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Abstract We propose a multiresolution representation for maximum intensity
projection (MIP) volume rendering, based on morphological pyramids which al-
low progressive refinement and have the property of perfect reconstruction. The
pyramidal analysis and synthesis operators are composed of morphological ero-
sion and dilation, combined with dyadic downsampling for analysis and dyadic
upsampling for synthesis. The structure of the multiresolution MIP representa-
tion is very similar to wavelet splatting, the main differences being that (i) linear
summation of voxel values is replaced by maximum computation, and (ii) linear
wavelet filters are replaced by (nonlinear) morphological filters.

1 Introduction

Interactive rendering and transfer of volume data is still a demanding problem due to
the sizes of the data sets. For this purpose multiresolution models are developed, which
can be used to visualize data incrementally (‘progressive refinement’). An extensively
studied class of such multiresolution models is based on wavelets [4, 12, 18]. Recent
methods for X-ray rendering include wavelet splatting [7, 8], which extends splatting
[19] by using wavelets as reconstruction filters, and Fourier-wavelet volume rendering
[14, 17], which extends standard Fourier volume rendering [10], and uses a frequency
domain implementation of the wavelet transform.

The goal of this paper is to propose a multiresolution representation for Maximum
Intensity Projection (MIP) volume rendering, where one computes not the (opacity-
weighted) integral, but themaximumalong the line of sight. Because of its computa-
tional simplicity, this algorithm is widely used in the display of magnetic resonance
angiography (MRA) and ultrasound data. Our approach makes use of the concept of
morphological pyramids, following recent work of Goutsias and Heijmans [3, 6], who
present a general framework for multiresolution signal decomposition, which includes
linear wavelet analysis as a special case. Even though the morphological operators are
nonlinear and non-invertible, the pyramid scheme does allow perfect reconstruction as
well as progressive refinement, just as in the linear wavelet case. We restrict ourselves
here to the so-calledflat pyramids, where minima and maxima are computed in a local
neighbourhood of each voxel, requiring only integer computations. Flatness in particu-
lar means that no new grey values are introduced in the analysis of a signal. Also, flat
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pyramids allow global error control, since they have the property that the approximation
error decreases monotonically as we add detail signals. Note also that the morpholog-
ical pyramids used in this paper are not auxiliary data, but an exact representation of
the initial data. After the pyramid has been constructed, the original volume data can be
discarded, since the pyramid allows perfect reconstruction of the data.

Morphological methods have a well-established mathematical basis and are widely
used in image processing for filtering, segmentation, and shape analysis [5,15]. Appli-
cations of morphological methods in visualization have so far mostly been restricted
to preprocessing of volume data, but this is beginning to change. For example, Lürig
and Ertl [9] used multiscale morphological operators as an alternative to transfer func-
tions in traditional colour-opacity volume rendering. Visualization of solids defined by
morphological operators was considered in [13].

Morphological pyramids are useful in the context of MIP for several reasons. First,
from a mathematical point of view, the morphological operations of erosion and di-
lation (involving minimum and maximum computation) are exactly the right ones for
the case of MIP, which involves maximum computation, just as linear wavelet repre-
sentations are the right tool for the case of linear X-ray rendering. Second, the feature
extraction capabilities of morphological operators can be incorporated within the vol-
ume rendering process. This allows processing based on geometric information, not just
on grey value properties, as usually is the case. For example, when processing angio-
graphic data, the multiresolution scheme will systematically remove small veins when
going higher up in the pyramid, while keeping larger ones. Whether or not this is a de-
sired property can only be answered in the context of the concrete medical application.
Finally, pyramids are one of many possibilities for accelerating MIP. Many methods
already exist for that purpose, including distance encoding [20], splatting in sheared
object space [2], or MIP at warp speed [11], which preprocesses the data to remove
non-contributing voxels from the volume.

We stress that in this paper the main issue is the presentation of a new multiresolu-
tion MIP representation. Computational efficiency is a separate issue: any existing fast
MIP implementation can in principle be used for computing the maximum projections
which are required to render different levels of the pyramid, as long as such an imple-
mentation can work directly on the data structures used to represent the pyramid. In the
examples below we will use the voxel projection method of Mrozet al. [11]. A detailed
study of computational aspects will be presented in future work.

The organization of this paper is as follows. Section 2 gives a few preliminaries on
morphological operators, and summarizes the work of Goutsias and Heijmans [3,6] on
morphological pyramids. Section 3 contains the new material, i.e. the derivation of a
multiresolution MIP rendering algorithm (MMIP) allowing progressive refinement. An
example is given in section 4. Section 5 contains a discussion of future work.

