects in the case of a hash collision.
Additionally, the application can send control commands to
remove objects from the cache which will no longer be
needed. This will reduce the memory utilization as well as
the count of hash collisions.

The application based cache control does not replace the
transparent stream cache but it is a very useful extension.
As described above Chromium based rendering clusters
have no information about the structure of the 3D scene
and the rendering process. Based on GL streams only
suitable data sets, e.g. glBegin()-glEnd() blocks can be
analyzed and managed with a significant overhead. In
contrast, the application can decide based on the structure
of the scene and the information from the rendering process
which objects should be cached, how long they should
remain in the cache and which objects should not be
cached. Especially the knowledge about the future of scene
parts (which Chromium does not have) is very important
for caching. Since the application often knows which
objects will be always visible and which ones will be
rendered only for a short time, it is able to manage the
cache more efficient as a transparent stream cache ever can.
This allows specific cache strategies and, of course, best
acceleration.

The drawback of this method is the need for a
modification of the graphical application which is not
always suitable. In addition, our stream cache handles only
geometry stored in glBegin()-glEnd() blocks. The method
is not applicable if the application specifies the geometry
different from that.

5. Cache Control API

The application based cache control was developed with

respect to the following aspects:
1. Minimal code modifications of existing GL-

applications: The cache control functions are easy to
integrate. There is no need for major changes of the render
process and of the internal data representation of 3D-
objects. The specification of glBegin()-glEnd() blocks
remains unchanged. Furthermore, there are no restrictions
for the specification of vertex data as given in the case of

vertex arrays. This minimizes the complexity of conceptual
modifications particularly.

2. Simple and efficient API: The cache control interface
is simple to use. The application uses only a small set of
functions to perform all necessary management tasks. In
particular, the specification and handling of cache objects
is very efficient.

3. Flexibility and extensibility: The design of the API in
form of a GL extension simplifies the integration of the
functions into the Chromium framework. All functions are
handled by Chromium in the usual way. This allows the
operation of user-specific SPUs in front of the OPT-SPU.
The integration of additional API-functions requires
minimal code changes.

The API functions are used to manage cache objects in a
special storage area on the server side of the stream cache.
The configurable storage area is organized based on
consecutive identifier numbers. Each identifier references
exactly one object managed by the application using API
functions. The API allows an object to be stored, called
from the cache and deleted. In the trivial case the
application can fill the storage area of the cache with
objects numbered from 1 to GL_MAX_CACHE_ID_CR in
ascending order. No hashing is necessary. Note that the
identifier 0 is reserved to mark objects that should be
handled in a particular way described later in this section.

Since Chromium is seen from the application as a usual
implementation of the GL interface the cache control API
has been designed and implemented in form of a GL
extension (GL_CR_cache_control). The extension is
defined in the namespace of Chromium and uses values
from the reserved Chromium enumeration interval
(0x8AF0-0x8B2F). It provides the following functions:

typedef void (APIENTRY *glCacheBeginCRProc) (GLuint id);
typedef void (APIENTRY *glCacheEndCRProc) (void);
typedef void (APIENTRY *glCacheCallCRProc) (GLuint id);
typedef void (APIENTRY *glCacheDeleteCRProc) (GLuint id);

extern void APIENTRY glCacheBeginCR(GLuint id);
extern void APIENTRY glCacheEndCR(void);
extern void APIENTRY glCacheCallCR(GLuint id);
extern void APIENTRY glCacheDeleteCR(GLuint id);

#define GL_MAX_CACHE_ID_CR 0x8B2F .

First, the application should ask the cache for the
number of cache objects. This is done using the glGet()
function with the argument GL_MAX_CACHE_ID_CR. A
returned value of 0 indicates a disabled stream cache.

The specification of a new cache object is done using the
function pair glCacheBeginCR(id) and glCacheEndGL().
Between the calls of these functions an arbitrary number of
glBegin()-glEnd() blocks containing the GL commands
allowed there may be specified. glCacheBeginCR(id)
addresses the related cache object using the argument id. If
there is no cache object with the identifier id when
glCacheBeginCR(id) is called, all subsequent GL
commands will be stored by the packer in geometry buffers
until glCacheEndCR() is received. The filled buffers will
be transmitted through the multicast channel to all servers
in parallel and stored in the stream cache. Finally, the
stored cache object is called to initiate the rendering of the
geometry. If the cache already contains an object with the

M. Lorenz, G. Brunnett & M. Heinz / Rendering on Tiled Displays using Advanced Stream Caching

c© The Eurographics Association 2007.

107

identifier id when glCacheBeginCR(id) is called, all
subsequent GL function calls will be ignored until a
corresponding glCacheEndCR() is received. Instead of
packing the GL commands only the small
glCallCacheCR(id) is packed and transmitted. This initiates
the rendering of the cached geometry at the server side.