2 Morphological pyramids

Before we consider multiresolution signal decomposition, first some elementary mor-
phological operators are introduced.



Morphological operators Morphological operations for grey value images have been
defined in analogy with the binary case [16]. For a mathematical treatment, see e.g. [5].
We consider signals or functions, defined on a subset of the discrete gridZ

d, where
d = 2 or d = 3 (image and volume data).

Let f be a signal with domainF ⊆ Zd, andA a subset ofZd called the structuring
element. Then thedilation δA(f) anderosionεA(f) of f byA are defined by

δA(f)(x) = max
y∈A,x−y∈F

f(x− y), εA(f)(x) = min
y∈A,x+y∈F

f(x+ y). (1)

So dilation and erosion simply replace each value by the maximum or minimum in a
neighbourhood defined by the structuring elementA. By taking products of dilation and
erosion we can constructopeningsandclosings. The openingαA(f) and closingφA(f)
of f byA are defined by

αA(f)(x) = δA(εA(f))(x), φA(f)(x) = εA(δA(f))(x). (2)

The opening has the property that it is increasing (f ≤ g implies thatαA(f) ≤ αA(g)),
anti-extensive (αA(f) ≤ f ) and idempotent (αA(αA(f)) = αA(f)). Similar properties
hold for the closing, with the difference that closing is extensive (φA(f) ≥ f ). The
opening eliminates peaks, the closing valleys.

Pyramids We outline here the multiresolution signal decomposition scheme as recently
introduced by Goutsias and Heijmans [3, 6], which encompasses linear (e.g. laplacian)
and nonlinear pyramid schemes.

Consider signals in ad-dimensional signal spaceV0, which is assumed to be the
set of functions on (a subset of) the discrete gridZd that take values in a finite set of
nonnegative integers. The goal is to decompose the original signalf ∈ V0 into a number
of coarser signalsfj , j = 0, 1, 2, . . . . Herej is called the level of the decomposition. It
is assumed that the signalsfj are elements of associated signal spacesVj , which have
the same structure asV0.

Signal decomposition oranalysisproceeds by analysis operatorsψ↑j : Vj → Vj+1,
which map a signal to a level higher in the pyramid, thereby reducing information.
Signal reconstruction orsynthesisproceeds by synthesis operatorsψ↓j : Vj+1 → Vj ,
which map a signal to a level lower in the pyramid. To guarantee that information lost
during analysis can be recovered in the synthesis phase in a non-redundant way, one
needs the so-calledpyramid condition:

ψ↑jψ
↓
j (f) = f for all f onVj+1. (3)

Decompositionof a signalf ∈ V0 proceeds by

f0 = f

fj+1 = ψ↑j (fj), j ≥ 0

dj = fj −̇ ψ↓j (fj+1).

In a decomposition ofL levels, this results in a sequenced0, d1, . . . , dL−1, fL, where
{dj} are detail signals andfL an approximation signal at the coarsest level. Here−̇



is a generalized subtraction operator. Assuming there exists an associated generalized
addition operatoru such that

f̂ u (f −̇ f̂) = f, if f ∈ Vj andf̂ = ψ↓jψ
↑
j (f),

we have perfect reconstruction, that is,f ∈ V0 can beexactlyreconstructed from the
sequenced0, d1, . . . , dL−1, fL by the recursion

fj = ψ↓j (fj+1)u dj . (4)

The operatorsu and−̇ can be ordinary addition and subtraction, but other choices are
possible, as we will see below.

By approximationsof f ∈ V0 we will mean signals which are reconstructed from
higher levels by omitting some of the detail signals. To make this notion precise, we
introduce the multilevel analysis operatorψ↑i,j = ψ↑j−1ψ

↑
j−2 · · ·ψ

↑
i , j > i, which maps

an element ofVi to an element ofVj . Similarly, the multilevel synthesis operatorψ↓i,j =
ψ↓i ψ

↓
i+1 · · ·ψ

↓
j−1, j > i, maps an element ofVj back to an element ofVi. The operator

ψ̂i,j = ψ↓i,jψ
↑
i,j can be regarded as anapproximation operatorthat maps the information

obtained at levelj by the analysis operatorψ↑i,j back to leveli by the synthesis operator

ψ↓i,j . Now we define a level-j approximationf̂0,j of f ∈ V0 as

f̂0,j = ψ̂0,j(f) = ψ↓j,0ψ
↑
0,j(f) = ψ↓j,0(fj).

Adjunction pyramids We now introduce the class of so-calledmorphological adjunc-
tion pyramids[3], for which (i) the analysis and synthesis operators are independent of
level (ψ↑j = ψ↑, ψ↓j = ψ↓), and (ii)ψ↑ : V0 → V1 andψ↓ : V1 → V0 form a so-called
adjunctionbetweenV0 andV1, implying thatψ↑ is anerosion, i.e. commutes with min-
ima, andψ↓ is a dilation, i.e. commutes with maxima1. In this case, the analysis and
synthesis operators acting on ad-dimensional signalf have the form

ψ↑A(f)(n) = σ↑ εA(f), ψ↓A(f)(k) = δA σ
↓(f). (5)

HereδA(f) andεA(f) are the dilation and erosion defined in (1), whereasσ↑ andσ↓

denote dyadic downsampling and dyadic upsampling in each spatial dimension:

σ↑(f)(n) = f(2n)

σ↓(f)(m) =

{
f(n), if m = 2n
0, otherwise

So in the analysis phase we first compute an erosion, and then downsample; in the
synthesis phase we first upsample and then dilate. Note that the notation is somewhat
confusing: the arrow onσ for downsampling points upwards, and vice versa for upsam-
pling. This is because downsampling is related to going to coarser levels in the pyramid,

1 In a more general setting, ‘maxima’ and ‘minima’ should be replaced by ‘suprema’ and ‘in-
fima’, respectively.



which traditionally are the higher levels. We could have inverted the arrows, so that the
pyramid in upside-down, but decided to adhere to the notation of [3]. The pyramid con-
dition (3) is satisfied, if there exists ana ∈ A such that the translates ofa over an even
number of grid steps are never contained in the structuring elementA; see [3] for more
details.

In an adjunction pyramid, the productψ↓Aψ
↑
A is anopening, i.e. an operator which

is increasing, anti-extensive and idempotent. The anti-extensivity property means that
ψ↓A ψ↑A (f) ≤ f . Therefore, we can define the generalized addition and subtraction
operators by (cf. [3]):

tu s = t ∨ s = max(t, s) (6)

t −̇ s =

{
t, if t > s

0, if t = s
(7)

where0 is the smallest element, that is, the smallest image or voxel value. As a conse-
quence, the detail signals are non-negative:

dj(n) = fj(n) −̇ ψ↓A(fj+1)(n) = fj(n) −̇ ψ↓A ψ
↑
A (fj)(n) ≥ 0. (8)

Note that (7) implies that the detail signaldj(n) equalsfj(n), except at pointsn for
which fj(n) = ψ↓A ψ

↑
A (fj)(n), wheredj(n) = 0. So, detail signals are not ‘small’ in

regions where the structuring element does not fit well to the data. As long as we only
look at the approximation signals, this is not a problem, but for compression purposes
other choices of addition and subtraction operators are more suitable.

For an adjunction pyramid with the addition operator defined by (6), the reconstruc-
tion takes a special form. Making use of the fact thatψ↓A is a dilation, hence commutes
with maxima, we derive from (4) and (6):

f = ψ↓A
L

(fL) ∨
L−1∨
k=0

ψ↓A
k
(dk), (9)

whereL is the decomposition depth andψ↓A
k

denotesk-fold composition ofψ↓A with
itself. This representation is quite similar to the (linear) laplacian pyramid representa-
tion [1]. The main difference is that sums have been replaced by maxima.

3 Multiresolution maximum intensity projection

Now we come to the new part of this paper, which is the derivation of a multiresolution
MIP volume rendering algorithm with progressive refinement based on morphological
pyramids. To emphasize the main ideas, we first consider projections2 along one of the
coordinate axes, and then briefly indicate how the method can be extended to arbitrary
viewing directions.

2 By ‘projection’, we mean maximum intensity projection in what follows.



Axial projections Consider a 3-D volume data setf , and project parallel to thez-axis
by computing the maximum value. The result is denoted byM(f):

M(f)(x, y) = max
z

f(x, y, z), (x, y, z) ∈ Z3.

Applying the pyramid representation (9), and the fact thatM evidently distributes over
maxima, we get

M(f) =
(
M(ψ↓A

L
(fL))

)
∨
L−1∨
k=0

(
M(ψ↓A

k
(dk))

)
(10)

In principle, this formula allows us to do multiresolution MIP. Computationally, how-
ever, this expression is inefficient, because to compute the projections at a certain level

k, we have to reconstruct first to full resolution byψ↓A
k

and then apply the maximum
operatorM. It would be desirable to first compute the maxima along the line of sight
on a coarse level, where the size of the data is reduced, before applying a synthesis op-
erator to perform reconstruction to a finer resolution level. This is possible, as is shown
next.