The selective non-caching of geometry is specified
calling glCacheBeginCR(0). In this case no data are
handled by the cache. This means that no checksum is
computed and no packed buffers are stored in the cache.
Instead of that the commands are packed into Chromium
buffers and sent to the servers in the usual way until
glEndBeginCR() is called. In contrast to the selective
caching of geometry any GL commands are allowed here.
In this way a set of geometric objects that should not be
cached, e.g. deformable solids, and the related state
changes can be transmitted to the servers efficiently.

The function glCallCacheCR(id) is used to extract the
cache object id from the storage area at the server side
directly. It is functionally equivalent to the command
sequence glCacheBeginCR(id); ... glCacheEndCR(); but
much more efficient. This sequence ignores all GL
commands between the function calls in the case the object
is already cached, whereas glCallCacheCR() is represented
by one call only. While the sequence is intended for a
minimal integration of the cache control into existing
applications as shown below, glCallCacheCR() requires a
more complex management of cache identifiers within the
application. The instruction glCacheDeleteCR(id) is used
to remove the object with the identifiers id from the cache
at all servers. After this another object can be stored with
the freed id.

All API functions handle errors in the usual way of GL.
For instance, calling glCallCacheCR() with an invalid id (if
no related object is held by the cache or if the id value is
out of range) will generate GL_INVALID_VALUE. A
forbidden function call, e.g. calling glCacheDeleteCR()
between glCacheBeginCR() and glCacheEndCR() results in
a GL_INVALID_OPERATION error.

The following example shows a typical function to draw
a part of the scene using some glBegin()-glEnd() blocks:

void DrawObject (...)
{
 ...
 /* set OpenGL state */
 ...
 /* specify geometry as sequence of
 * Begin/End-Blocks */
 glBegin(...);
 ...
 /* geometry data */
 ...
 glEnd();
 ...
 glBegin(...);
 ...
 /* geometry data */
 ...
 glEnd();
}

The next code shows an integration of the cache control

functions that requires only minimal code modification to
perform a specific caching of suitable objects. In this case
all geometry data is specified and packed every time the

function DrawObject() is called but in contrast to the
unmodified code the expensive computation of checksums
that is necessary for the identification of the geometry data
is not performed by the cache.

static bool cache; /* indicates an active cache control */
void DrawObject (...)
{
 ...
 /* set OpenGL state */
 ...
 if (cache) {
 glCacheBeginCR(object_id);
 }
 /* specify geometry as sequence of
 * Begin/End-Blocks */
 glBegin(...);
 ...
 /* geometry data */
 ...
 glEnd();
 ...
 glBegin(...);
 ...
 /* geometry data */
 ...
 glEnd();
 if (cache) {
 glCacheEndCR();
 }
}

Such a modified function DrawObject() is also used to
bypass the stream cache for the contained geometry. To
achieve the so called non-caching the argument object_id
has to be 0. The overall rendering performance benefits
mostly if the cache control extension is used in the
following manner because no GL commands are sent to
Chromium if the object is already stored in the cache:

static bool cache; /* indicates active cache control */
void DrawObject (...)
{
 static int object_cached=0;
 ...
 /* set OpenGL state */
 ...
 if (cache && object_cached) {
 glCacheCallCR(object_id);
 } else {
 if (cache) {
 glCacheBeginCR(object_id);
 }
 if (!object_cached) {
 /* specify geometry
 as sequence of
 * Begin/End-Blocks */
 glBegin(...);
 ...
 /* geometry data */
 ...
 glEnd();
 ...
 glBegin(...);
 ...
 /* geometry data */
 ...
 glEnd();
 }
 if (cache) {
 glCacheEndCR();
 object_cached=1;
 }
 }
}

It differs from the minimal variant in the handling of the
flag object_cached. It can be seen that the application has
to manage the cache state for all related objects. In
complex rendering libraries this cannot be done as simple
as in this example. Therefore the first implementation may
be used to get better results fast.

M. Lorenz, G. Brunnett & M. Heinz / Rendering on Tiled Displays using Advanced Stream Caching

c© The Eurographics Association 2007.

108

Our strategy is comparable to the integration of display
list functionality into complex programs. In contrast to our
approach the internal handling of display lists in Chromium
is very complex. Chromium handles display lists with a so
called display list manager in two different ways: First, a
list can be stored at the client. The manager inserts the
contained data into the stream sent to the servers. This
means that all data will be transmitted every time a list is
called by the application. This is inefficient. As the second
option, Chromium will forward the entire list to the servers.
This seems to be efficient. But, display lists are not limited
to store geometry. A list may also contain commands for
changing the GL state. This may be complicated if some
kind of culling is performed to avoid geometry to be drawn
that is not visible on the related tile. The consequence is
that for all display lists the state has to be tracked which an
expensive task is. Furthermore, we found that consumer
graphics cards have major problems compiling a large
number of display lists. This leads to inconvenient
interrupts of the continuous rendering.