Computing the maxima before synthesisAs (5) shows, the synthesis operatorψ↓A is
composed of upsampling, followed by a dilation. Therefore, our problem is to rewrite
M ψ↓A (f) =MδA σ

↓(f) such that the projection operatorM is ‘moved to the right’.
The problem can be split in two parts. First we consider the projection of a dilated
function, then the projection of an upsampled function, and finally combine the two
results.

Now, bothM andδA involve the computation of maxima. Therefore, it is easy to
see that to computeMδA(f), we can first projectf along thez-axis, and then dilate
the resulting 2-D function by a structuring elementÃ, which is the projection ofA. So,

M δA(f) = δÃM(f), (11)

with Ã := {(x, y) ∈ Z2|(x, y, z) ∈ A for somez ∈ Z}. Note thatδA is a 3-D dila-
tion, while δÃ is a 2-D dilation (both defined by the formula (1) which holds for any
dimension).

Next, consider projection of an upsampled function:Mσ↓(f). Upsampling has the
effect of inserting zeroes between neighbouring voxels in all three spatial dimensions.
If we project the upsampled function, then for those(x, y) which are in the projection of
the support of the original functionf the outcome will be unaffected, since the inserted
zero values never contribute to the maximum, zero being the minimum data value pos-
sible. On the other hand, for those(x, y) which are not in the projection of the support
of the original functionf , projection means computing the maximum of a vertical line
of zeroes, which results in a zero at(x, y). Therefore,

Mσ↓(f) = σ↓M(f), (12)

whereσ↓ on the right-hand side is a 2-D upsampling operator (the dimension ofσ↓ is
clear from the dimension of the functions on which it acts).



Now we can take the final step, which is to combine (11) and (12). We find,

M ψ↓A (f) =MδA σ
↓(f) = δÃMσ↓(f) = δÃ σ

↓M(f) = ψ↓
Ã
M(f),

whereψ↓
Ã

= δÃ σ
↓ is a 2-D synthesis operator of the same form asψ↓A (the 3-D struc-

turing elementA has only been replaced by a 2-D structuring elementÃ). It is evident
that a similar formula holds for iterated versions ofψ↓A.

As a result of the above analysis, we have proved the main result of this paper,
which is a multiresolution representation of the maximum intensity projectionM(f)
of a 3-D voxel arrayf :

M(f) =
(
ψ↓
Ã

L
M(fL)

)
∨
L−1∨
k=0

(
ψ↓
Ã

k
M(dk)

)
(13)

As long as a user is interacting with the data (preview mode), only a coarse approxima-
tion M̂j(f) may be used, which can be refined to full resolution for close inspection.

The MMIP algorithm The multiresolution MIP algorithm can be summarized as fol-
lows.

– Preprocessing. Compute anL-level 3-D morphological pyramid of the volume
data, resulting in a sequenced0, d1, . . . , dL−1, fL

– Actual MIP volume rendering.

1. Compute a low resolution approximation̂ML(f) by projectingfL followed

by applying the 2-D synthesis operatorψ↓
Ã

L
.

2. Refine the image progressively by taking the detail signalsdk, k = L−1, . . . , 0
into account. From a levelj approximationM̂j(f), compute a levelj − 1 ap-
proximationM̂j−1(f) by projectingdj−1, applying the 2-D pyramid synthesis
operatorψ↓

Ã
to the projection, and finally taking the maximum of the 2-D signal

so obtained with the previous approximation:

M̂j−1(f) = ψ↓
Ã

j−1
(M(dj−1)) ∨ M̂j(f). (14)

3. The recursion terminates witĥM0(f) =M(f), the exact MIP off .

The structure of this algorithm is very similar to that of wavelet splatting [7, 8, 17],
with the difference that (i) linear summation of voxel values is replaced by maximum
computation, and (ii) linear wavelet filters have been replaced by morphological filters
(dilation and erosion).

From (14) we immediately deduce that̂Mj(f) ≤ M̂j−1(f). So if we define a
global error measure by the maximum (orL∞) norm, then approximation error de-
creases monotonically as we go down the pyramid.