6. Results

We use a render cluster of 12 PC’s (Intel Core 2 Duo

CPU, 2GB RAM, Nvidia GeForce 7800). The application
and the Chromium client node are running on an additional
PC. The 13 PC’s are connected with 2 switched Gigabit
Ethernet networks whereof one is exclusively used for
multicast transmissions. The cache and the OPT-SPU are
integrated in the Chromium distribution 1.9.

A simple test program shown in Figure 2 was
implemented to draw triangulated objects using a single
glBegin()-glEnd() block. For each vertex the 3D
coordinates and the coordinates of the surface normal are
specified using glNormal() and glVertex() commands.

Figure 2: A plate composed of 600k triangles

First we measured the frame rate for a set of objects with
different complexity each with various cache settings. The
unmodified program was used to benchmark the cluster
without caching as well as with transparent stream caching
(w/ and w/o automatic VBO generation). The transparent
stream cache was configured to perform the computation of
identifiers based on the binary content of whole buffers. In
this case the hash function ROLLADD [LBH07] applies
each byte of the buffer to build a checksum. To determine

the acceleration of the overall rendering performance
caused by the application based cache control we modified
the application to support both variants as shown in section
5. Table 2 shows the measured frame rates. It can be seen
that the application of the cache control improves the
performance significantly. The minimalist modification of
the OpenGL application program using pairs of
glCacheBeginCR()-glCacheEndCR() achieves a speed-up
between 10% and 30% compared to our transparent stream
cache with activated VBO generation. As expected, the
reasonable code modification using the glCallCacheCR()
method generates the best rendering performance. The
acceleration is between 160% and 350% whereas complex
objects benefit mostly. The cache control extension
achieves best results in combination with automatic VBO
generation by the transparent stream cache. Running the
render cluster with this configuration a speed-up between
250% and 1250% was measured. The results marked with
* represent the maximum frame rate that our servers can
render limited by the graphics hardware.

The columns named morphing geometry contain the
results for the selective non-caching of major scene parts.
To measure the acceleration of this method we modified
randomly the vertex data continuously to ensure that the
related glBegin()-glEnd() block will occur only one-time.
In this situation the rendering was between 15% and 30%
faster compared to usual stream caching due to the
elimination of cache overhead, e.g. computation of useless
checksums. In addition, a significant reduction of memory
utilization was observed.

Figure 3: The urban scene

A second test was done rendering the urban scene shown

in Figure 3. The scene has a completely different
characteristic. It consists of about 140.000 objects with low
complexity, e.g. parts of buildings, streets, trees and so on.
But, the rendering of the scene graph requires a very high
number of GL state changes including texture swapping.
Since the given relation between object complexity and
state changes is disadvantageous the use of the cache
control extension cannot achieve such high speed-up values
like in the previous test program. As shown in Table 1 a
continuous walk-through runs as twice as fast as the
rendering based on multicast transmissions without and
about 40% faster than with transparent stream caching.

scene w/ GL_cache_control_CR

w/o stream
caching w/ stream caching (variant glCallCacheCR())

urban model 6,7 8,3 11,5

w/o GL_cache_control_CR

Table 1: Frame rates for the urban scene

M. Lorenz, G. Brunnett & M. Heinz / Rendering on Tiled Displays using Advanced Stream Caching

c© The Eurographics Association 2007.

109

scene characteristics

scene file
number of
triangles

number of
vertices

w/o stream
caching

w/ stream
caching

w/ caching
+ VBO gen.

w/ stream
caching

w/ caching
+ VBO gen.

w/ stream
caching

w/ caching
+ VBO gen.

w/ stream
caching

non-
caching

Hawaii 19602,0 10000,0 48,0 124,0 199,0 134,0 236,0 199,0 550* 23,0 30,0

Club 33700,0 16864,0 30,0 74,0 127,0 86,0 164,0 144,0 580* 14,9 17,3

Body 38756,0 19927,0 25,0 69,0 122,0 76,0 148,0 123,0 560* 12,5 14,4

Bones 45750,0 23623,0 22,0 60,0 103,0 67,0 131,0 116,0 570* 10,2 12,7

Bunny 69451,0 34834,0 14,7 40,0 62,0 48,0 78,0 90,0 560* 7,3 8,5

Horse 96966,0 48485,0 10,7 29,0 51,0 33,0 64,0 60,0 440,0 5,2 6,3

Football 121784,0 61742,0 8,3 21,0 41,0 24,0 52,0 49,0 470,0 4,2 4,9

Picard 146036,0 73014,0 6,3 12,0 19,0 16,0 23,0 43,0 239,0 3,2 3,8

Plate 599999,0 300970,0 1,7 5,6 7,8 6,2 10,5 14,0 84,0 1,4 1,8

morphing geometry

w/ GL_cache_control_CR

minimal. modification w/ glCallCacheCR()

static geometry

w/o GL_cache_control_CR

Table 2: Frame rates for different triangulated objects

7. Conclusion

The application of a stream cache in combination with

multicast transmissions within a Chromium render cluster
enables a significantly higher rendering performance
possible. Furthermore the consumed network bandwidth
and the CPU utilization especially at the client host will be
considerably reduced. But, the acceleration is limited by
different aspects, mainly caused by the fact that a usual
stream cache has not enough information about the
graphical scene to perform an optimal cache strategy. This
leads to computational and memory overhead.
Unfortunately there is no chance to overcome these
problems if the application cannot be modified because
complex stream parts have to be identified continuously
based on expensive checksums.

These drawbacks can be eliminated if the graphical
application manages parts of the stream cache. This
includes primary the selective caching and calling of parts
of the graphical scene. For this purpose we developed an
easy to use GL extension which acts as an interface to our
stream cache that was implemented for the acceleration of
multicast transmissions within the Chromium framework.

The GL_CR_cache_control extension can be used for a
minimal invasive modification of existing applications. The
most important advantage of this approach is that it makes
no revision of the internal data representation necessary
because any glBegin()-glEnd() block can be processed.
This simplifies the integration of the cache control
compared to the application of vertex arrays notable.
Remember that vertex arrays and vertex buffer objects can
only be used for the storage of vertex data. In this case the
geometry needs to be specially organized. Additionally, the
GL state has to be managed in a special manner. This may
lead to a major redesign of the applications. Hence, vertex
arrays and VBO’s are the most inflexible, but also the most
powerful way to accelerate the rendering.

From Chromium’s point of view the introduced
application based cache control is a good compromise
between the effort for implementation and the achieved
acceleration of the overall rendering speed. Scenes
containing objects with complex geometry, e.g. laser
scanned data, will benefit from the described method best.

8. References

[BHH00] BUCK I, HUMPHREYS G, HANRAHAN P.:

Tracking graphics state for networked rendering.
Proceedings of SIGGRAPH/Eurographics Workshop on
Graphics Hardware, pages 87-95, 2000.

[DKK02] DUCA N., KIRCHNER P.D., KLOSOWSKI
J.T.: Stream Caches: Optimizing Data Flow. In
Visualization Clusters. Commodity Cluster Visualization
Workshop, IEEE Visualization, 2002.

 [HBEH00] HUMPHREYS G, BUCK I, ELDRIDGE M,
HANRAHAN P.: Distributed rendering for scalable
displays. IEEE Supercomputing 2000, 2000.

[HEB*01] HUMPHREYS G, ELDRIDGE M, BUCK I,
STOLL G, EVERETT M, HANRAHAN P.: WireGL - A
scalable graphics system for clusters. Proceedings of
SIGGRAPH 2001, pages 129-140, 2001.

[HHN*02] HUMPHREYS G., HOUSTON M., NG R.,
FRANK F., AHERN S., KIRCHNER P., KLOSOWSKI
J.: Chromium: A streamprocessing framework for
interactive rendering on clusters. In Proceedings of
SIGGRAPH, pages 693–702, 2002.

[ISH98] IGEHY H, STOLL G, HANRAHAN P.: The
design of a parallel graphics interface. Proceedings of
SIGGRAPH 1998, pages 141-150, 1998.

[LB06] LORENZ M., BRUNNETT G.: Optimized
Visualization for Tiled Displays. Eurographics/ACM
SIGGRAPH Symposium Proceedings, Parallel Graphics
and Visualization 2006, pp. 127-130, Eurographics
Association, 2006.

[LBH07] LORENZ M., BRUNNETT G., HEINZ M.:
Driving tiled displays with an extended chromium system
based on stream cached multicast communication. To be
printed in Special Issue of the Parallel Computing
Journal, Vol. 33, ISSN: 0167-8191, 2007.

[MUE95] MUELLER C.: The sort-first rendering
architecture for high-performance graphics. Symposium
on Interactive 3D Graphics, pages 75–84, 1995.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D.,
FUCHS H.: A Sorting Classification of Parallel
Rendering. IEEE Computer Graphics and Algorithms,
pages 23–32, July 1994.

M. Lorenz, G. Brunnett & M. Heinz / Rendering on Tiled Displays using Advanced Stream Caching

c© The Eurographics Association 2007.

110

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