Implementation We implemented the MIP projectionsM required in the MMIP al-
gorithm by means of the object order voxel projection method of Mrozet al. [11], that
treats voxels as cells which a constant data value, which are simply projected on the
viewing plane, each voxel contributing to exactly one pixel. The method also uses an
efficient volume data storage scheme, by histogram-based sorting of interesting voxels
according to grey value, and storing these in a value-sorted array of voxel positions. An
additional array contains the cumulative histogram values. For our case of multiresolu-
tion data, all levels of the pyramid were created and stored as value-sorted arrays. To
prevent holes forming in the projection image for non-axial viewing directions, we post-
processed the projection images by performing a closing with a flat structuring element
of size2 × 2. ByMdiscrete we will denote the operator consisting of voxel projection
followed by the final closing. In the experiments to be discussed in Section 4, we define
interesting voxels simply as those with a non-zero grey value (i.e., we did not use the
preprocessing scheme of [11] to identify and remove other types of non-contributing
voxels). In practice, especially for angiographic data, a substantial reduction (up to
99%) in the amount of voxels to be processed is possible when only nonempty voxels
are stored.

Arbitrary view directions To deal with general view directions a continuous func-
tion has first to be reconstructed from the discrete samples of the data setf . The MIP
operatorM now computes the maximum of the reconstructed function along a given
direction vector. The reconstruction operator is assumed to be a dilation (one choice is
the voxel model, which treats voxels as cells which a constant data value). Then formu-
las (9) and (10) still hold for the reconstructed functions. Formulas (11) and (12) have
to be slightly adapted to deal with discretization effects. In the experiments below, we
have simply replacedM by the discrete MIP operatorMdiscrete of the previous subsec-
tion. The structuring element̃A in (11) is replaced by the result of applyingMdiscrete

to the 3-D structuring elementA. In the experiments, we found this approximation to be
quite accurate. A careful study of the associated discretization error will be presented
elsewhere.

4 Examples

Experiments were carried out on a PC with a 500 MHz Pentium III processor and 128
Mb memory. We performed MMIP rendering of a CT head data set and an MR an-
giography data set, both of size2563, using a 2-level pyramid. Dilations and erosions
with a 2 × 2 × 2 structuring element (3-D morphological Haar pyramid) were used.
The sampling distance in the view plane was taken equal to the sampling distance of
the original volume data. For the CT data, about26% of the data consisted of nonzero
voxels; for the angiography data, this was 1.25%. Creation of the pyramid took about
25 seconds in both cases. Rendering times were found to be almost independent of
view angle. Sizes in value-sorted array format and rendering times of the successive
levels of the pyramid are given in Table 1. For comparison, the numbers for direct MIP
rendering of the full-size volume data are given as well. All times are excluding I/O.
The timings show that computing a level-2 or level-1 approximation takes considerably



less time than a full-size MIP, especially for data sets with a relatively large number of
nonzero voxels. Figure 1 shows successive approximations for the CT data. MMIP ap-
proximations quickly remove details of the data, due to the fact that the approximations
essentially are morphological openings by a structuring element whose size increases
with level. Note in particular in Fig. 1 that small details such as the tube from the mouth
almost disappear in the level 1 approximation. To be useful for angiographic data, the
method has to be adapted so that small details are better preserved in higher levels of
the pyramid (see discussion).

Table1.Data sizes (value-sorted array format) and rendering times of MIP (full image) and MMIP
(progressive renderings of approximation and detail data).

MRA data size time CT data size time
256× 256× 256 (kbytes) (s) 256× 256× 256 (kbytes) (s)
full image 838.5 0.423 full image 17433 6.92
level 2 approximation 0.812 0.110 level 2 approximation 253 0.20
add detail level 1 30.2 0.129 add detail level 1 1861 0.87
add detail level 0 801.6 0.417 add detail level 0 15171 6.04

level 2 approx.M̂2(f) level 1 approx.M̂1(f) originalM(f)

Figure1.MMIP reconstruction from a 2-level morphological adjunction pyramid using a2×2×2
structuring element.

5 Discussion

Several extensions to the proposed multiresolution extension of MIP volume rendering
are possible. Adjunction pyramids with non-flat structuring functions can be used. The
shape of this structuring function can be adapted in such a way that smaller details of
the data at higher approximation levels are retained. For the same purpose, other oper-
ators than erosions, such as openings, can be used for the analysis phase. This implies
however, that the representation formula (9) no longer holds. To maintain an acceptable
level of efficiency, we still require that the synthesis operatorψ↓ is a dilation, so that
it commutes with maxima. For compression purposes, other choices of addition and
subtraction operators can be considered, and morphological wavelets can be used [6],



which have the advantage that they provide a non-redundant multiresolution represen-
tation.
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